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Abstract. Periodic-frequent patterns are sets of items (values) that
periodically appear in a sequence of transactions. The periodicity of a
pattern is measured by counting the number of times that its periods
(the interval between two successive occurrences of the patterns) are
greater than a user-defined maxPer threshold. However, an important
limitation of this model is that it can find many patterns having a peri-
odicity that vary widely due to the strict maxPer constraint. But finding
stable patterns is desirable for many applications as they are more pre-
dictable than unstable patterns. This paper addresses this limitation by
proposing to discover a novel type of periodic-frequent patterns in trans-
actional databases, called Stable Periodic-frequent Pattern (SPP), which
are patterns having a stable periodicity, and a pattern-growth algorithm
named SPP-growth to discover all SPP. An experimental evaluation on
four datasets shows that SPP-growth is efficient and can find insightful
patterns that are not found by traditional algorithms.

Keywords: Pattern mining · Periodic pattern · Stable periodicity ·
Lability

1 Introduction

Frequent itemset mining (FIM) [1–4] is a popular data analysis task. The goal
is to identify all patterns that frequently appear in records of a transactional
database. A pattern is said to be frequent if its support (occurrence frequency)
is no less than a user-defined minimum support threshold. Although discover-
ing frequent patterns is useful, too many frequent patterns are often found, and
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many of them are uninteresting to users. To address this issue, several variations
of FIM have been developed to select small sets of patterns that are interest-
ing to users based on various constraints. This includes discovering maximal
frequent patterns [5], closed frequent patterns [6], high-utility patterns [7], and
periodic frequent patterns [8,9,11,12,14,15]. Frequent patterns that periodically
occur in a database are called periodic-frequent patterns (PFP). Finding these
patterns has many practical applications such as for analyzing the behavior of
website users and the performance of recommender systems [10]. Finding peri-
odic patterns can also help to understand the purchase behavior of customers by
discovering sets of products that are periodically bought. For instance, one may
find that a customer buys bread every week. Such pattern can then be used for
marketing [8,12].

Several algorithms have been proposed to discover PFP in a transaction
database (a sequence of transactions). Most of them measure the periodicity of
a pattern by counting the number of times that its periods (number of events
between two consecutive occurrences) are greater than a user-specified maxPer
threshold. In full PFP mining [8,11], a pattern is called periodic if none of its
periods are greater than maxPer. A drawback of this model is that it is too
strict as a pattern is discarded if it has only one period exceeding maxPer. For
example, a pattern indicating that a customer buys milk every day would be dis-
carded just because the customer skipped one day. An alternative called partial
PFP mining [14] was then proposed, which relaxed the maxPer constraint to
allow a certain number of periods to exceed maxPer. But this model is not strict
enough, as a pattern may be considered periodic even if it has some very long
periods. For example, buying coffee may be considered as periodic if a customer
buys it on many consecutive days even if he then did not buy it for a year. Thus,
traditional models for discovering PFP patterns are inadequate because the size
of periods for some patterns may vary widely in a real-life database but tradi-
tional periodicity measures do not take this into account. For several applications
such as market basket analysis, it is desirable to identify stable periodic-frequent
patterns, that is patterns that have periods that are more or less stable in terms
of size over time. Such patterns can be useful to better forecast product demand
and improve inventory management strategies.

In this paper, we propose a solution for discovering stable periodic-frequent
patterns using a novel measure of stability. This paper has three main contribu-
tions. First, a novel measure named lability is proposed to assess the stability
of patterns. Second, a pattern-growth algorithm, called Stable Periodic-frequent
Pattern-growth (SPP-growth), is proposed to efficiently discover the complete set
of stable periodic-frequent itemsets. Third, several experiments were conducted
on synthetic and real-life datasets to evaluate the efficiency of SPP-growth, and
patterns found using the proposed stability measure. Experimental results show
that the proposed approach is efficient for finding stable periodic-frequent pat-
terns and that insightful patterns are discovered, which are not discovered using
traditional approaches.
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The rest of the paper is organized as follows. Section 2 describes related work.
Section 3 describes the proposed model of SPPs. Section 4 introduces our algo-
rithm to find all SPPs in transactional databases. Section 5 reports experimental
results. Finally, Sect. 6 draws a conclusion.

2 Related Work

The problem of frequent itemset mining is defined as follows [1,2]. Let I be a set
of items or symbols. Each subset X ⊆ I is said to be an itemset. The length of an
itemset containing k items is said to be k. Furthermore, all itemsets of a length
k are called k-itemsets. A transactional database D = {T1, T2, ..., Tn} is a set of
transactions where each transaction Tc is an itemset with a unique Transaction
IDentifier (TID) c, and where the TID can also represent the transaction time
(or timestamp). The support of an itemset X in a database D is denoted as
sup(X) and defined as |{T |T ∈ D ∧ X ⊆ T}|. In other words, sup(X) = |g(X)|,
where g(X) is the set of transactions containing X.

Table 1. A transactional database

TID Itemset TID Itemset

1 a, b, c, e 6 b, c, e

2 a, b, c, d 7 b, c, d, e

3 a, b, e 8 a, c

4 c, e 9 a, b, d

5 b, d, e 10 b

For example, consider the database of Table 1, which will be used as running
example. This database contains ten transactions (T1, T2, ..., T10). Transaction
T2 has TID 2 and is a 4-itemset {a, b, c, d}. The set of transactions containing
the itemset {a, b} is g({a, b}) = {T1, T2, T3, T9}. Hence, the support of {a, b} is
sup({a, b}) = |g({a, b})| = 4.

Definition 1 (Frequent itemset mining). The problem of frequent itemset
mining consists of discovering the frequent itemsets. An itemset X is frequent if
sup(X) ≥ minSup, where minSup is a user-specified minimum support threshold.

For instance, if minSup = 5, there are five frequent itemsets: {a} : 5, {b} :
8, {c} : 6, {e} : 6 and {b,e} : 5, where each itemset X is annotated with sup(x).

Various algorithms have been proposed to discover frequent itemsets, such as
Apriori [1] and FP-Growth [2]. However, these algorithms cannot be applied to
mine PFPs as they do not evaluate the periodic behavior of patterns. Inspired
by studies on frequent itemset mining, researchers have designed algorithms
to discover periodic-frequent patterns in transaction databases [2,11–14]. Sev-
eral applications of mining periodic-frequent patterns were presented in previous
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studies [8,10]. The traditional (full) periodic-frequent pattern mining model is
defined as follows [8].

Definition 2 (Periods of an itemset). Let there be an itemset X and a
database D = {T1,T2,...,Tn}. The set of transactions containing X is denoted
as g(X) = {TgX(1), TgX(2), ..., TgX(sup(X))}. Let TgX(i+1) and TgX(i), i ∈
[0, sup(X)] be two consecutive TIDs where X appears. For an integer i ≥ 0,
the number of transactions or the time difference between TgX(i+1) and TgX(i) is
said to be a period of X, defined as per(X, i) = gX(i+1)−gX(i). For simplicity
of computation, it is considered that X appears in two additional transactions
where gX(0) = 0 and gX(sup(X)+1) = |D|. The periods of an itemset X is a list
of periods defined as per(X) = {gX(1)−gX(0), gX(2)−gX(1), ..., gX(sup(X)+
1) − gX(sup(X))}. Thus, per(X) =

⋃
0≤z≤sup(X)(gX(z + 1) − gX(z)) and

|per(X)| = |g(X)| + 1 = sup(X) + 1.

For example, consider the itemset {b, e}. This itemset appears in transactions
T1, T3, T5, T6 and T7, and thus g({b, e}) = {T1, T3, T5, T6, T7}. The periods of
this itemset are per({b, e}) = {1,2,2,1,1,3}.

Definition 3 (Periodic-frequent pattern). Let per(X) be the set of all
periods of X. Then, the periodicity of X can be defined as maxper(X) =
max(per(X)). An itemset X is a periodic-frequent pattern if sup(X) ≥ minSup
and maxper(X) ≤ maxPer, where minSup and maxPer are user-defined
thresholds.

For example, if minSup = 5 and maxPer = 2, the complete set of (full)
PFPs is {b}: (8, 2) and {c}: (6, 2), where each PFP X is annotated with a pair
(sup(X), maxper(X)).

Tanbeer et al. [8] proposed the problem of mining PFPs and the PF-growth
algorithm. Then, the MTKPP [11] algorithm was designed, which relies on a
depth-first search and a vertical database representation. But these two algo-
rithms have the drawback that a pattern is discarded if only one of its periods
exceeds maxPer (i.e., the item {e} has a periodic behavior, but it is regarded
as non periodic since it has a period of 3 > maxPer = 2). Several variations
of the above definition were proposed to address some of its limitations. Surana
et al. [13] proposed to associate a minimum support threshold and a maxi-
mum periodicity to each item, to evaluate each item in a different way. But the
number of parameters becomes equal to the number of items. Kiran et al. [14]
relaxed the maximum periodicity constraint by considering that a pattern X is
(partial) periodic if its periodic-frequency ( |{i|per(X,i)≤maxPer}|

|per(X)| ) is no less than
a user-defined threshold. However, a major drawback of that definition is that a
pattern that has some very long periods will still be considered as periodic (i.e.,
the item {a} is periodic even if it is periodic only in a very short time-interval).
In summary, these studies measure the periodicity of a pattern by counting the
number of times that its periods are less than maxPer but ignore by how much
these periods deviates from maxPer. To our best knowledge, this study first
considers the problem of finding stable periodic-frequent patterns by taking into
account by how much the periods of each pattern deviate from maxPer.
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3 The Proposed Model

The proposed model defines the concept of stable periodic-frequent patterns. In
this model, the definition of periodic-frequent patterns is extended to capture
the frequent patterns having a stable periodic behavior. The basic idea of the
proposed model is to assess the periodic stability of a pattern by calculating the
cumulative sum of the difference between each period length and maxPer. The
proposed model is defined as follows.

Definition 4 (Lability of an itemset). Let TgX(i+1) and TgX(i), i ∈
[0, sup(X)] be two consecutive TIDs where X appears. The i-th lability of X
is defined as la(X, i) = max(0, la(X, i − 1) + per(X, i) − maxPer), where
la(X,−1) = 0. Moreover, it can be concisely written as

la(X, i) = max(0, la(X, i − 1) + gX(i + 1) − gX(i) − maxPer)

The lability of an itemset X is a list of periods defined as la(X) = {la(X, 0),
la(X, 1), ..., la(X, sup(X))}, and |la(X)| = |per(X)| = sup(X) + 1.

For example, consider the item {d}. The terms for computing its lability are
la({d}, 0) = max(0, la({d}, −1)+per({d}, 0)−maxPer) = max(0, 0 + 2 − 2) =
0, la({d}, 1) = 1, la({d}, 2) = 1, la({d}, 3) = 1 and la({d}, 4) = 0. Hence, the
lability of {d} is la({d}) = {0, 1, 1, 1, 0}.

Based on Definition 4, it can be observed that the periodic behavior of a pat-
tern is stable (lability is zero) if its periods are always no greater than maxPer.
If a pattern has periods larger than maxPer, its lability will increase, and these
exceeding values will be accumulated by the lability measure. And if there exists
periods of a pattern that are smaller than maxPer, its lability will decrease for
these periods until it reaches a minimum of zero. Thus, the lability of a pattern
changes over time depending on its periodic behavior, and each value exceeding
maxPer is accumulated. A low lability value (close to zero) means a stable peri-
odic behavior while a high value means an unstable one. Hence, this measure
can be used to find stable patterns by limiting the maximum lability.

Definition 5 (Stable periodic-frequent pattern). Let la(X) be the set of
all i-th lability of a pattern X. The stability of X is defined as maxla(X) =
max(la(X)). An itemset X is a stable periodic-frequent pattern (SPP) if
sup(X) ≥ minSup and maxla(X) ≤ maxLa, where minSup and maxLa are
thresholds.

For example, by continuing the previous example, if the user specifies that
maxLa = 1, the complete set of SPPs is {b}: (8, 0), {c}: (6, 0), {e}: (6, 1) and
{b,e}: (5, 1), where each SPP X is annotated with (sup(X), maxla(X)).

It is interesting to note that if maxLa = 0, SPPs are the traditional PFPs.
Thus the proposed SPPs is a generalization of the traditional definition of PFPs.

Definition 6 (Problem definition). Given a transaction database (D), set of
items (I), user-defined minimum support threshold (minSup), user-defined max-
imum periodicity threshold (maxP er) and maximum lability threshold (maxLa),
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the problem of finding stable periodic-frequent patterns is to discover each pattern
X in D such that sup(X) ≥ minSup and maxla(X) ≤ maxLa.

To develop an efficient algorithm for mining SPPs, it is important to design
efficient pruning strategies. To use the stability measure for pruning the search
space, the following theorem is proposed.

Lemma 1 (Monotonicity of the maximum lability). Let X and Y be
itemsets such that X ⊂ Y . It follows that maxla(Y ) ≥ maxla(X).

Proof. Since X ⊂ Y , g(Y ) ⊆ g(X). If g(Y ) = g(X), then X and Y have the
same periods, thus la(Y ) = la(X) and maxla(Y ) = maxla(X). If g(Y ) ⊂ g(X),
then for each transaction {Tz|Tz ∈ g(X) ∧ Tz /∈ g(Y )}, the corresponding
period per(X, z) will be replaced by a larger period per(Y, z). Thus, any period
in per(Y ) cannot be smaller than a period in per(X). Hence, maxla(Y ) ≥
maxla(X).

Theorem 1 (Maximum lability pruning). Let X be an itemset appearing
in a database D. X and its supersets are not SPPs if maxla(X) > maxLa. Thus,
if this condition is met, the search space consisting of X and all its supersets
can be discarded.

Proof. By definition, if maxla(X) > maxLa, X is not a SPP. By Lemma 1,
supersets of X are also not SPPs.

4 The SPP-Growth Algorithm

This subsection introduces the proposed SPP -growth algorithm. It performs two
steps: (i) compressing the database into a stable periodic-frequent tree (SPP-
tree) and (ii) mining the SPP-tree to find all stable periodic-frequent patterns.

4.1 The SPP-Tree Structure

The SPP-tree structure consists of a prefix-tree and a SPP-list. The SPP-list
consists of entries having three fields: item name (i), support (S) and maximum
lability (ML). The prefix-tree structure of the SPP-tree is similar to that of
the FP-tree [2]. However, to calculate both the support and maximum lability
of patterns, the SPP-tree nodes explicitly maintain occurrence information for
each transaction by maintaining an occurrence TID (or timestamp) list, called
TID-list at the last node of every transaction. Hence, two types of nodes are
maintained in a SPP-tree: ordinary nodes and tail nodes. Ordinary nodes are
similar to FP-tree nodes [2], whereas tail nodes are the last items of any sorted
transaction. The structure of a tail node is i[ta, tb, · · · , tc], where i is the node’s
item name and tj (j ∈ [1, n]) is a TID where item i is the last item. To facilitate
tree traversal, each node in the prefix-tree maintains parent, children and node
traversal pointers. Besides, unlike FP-tree nodes, SPP-tree nodes do not main-
tain a support count value. To increase the likelihood of obtaining a compact
tree, items in the prefix-tree are arranged in descending order of their support
of SPP. The next paragraphs explain how a SPP-tree is constructed and mined
to extract SPPs.
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Fig. 1. The SPP-list of of Table 1 after scanning (a) the first transaction, (b) the second
transaction, (c) the entire database, (d) after adding t = gX(sup(X)+1) to each item,
and (e) the final SPP-list containing the sorted list of items.

4.2 Constructing an SPP-tree

To construct a SPP-list, a temporary array t is used to record the current TID (or
timestamp) of an item. Algorithm 1 describes the steps for constructing a SPP-
list. Consider the database of Table 1 and that minSup, maxPer and maxLa
values are set to 5, 2 and 1, respectively. Figures 1(a)–(c) show the construction of
the SPP-list after scanning the first, second, and all transactions of the database,
respectively (line 2 to 9 of Algorithm 1). Figures 1(d) shows the result of adding
t = g(sup(X) + 1) to every item (line 10 of Algorithm1). Figures 1(e) shows the
SPP-list containing stable periodic-frequent items, sorted by descending order
of support (line 10 of Algorithm 1).

After finding stable periodic-frequent items, the database is scanned again to
construct the prefix-tree of the SPP-tree (Algorithm 2). The construction of the
prefix-tree is similar to how a FP-tree is constructed [2]. But it has to be noted
that only tail nodes of a SPP-tree maintain TIDs (or timestamps). Figure 2(a)–
(e) show the construction of the SPP-tree after scanning the first, second, eighth,
and all transactions of the database. In a SPP-tree, an item header table is built
so that each item points to its occurrences in the tree via a chain of node-links
to facilitate tree traversal. For simplicity, we do not show these node-links in the
illustrations. They are created in the same way as for the FP-tree.

4.3 Mining an SPP-tree

The SPP-tree is then mined as follows. A bottom-up scan is done to browse each
stable periodic-frequent item of the header table of the SPP-tree. The conditional
pattern base of each item is constructed (a projected database, consisting of
the set of prefix paths of the SPP-tree co-occurring with the suffix itemset) to
collect the TIDs of its ancestors and calculate its SPP -list. Then, the item’s
conditional SPP-tree is constructed (where ancestors that have a support less
than minSup or a maxla larger than maxSup are pruned), and mining is pursued
recursively on the resulting tree. The algorithm is said to be of type pattern-
growth because it recursively grows each SPP by appending single items from
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Algorithm 1. Construction of an SPP-list
input : D: a transactional database,

minSup, maxPer, maxLa: the user-specified thresholds
output: the SPP-list containing the sorted list of items

1 Record the TID tlast(i) of the last transaction containing each item i in a
temporary array. Set the maximum lability ML(i), the lability la(i) and
support S(i) of each item i to 0;

2 foreach transaction T ∈ D with TID tcur do
3 foreach item i ∈ T do
4 S(i) = S(i) + 1;
5 la(i) = max(0, la(i) + tcur − tlast(i) − maxPer);
6 ML(i) = max(ML(i), la(i));
7 tlast(i) = tcur;

8 end

9 end
10 Set tcur = |D| and update each item in the SPP-list. Remove each item i such

that S(i) < minSup or ML(i) > maxLa from the SPP-list. Consider the
remaining items of the SPP-list as stable periodic-frequent items and sort them
by descending order of support.

Fig. 2. Construction of an SPP-tree after scanning the (a) first transaction, (b) second
transaction, (c) eighth transaction, and (d) the entire database.

its generated conditional SPP-tree. The procedure to discover SPPs from the
SPP-tree is shown in Algorithm3.

To illustrate how the SPP-tree is processed during mining, Fig. 3(a) shows
the SPP-tree of Fig. 2(d) after removing the bottommost item e. Note that the
TID-list of e has been pushed-up to its parent node since the node e was a
tail -node in the original SPP-tree. Besides, Fig. 3(b) shows the prefix-tree of
suffix item e. A conditional pattern base is a path from the root node to a
leaf node. The conditional pattern bases of e are thus {b:3,5}, {bc:1,6,7} and
{c:4}. Using the prefix-tree of e, it is rather simple to compute the maxLa and
support of each item that is co-occurring with the suffix itemset. The pruning
conditions are checked and nodes not respecting the thresholds are deleted from
the SPP-tree, while stable periodic patterns are output. The resulting tree is
shown in Fig. 3(c). The item c was deleted because its support is less than 5,
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Algorithm 2. Construction of an SPP-tree
input : D: a transactional database,

SPP-list : contains stable periodic-frequent items, their S and ML
1 Create the root of the SPP-tree, T , and label it with ”null” ;
2 foreach transaction T ∈ D with TID tcur do
3 Sort stable periodic-frequent items in T according to the order of SPP -list.

Let the sorted candidate item list be [p|P ], where p is the first item and P is
the remaining list. Call insert tree([p|P ], tscur, T ), which is performed as
follows. If T has a child N such that N.item-name �= p.item-name, then
create a new node N . Link its parent to T . Let its node-link be linked to
nodes with the same item-name via the node-link structure. Remove p from
[p|P ]. If P is empty, add tcur to the leaf node; else, call
insert tree(P, tscur, N) recursively.

4 end

Algorithm 3. The SPP-Growth algorithm
input : T : a SPP-tree, α: suffix itemset (initial value is ∅)
output: the set of SPPs

1 while T ’s header table T ht �= ∅ do

2 i = T ht[T ht.size − 1];
3 β = α ∪ i, output β;
4 Traverse the node-link of i to construct β’s conditional pattern base and

collect its TIDs where β has appeared in D and calculate SPP -listβ ;
5 if SPP -listβ �= ∅ then
6 Construct β’s conditional tree Tβ and call SPP -Growth(Tβ , β);
7 end
8 Remove i from T and push i’s TIDs to its parent nodes.

9 end

while be is output as a stable periodic pattern. Then same process of creating a
prefix-tree and its corresponding conditional tree is repeated in the same way to
consider other pattern extensions. The whole process of mining patterns using
each item is repeated if the header table of the SPP-tree is empty. Because
the SPP-growth algorithm starts from SPP-tree of single items and recursively
explores the conditional SPP-tree of patterns and only prunes the search space
using Theorem 1, it can be seen that this procedure is correct and complete to
discover all SPPs.

5 Experimental Evaluation

Since SPP-growth is the first algorithm for mining SPPs, its performance is not
compared with other algorithms. SPP-growth is implemented in Java. Exper-
iments were performed on a computer having a 64 bit Xeon E3-1270 3.6 GHz
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Fig. 3. Mining stable periodic-frequent patterns using suffix item e. (a) The SPP-tree
after removing the item e, (b) prefix-tree of suffix item e, (c) conditional tree of suffix
item e.

CPU, running Windows 10 and having 64 GB of RAM. The algorithm is evalu-
ated in terms of performance on both synthetic (T10I4D100K ) and real-world
(mushroom, OnlineRetail and kosarak) datasets, obtained from the SPMF
website [16]. Characteristics of the datasets are presented in Table 2, where |D|,
|I|, Tmin, Tmax and Tavg denote the number of transactions, distinct items, min-
imum transaction length, maximum transaction length and average transaction
length, respectively. Datasets were chosen because they have different character-
istics (dense/sparse datasets, long/short transactions, few/many items).

Table 2. Characteristics of the datasets

Dataset |D| |I| Tmin Tmax Tavg

T10I4D100K 100,000 870 1 29 10

mushroom 8,124 119 23 23 23

kosarak 990,002 41,270 1 2,498 8

OnlineRetail 541,909 2,603 1 1,108 1

Figure 4 shows the runtime requirements of the SPP-growth algorithm for
different minSup, maxPer and maxLa values on mushroom and T10I4D100K,
respectively. In these charts, values for the maximum lability thresholds (maxLa)
are shown on the x axis, while the y axis denotes execution times. The notation
S-P denotes the SPP-growth algorithm with minSup = S and maxPer = P .
The following two observations are drawn from Fig. 4:

– Increasing maxLa often increase the runtime. The reason is that increasing
maxLa increases the range of lability values accepted for SPPs. Thus, more
patterns must be considered in the search space.

– The SPP-growth algorithm has better performance on the sparse dataset
than on the dense dataset. The reason is that patterns in sparse datasets are
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more likely to be unstable. Hence, SPP-growth algorithm can eliminate many
candidate patterns on such datasets.

Fig. 4. Execution times for different parameter values

Figure 5 shows the number of SPPs generated for different minSup, maxPer
and maxLa values for mushroom and T10I4D100K, respectively. The following
observations can be drawn:

– For fixed maxLa and maxPer values, increasing minSup may decrease the
number of stable periodic-frequent patterns. The reason is that some patterns
will then fail to satisfy the higher minSup threshold value.

– Similarly, for fixed maxLa and minSup values, increasing maxPer may
increase the number of SPPs. The reason is that as maxPer is increased,
frequent patterns having longer periods may become stable periodic-frequent
patterns.

– For the T10I4D100K dataset, the pattern count increases rapidly as the
support and maxPer threshold are increased at the same time. This is

Fig. 5. Number of SPPs found for different parameter values
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because patterns in sparse datasets are more likely to be candidate patterns.
Hence, increasing the support and maxPer thresholds at same time results
in more candidate patterns that need to be considered as potential SPPs.

We also evaluated the proposed algorithm’s scalability in terms of execution
time, number of SPPs found and number of tree nodes when the number of
transactions is varied. For this experiment, the real kosarak dataset is used,
since it has a large number of distinct items and transactions. The dataset was
divided into five parts and then the performance of the algorithm was measured
after adding each part to the previous ones. Figure 6 shows the experiment’s
results for minSup = 0.1%, maxPer = 2% and maxLa = 1%. It is clear that
the runtime, number of patterns and number of nodes increase along with the
database size. This is reasonable because the maxLa and maxPer of patterns
also increase with the database size. Hence, the algorithm finds more patterns
and spend time to build additional tree nodes when size is increased.

Fig. 6. Scalability of SPP-growth when varying the database size

Table 3. Comparison of peak memory usage.

Algorithms T10I4D100K (MB) No. of nodes

minSup maxPer maxLa

0.1% 0.5% 0% 263 334,153

0.1% 0.5% 0.4% 296 575,854

0.1% 1% 0% 324 596,766

0.1% 1% 0.4% 421 652,840

0.2% 0.5% 0% 263 334,153

0.2% 0.5% 0.4% 296 575,854

0.2% 1% 0% 323 596,351

0.2% 1% 0.4% 389 638,054
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In another experiment, the peak memory usage of SPP-growth was recorded
for different parameter values on T10I4D100K. Results (Table 3) show that
SPP-growth consumes less memory for high minSup, low maxPer and low
maxLa values. This is reasonable as more patterns can be pruned.

Fig. 7. Periods of some interesting SPPs found in OnlineRetail

We also analyzed the SPPs found in the real OnlineRetail sale dataset
to assess their usefulness. OnlineRetail contains transactions of a UK-based
online store from 01/12/2010 to 09/12/2011. Data was segmented into hours
to obtain 2,975 non empty transactions. For minSup = 2, 000, maxPer = 5 h
and maxLa = 2 h, 32,284 SPPs are found, and only 197 PFPs for maxLa = 0 h.
This shows that many stable patterns can be saved using the proposed algorithm.
Figure 7 shows some found SPPs, which are {Box}: (2553, 0h), {Cake, Heart,
Vintage}: (2284, 1 h) and {Design, Pack, White}: (2131, 2 h), where each SPP X
is annotated with (sup(X), maxla(X)). The X-axis indicates period numbers of
patterns, and the Y-axis indicates the value per(X, i) for the i-th period. Note
that to reduce the number of points on that chart, only the maximum value for
each group of 50 periods is shown in Fig. 7. It can be observed that frequent pat-
terns exceeding maxPer having a stable periodic behavior are obtained, while
such patterns would be ignored by traditional PFP mining algorithms due to
the maxPer constraint. The stable patterns found about the sale of products
are also deemed interesting as they indicate stable sale trends. Such information
could be used to forecast product sales.

6 Conclusion

This paper proposed a novel problem of mining stable periodic-frequent pat-
terns. A new maxLa measure has been designed to assess the stability of an
itemset’s periodic behavior in a database. A pattern-growth algorithm has also
been proposed to find SPPs. An experimental evaluation on both synthetic and
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real datasets shows that SPP-growth is efficient and can find useful patterns.
For future work, we plan to adapt the concepts of stability to mine other types
of patterns such as stable periodic sequential patterns.
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