
A Survey of Episode Mining

Oualid Ouarem1, Farid Nouioua1,2, and Philippe Fournier-Viger3,∗

1 Department of Computer Science, University of Bordj Bou Arréridj, Algeria
oualid.ouarem@univ-bba.dz,farid.nouioua@gmail.com
2 LIS, UMR-CNRS 7020, Aix-Marseille University, France

farid.nouioua@lis-lab.fr
3 Shenzhen University, Shenzhen, China
philfv8@yahoo.com, philfv@szu.edu.cn

Abstract. Episode mining is a research area in data mining, where the
aim is to discover interesting episodes, i.e., subsequences of events, in
an event sequence. The most popular episode mining task is frequent
episode mining (FEM), which consists of identifying episodes that ap-
pear frequently in an event sequence, but this task has also been ex-
tended in various ways. It was shown that episode mining can reveal
insightful patterns for numerous applications such as web stream analy-
sis, network fault management, and cybersecurity, and that episodes can
be useful for prediction. Episode mining is an active research area, and
there have been numerous advances in the field over the last 25 years.
However, due to the rapid evolution of the pattern mining field, there
is no prior study that summarizes and gives a detailed overview of this
field. The contribution of this paper is to fill this gap by presenting an
up-to-date survey that provides an introduction to episode mining and
an overview of recent developments and research opportunities. This ad-
vanced review first gives an introduction to the field of episode mining
and the first algorithms. Then, the main concepts used in these algo-
rithms are explained. After that, several recent studies are reviewed that
have addressed some limitations of these algorithms and proposed novel
solutions to overcome them. Finally, the paper lists some possible exten-
sions of the existing frameworks to mine more meaningful patterns and
present some possible orientations for future work that may contribute
to the evolution of the episode mining field.

Keywords: Temporal data mining, episode mining, pattern mining, se-
quential data analysis

1 Introduction

Data mining techniques are utilized to discover and represent implicit relation-
ships present in large-scale data. These relationships can be made explicit for

2 A Survey of Episode Mining

users and can be manageable by different agents of intelligent systems. Various
types of data can be analyzed by data mining algorithms, such as transactions,
sequences, time series, and graphs. A type of data that is commonly found in
real life is event sequences, which is an ordered list of events. In an event se-
quence, each event is associated with a time occurrence (for simplicity, we say
occurrence). Such sequence may be, for example, a Web click stream, a sequence
of points-of-interest visited by a tourist in a city, or a complex system’s event
log [67].

In some applications, it is desirable to perform sequential analysis to analyze
a sequence database (a set of sequences). To address this issue, the task of
sequential pattern mining (SPM) was proposed. SPM is a sub-field of data mining
that aims at finding subsequences in data that reveal important relationships
between data elements [23]. The support of a subsequence is the number of
sequences where it appears. Finding frequent sequential patterns can be useful,
for example, to find shopping patterns common to several customers (sequences)
in a shopping dataset or sequences of words that appear in many sentences in
a text. An important variant of SPM is sequential rule mining. The goal of
sequential rule mining is to identify rules of the form X → Y that have a strong
confidence (conditional probability) in a sequence database [64,26].

For other applications, it is required to analyze data that consist of a long
sequence of events to discover interesting patterns or build models that can
help understand the past or predict the future. To this end, the task of episode
mining was proposed. Episode mining techniques are a set of techniques that
can address this need. They are descriptive data mining techniques used to
identify interesting relationships between events in a long event sequence. These
relationships can take the form of episodes, which are subsequences of events
that are deemed interesting according to some criteria such as their occurrence
frequency, or implication-style rules, called episode rules that can reveal strong
correlations between events. Episode mining has drawn the attention of many
researchers and practitioners, in part because episodes provide information that
can be interpreted by humans.

For example, an episode rule that may be found in the alarm log from a
telecommunication network could indicate that it is common for an alarm A to
be triggered in a machine after an alarm B occurs in another machine. Such
rules provide information that can help understand the relationships between
alarms and can be used to improve network maintenance by focusing on the
most important alarms [61].

Episode mining [31,30] was utilized to extract patterns from sequential data
in many domains such as to analyze telecommunication network data [30], dis-
cover patterns of exploit attacks to prevent network intrusions [56], analyze
financial events and stock trends [3], analyze web logs, [67], detect intrusions

A Survey of Episode Mining 3

[55], identify internet worms [57], analyze the root-causes of machine faults [43],
and detect network anomalies [54].

The first episode mining algorithms were introduced in 1997. Mannila et
al. [30,31] defined the main episode mining task, which is to look for frequent
episodes. Given a single long sequence of events, frequent episode mining (FEM)
consists of finding the subsequences that appear frequently enough, i.e, whose
number of occurrences in the input sequence is no less than a specified threshold
called the minimum support (minsup). Those subsequences are called frequent
episodes. For example, given a sequence of events from a server database’s log,
frequent episodes reveal sequences of service requests that are often repeated,
which may then be optimized to improve performance.

Three main types of episodes have been extensively studied in prior work:
serial episodes, parallel episodes [2,1,30,31], and injective episodes with an unre-
stricted partial order [5,17]. They respectively represent events that are totally
ordered, appear at the same time, or are partially ordered. Besides these three
basic episode types, various extensions of episode mining have been proposed.
For instance, to reduce the number of episodes presented to users, subsets of
episodes that have interesting properties have been studied, such as frequent
closed episodes [8] and maximal episodes [84]. Moreover, additional constraints
have been added to select more interesting episodes, such as constraints on the
time gap between consecutive events [84]. Algorithms have also been developed
to mine episodes in dynamic sequences, and to find the top-k most interesting
episodes [44] instead of those whose frequency is not less than a given thresh-
old. Another research direction that has been explored is to utilize alternative
frequency definitions to identify frequent episodes such as window-based fre-
quency [30,31], non-overlapped frequency [4,5,35,66], minimal occurrence-based
frequency [39,21,31,85], head frequency [41] and total frequency [1,42] (see [12]
for a review of different functions to measure frequency). Besides, some stud-
ies have also considered other criteria to select interesting episodes, such as
their utility (importance), and evaluation functions that take into account un-
certainty and/or imprecise information. In addition, many episode rule min-
ing algorithms were published, which extend episode mining algorithms to de-
rive implication-style rules, which can reveal dependencies between episodes
[30,53,83,88]. Episode rules are suitable in practice for different tasks, namely
the prediction of future phenomena or the explanation of some phenomena based
on past events.

Episode mining is an active research area, and many advances have been
made since the first paper, twenty-five years ago. However, we observe that
there is no comprehensive survey on the topic. The contribution of this paper
is to fill this gap by presenting an up-to-date survey that can serve both as an
introduction to episode mining and as a guide to recent advances and research
opportunities.

4 A Survey of Episode Mining

The rest of this paper is organized as follows: Section 2 introduces the basic
concepts of frequent episode mining. Then, Section 4 presents the limitations of
frequent episode mining and some extensions to address them. Section 5 discusses
other pattern mining problems related to episode mining. Section ?? lists some
lines of future research in the domain of episode mining. Finally, a conclusion is
drawn in Section 7.

2 Frequent Episode Mining

Frequent episode mining is a popular framework to analyze temporal data [30,31].
It has been used in various domains where data contains time information. Fre-
quent episode mining algorithms extract all frequent episodes either from a sim-
ple sequence of events [31,32,75] or a complex event sequence [15,22]. The former
refers to a sequence where events are not allowed to occur simultaneously, while
the latter allows simultaneous events.

2.1 Basic concepts

The typical input of an FEM algorithm is an event sequence and a user-defined
integer threshold, called minsup, which represents the minimum number of oc-
currences that an episode must have to be considered as frequent.

Let there be a set of event types E = {E1, E2,, En}. An event sequence
is a triplet S = (s, Ts, Te) indicating a list of events s that have been recorded
between a time Ts and a time Te. More precisely, the list s is an ordered set of
event pairs of the form s = 〈(I1, T1), (I2, T2), . . . (Im, Tm)〉 where Ii ∈ E is an
event type and Ti is the timestamp at which the event was observed (1 ≤ i ≤ m).
Event pairs in s are ordered by increasing timestamps, and an event type may
be observed multiple times in s.

For example, Figure 1 shows an example event sequence captured between
time Ts = 50 and Te = 67. This sequence may represent the event log of a
database system, where event types E = {A,C,D,E,N,M} may be disk opera-
tions such as to open, close, read, or write in a file. In that sequence, the following
list of events has been recorded: s = 〈(E, 52), (M, 54), (N, 55), (A, 56), ..., (A, 66)〉.
Note that in the following, the terms event and event type are used interchange-
ably when the context is clear.

An episode is a collection of events that appear together in a single sequence.
Formally, an episode α = (V,≤, g) is defined by a set V of nodes, a (partial or
total) order ≤ over V and a mapping g : V → E that associates each node of V
to an event type.

A Survey of Episode Mining 5

50 51

E

52 53

M

54

N

55

A

56

E

57

N

58

M

59

A

60 61

E

62

C

63

D

64

N

65

A

66 67

Fig. 1: An event sequence and two windows of length win=4

According to the provided order ≤, we may distinguish two particular types
of episodes that are widely studied in the literature: If the order ≤ is total, the
episode α is called a serial episode. In that case, an episode α can be denoted
as α = A1 → A2 → · · · → Ak such that Ai ∈ E for all 1 ≤ i ≤ k, and the
notation αi refers to the ith event-type of episode α. And in the case where
there is no constraint on the order between events, then α is called a parallel
episode [11,87]. A parallel episode can be denoted as α = A1A2 . . . Ak. It is also
possible to find episodes that are a serial combination of parallel events, called
composite episodes [84]. Moreover, the definition of episodes may be adapted
to fit the nature of specific applications and data such as time-sensitive data and
uncertain data [49,50]. These extensions will be discussed in subsequent sections.

A B C

(a) Serial episode

A

B

C

(b) Parallel episode

A

B

C

(c) Composite episode

Fig. 2: The three main episode types

For any episode α = (V,≤, g), its size is denoted as |α| and defined as the
number of events that it contains (|α| = |V |). In the case where an episode α
contains exactly k events, it is said to be a k-episode.

For instance, Figure 2 illustrates the three main types of episodes. Each
episode displayed in that figure has a set of nodes V = {v1, v2, v3} and each node
vi is associated with an event-type as follows: g(v1) = A, g(v2) = B, and g(v3) =
C. Fig 2(a) shows a serial episode where the order is ≤= {(v1, v2), (v2, v3)}.
This episode occurs in a sequence only if an event of type A occurs, is followed
by an event of type B, and then by an event of type C. Fig 2(b) shows an
example of a parallel episode without any order between its events (≤= ∅).
Finally, Fig. 2(c) depicts a composite episode where ≤= {(v1, v3), (v2, v3)}. This

6 A Survey of Episode Mining

episode indicates that events of types A and B must appear before C, but that
there is no restriction on the order between events of types A and B.

An episode is said to be frequent in an event sequence if it occurs often enough
in that sequence. Calculating the frequency of an episode requires selecting a
frequency definition, which is how to count the number of occurrences of the
episode in the event sequence. Let there be an event sequence S containing the
list of events s = 〈(I1, T1), (I2, T2), . . . (Im, Tm)〉. An occurrence of an episode
α = (Vα,≤α, gα) in S is a mapping h : V → {1, 2, . . . ,m} such that for all
v ∈ Vα we have gα(v) = Ih(v), and for all w ∈ Vα such that v <α w we have
Th(v) < Th(w) [1].

For instance, consider the sequence depicted in Figure 1 and a serial episode
α = E → M with Vα = {v1, v2} and gα(v1) = E, gα(v2) = M . The events
(E, 52),(M ,54) are an occurrence of α because for h(v1) = 3 and h(v2) = 5
we have gα(v1) = Ih(v1) = E and gα(v2) = Ih(v2) = M . Moreover, the order
between events in the episode is preserved, i.e. since v1 <α v2, we have Th(v1) =
52 < Th(v2) = 54. It can be shown that the events (M ,54),(E,62) are not an
occurrence of α. Take a parallel episode β = MN as another example. The
events (M, 58), (N, 55) and (M, 58), (N, 59) are two occurrences of β.

The concepts of sub-episode and super-episode are important in episode
mining. They refer to two types of dependency between pairs of episodes that
have some common events (nodes). In general, given two episodes α and β, α is
said to be a sub-episode of β (inversely, β is a super-episode of α) if and only if
the nodes of α are a sub-set of the nodes of β and their order in α is compatible
with that in β. This relationship is denoted by α v β. For example, a serial
episode α = E → N is a sub-episode of another episode β = E →M → N , and
hence α v β. And a parallel episode γ = EMN is a sub-episode of β but not of
α.

It is to be noted that many algorithms use modified definitions of the afore-
mentioned definitions to mine episodes that are more appropriate for a specific
domain or to process specific types of data. For instance, the NONEPI algo-
rithm (see [63]) relies on the concepts of suffix and prefix, which are special
cases of the notion of sup-episode, and the 2PEM algorithm (see [28]) consid-
ers three types of sub-episodes called forward-extension, middle-extension, and
backward-extension, in the context of closed episode mining, as it will be dis-
cussed later.

2.2 Frequency definitions in FEM

As mentioned before, the frequency of an episode (also called support) refers to
how often an episode occurs in an event sequence. There exist multiple defini-
tions of the frequency of an episode, which may lead to different calculations.

A Survey of Episode Mining 7

Generally, functions to calculate an episode’s frequency can be categorized as
either counting occurrences using a sliding window or not:

– Windows-based frequency definitions. Those definitions use a fixed-
width window to capture the occurrences of any episode in the event se-
quence. The frequency of an episode is the number of windows of size k
that contain at least one occurrence of the target episode. For instance, the
windows-based frequency [30], head frequency [36], total frequency [36] and
non-interleaved frequency [80] are examples of windows-based frequencies.

– Occurrence-based frequency definitions. Those are definitions that track
exactly the occurrences of episodes in the entire event sequence without ini-
tially subdividing the sequence into sub-sequences except in cases where the
user applies a constraint on the size of occurrences [2] called the span or gap
constraints. This category of definitions includes minimal occurrence-based
frequency [31], non-overlapped occurrence-based frequency [63,22] and dis-
tinct occurrence-based frequency [1].

Table 1 lists popular frequency definitions that belong to both categories and
provides further details. For each definition, the type is given as well as some
representative episode mining algorithm(s) that use that definition. Moreover, it
is indicated if a definition satisfies the anti-monotony property. That property
states that an episode must have a frequency that is no greater than those of its
sub-episodes. This is a desirable property for designing efficient algorithms for
frequent episode mining and will be discussed in the next subsection.

Table 1: An overview of episode frequency definitions

Type Name Anti-Monotonic
Representative
algorithm(s)

Window-based window-based frequency Yes
WINEPI [30],
EpiBF [14],

WinMiner [53]
head frequency No EMMA [41]
total frequency Yes FEM-DFS [32]

non-interleaved frequency No NOE-WinMiner [80]

Occurrence-based minimal occurrence-based No
MINEPI [30],
MEELO [81],
PartiteCD[76]

non-overlapped occurrence-based Yes
NONEPI[63],
POERM [22]

distinct occurrence-based Yes ONCE+ [48]

Window-based frequencies have some limitations. First, they can, in some
cases, count multiple times the same episode occurrence if it appears in multi-
ple windows. For instance, Figure 1 illustrates an example of an event sequence

8 A Survey of Episode Mining

with two time windows: f1 = (〈(E, 52), (M, 54)〉, 51, 55) (the dashed line) and
f2 = (〈(E, 52), (M, 54), (N, 55)〉, 52, 56) (the plain line). Since these two windows
contain E followed by M , a serial episode indicating that E is followed by M may
be counted twice. Second, for a given window’s width, an episode may be infre-
quent; however, the same episode may be frequent for another window’s width.
Thus, the frequency depends on the window’s width, and the user may have to
try various window widths to find an optimal one, which is time-consuming, or
rely on other techniques to try to compute an optimal width. Fortunately, some
recent algorithms, such as WinMiner, have proposed strategies to overcome that
problem [53].

Most FEM algorithms are designed to discover episodes that occur frequently
enough in a sequence under either a window-based or occurrence-based fre-
quency. However, under an occurrence-based frequency, some long episodes may
appear frequently but still contain some events that appear far from each other.
And using a window-based frequency definition can ensure that events appear
close together (in a window) but may miss episodes that are larger than the win-
dow size. Hence, other definitions have also been proposed. For instance, Cule et
al. proposed an alternative definition and a depth-first search algorithm called
DFS [18]. Cule et al. defined a set of constraints to capture the interestigness of
a given episode, called the cohesion and coverage, defined as follows:

– The coverage measures how often an event of an episode appears in a se-
quence S and is calculated as:

P (X) =
|N(α)|
|S|

where α is a given episode and N(α) is the set of all occurrences of its events,
P (α) denotes the coverage of the episode |α| in the sequence S.

– The cohesion measures how close to each other are the events constituting
an episode when appearing in a sequence. It is calculated as follows:

C(α) =
|α|

W (α)

where W (α) is the average length of the shortest intervals (denoted as
W (α, t)) containing episode α, that is:

W (α) =

∑
t∈N(α)W (α, t)

|N(α)|

where

W (α, t) = min{t2−t1+1|t1 ≤ t ≤ t2 and ∀e ∈ α,∃(e, t′) ∈ S s.t. t1 ≤ t′ ≤ t2}

A Survey of Episode Mining 9

Finally, the algorithm calculates the interestingness of an episode as follows:

I(α) = C(α)× P (α)

Consequently, given an interestingness threshold min int, an episode α is said
to be interesting iff I(α) ≥ min int. Using DFS, it was argued that the output
contains coherent episodes that contain events close to each other [18]. Other
definitions could also be devised for specific needs.

The next sub-section provides a discussion of two search space exploration
strategies to identify frequent episodes that are the breadth-first and depth-first
search. Then, an overview of the key techniques used by some of the most popular
FEM algorithms is presented.

3 Breadth-first and Depth-first Strategies for Episode
Mining

Since the definition of the problem of frequent episode mining by Mannila [30],
many algorithms have been proposed to enhance the FEM process. These al-
gorithms rely on different data structures and are designed to apply various
frequency definitions. Generally, frequent episode mining algorithms can be clas-
sified based on their search strategy, which is either a breadth-first search or a
depth-first search:

1. Breadth-first algorithms. These algorithms, also called level-wise algo-
rithms, search for episodes by alternating between two steps called (1) can-
didate generation and (2) frequency check. The first step consists of gen-
erating candidate episodes from smaller episodes, while the second step is
to count the frequency of those candidate episodes to determine if they are
frequent. Breadth-first search techniques enumerate longer episodes and ig-
nore many infrequent episodes by relying on the anti-monotonicity property.
For instance, the CLOEPI [80] algorithm first scans the whole sequence of
events to find the frequent 1-episodes. Then, CLOEPI re-scans the sequence
from the beginning to identify frequent 2-episodes, 3-episodes, and up to
m-episodes, where m represents the window’s width. Some other level-wise
algorithms that adopt a similar process are WINEPI, MINEPI [30], and
FEM-BFS [2,80].

2. Depth-first search algorithms. These algorithms, such as MANEPI [35]
and FCEMinner [34], scan the event sequence once to retrieve all 1-episodes
and then try to recursively extend each episode by appending a frequent
event while relying on the anti-monotonicity property for search space prun-
ing. The depth-first strategy generally reduces the time and memory con-
sumption for mining frequent episodes.

10 A Survey of Episode Mining

To design an efficient algorithm for FEM, the key issue is to avoid exploring
the whole search space of episodes to retrieve the frequent episodes in the input
sequence. This is important because the search space can be huge for relatively
large sequences, which may lead to long runtimes and high memory requirements.
To reduce the search space, a key technique is to use the anti-monotony property
of the frequency measure. Let sup(α) denote the frequency of an episode α. The
property states that for any two episodes α and β such that α v β (α is a sub-
episode of β), we have: sup(α) ≥ sup(β). Consequently, if an episode α is not
frequent, then all its super-episodes are infrequent as well and thus do not need
to be explored which effectively reduces the time and memory consumption.

We next describe as an example the main process of two popular and rep-
resentative FEM algorithms, namely WINEPI and FEM-DFS, which adopt a
breadth-first and depth-first search, respectively.

WINEPI: A breadth-first search algorithm. WINdow-based EPIsode
(WINEPI) is the first FEM algorithm to solve the problem of frequent episode
discovery [30] and has been used in many other studies, such as to discover and
prevent attack episodes [56] and to analyze mobile payment logs [51]. WINEPI
takes as input a single long sequence of event S in the form already discussed in
the previous sub-section, a set of event types E, a window width win and a user-
defined minimum support threshold minsup (also called minimum frequency
threshold). The output of WINEPI is the set of all frequent episodes in the
event sequence S with respect to the threshold minsup and the sliding window
size win. Like most breath-first search algorithms for pattern mining, WINEPI
performs two main phases: (1) candidate generation and (2) frequency check:

– Candidate generation. It consists of generating candidate serial or parallel
episodes (i.e: potentially frequent episodes). Figure 3 presents an example
of a tree for episode enumeration. Initially, WINEPI builds a list to store
episodes of size l = 1 (i.e: 1-episodes) by considering that each event type is
an episode. Then, WINEPI performs a frequency check (we will discuss this
step in detail after) to compute the set F1 of frequent episodes of size l = 1
(i.e: 1-episodes). Then, WINEPI combines each pair of frequent episodes to
obtain C2, the set of candidates 2-episodes {< A,B >,< A,C >,< A,D >
,< B,C >,< B,D >,< C,D >}. Then, in subsequent iterations, the 3-
episodes are searched, followed by the 4-episode {< A,B,C,D >}, which is
the largest candidate episode that can be obtained from these event types.

– Frequency check. This step consists of counting the frequency of candidate
episodes using a sliding window over the event sequence. In WINEPI, the
frequency of an episode α is the ratio between the number of windows w
of length win that contain at least one occurrence of α and the total num-
ber of windows (denoted by |W |). Notice that there is a difference between
tracking an occurrence of a serial and a parallel episode. To track occur-

A Survey of Episode Mining 11

∅

〈B〉 〈C〉〈A〉 〈D〉

〈A,D〉 〈B,C〉 〈B,D〉〈A,C〉〈A,B〉 〈C,D〉

〈A,B,D〉 〈A,C,D〉〈A,B,C〉 〈B,C,D〉

〈A,B,C,D〉

level 1

1-episodes

level 2

2-episodes

level 3

3-episodes

level 4

4-episodes

Fig. 3: A lattice representation of the breadth-first search carried out by WINEPI

rences of a serial episode, WINEPI and all algorithms that focus on se-
rial episodes such as DiscoveryNonOver and DiscoveryTotal [2], UVSEM[1]
(Unified View for Serial Episodes Mining), and WINEPI [30] maintain a
Finite State Automaton (FSA). The FSA that tracks all occurrences of an
episode α = A1 → A2 → · · · → Ak has (k + 1) states. The first k states are

0, Estart 1, N 2,M 3, ∅

ε \ {E} ε \ {N} ε \ {M}
ε

E N M

Fig. 4: Automaton that tracks all occurrences of α = E → N →M

represented in the form (i, Ai+1) indicating that the automaton has reached
the first i events and is waiting for the next event Ai+1. The last state (k, ∅)
is the accepting state, which means that, for a given window f , α occurs
entirely in f and its frequency is incremented by one. Finally, WINEPI tests
if the episode is frequent or not by comparing its frequency to min sup. For
instance, Figure 4 illustrates an automaton to recognize all occurrences of
α = E → N → M . Here, ε is the set of event types of the sequence S. For
parallel episodes, as mentioned above, there is no constraint on the relative
order of the episode’s events. The single condition to take into consideration

12 A Survey of Episode Mining

is that all events in such an episode must occur inside a window to increment
the episode’s support.

WINEPI relies on the anti-monotonicity of the support (frequency) of episodes
to reduce the search space, which has inspired many other studies. However, the
window-based definition of support suffers from many problems. The main one
is that of duplicate support counting; that is, for an episode α, the algorithm
may count many windows for just one occurrence. For instance, consider the
sequence given in Figure 1 with a window width win = 4. The serial episode
α = E →M is supported by 4 windows, while it can be seen that E is followed
by M only twice. Hence, the resulting frequency does not describe the reality
of events over the whole sequence. Therefore, an alternative to WINEPI was
also proposed to solve this defect by considering the minimal occurrences [30]
of the episodes. This alternative is called MINEPI (MINimal occurrence-based
EPIsodes mining). For more details on WINEPI and MINEPI and other fre-
quency definitions, the reader may refer to [2,1,30,31,32,56]. The pseudo code of
WINEPI is given in Algorithm 1.

Algorithm 1: The WINEPI algorithm

Input: E - the set of the event types,
min sup - the minimum support threshold,
win - the sliding window width, S - an event sequence over E.
Output: F - the collection F of frequent episodes.

1 Scan the database to obtain the support of each event in the sequence S;
2 F = ∅;
3 F1 = {e|e ∈ E ∧ sup(< e >) ≥ min sup};
4 l = 2;
5 while Fl 6= ∅ do
6 Cl = CandidateGeneration(Fl−1);
7 Fl = ∅;
8 for each α ∈ Cl do
9 if FrequencyCheck(S, α,win) ≥ min sup then

10 insert α into Fl ;

11 l = l + 1;
12 insert Fl into F ;

13 return F

The WINEPI algorithm suffers from the following limitations: It cannot dis-
cover episodes with a number of events that is larger than the window size.
To overcome that limitation, Casas-Garriga proposed a novel algorithm called
EpiBF [14] that discovers unbounded episodes by automatically increasing the
window length according to the episode length, using a parameter tus (time-unit
separation). For each episode α, the algorithm calculates the frequency of α ac-

A Survey of Episode Mining 13

cording to its specific window of length win such that: win = (‖α‖ − 1) × tus.
The frequency of a given episode in a sequence s using a window width win is
denoted as follows:

fr(α, s, win) =
|{w ∈W (s, win)|α occurs in w}|

|W (s, win)|

where W (s, win) refers to the set of all these windows of size win.

FEM-DFS: A general depth-first search algorithm. Depth-first search
algorithms such as FEM-DFS [32], Extractor [33], MANEPI [35], WinMiner [53]
and POLYFREQDMD [75] first scan the event sequence to discover all frequent
1-episodes. To discuss those algorithms, it is useful to view the search space as
an episode tree as displayed in Fig. 3, where each node represents an episode,
the tree’s root is the empty set, and child nodes of the root represent episodes of
size 1. The key difference for DFS algorithms is that the tree is explored using a
depth-first search. To enumerate larger episodes, a DFS algorithm forms a new
episode (an extension) by concatenating a frequent episode (initially a 1-episode)
with one of its siblings by considering the lexicographical order [2,1,34,68] (i.e
A ≺ B ≺ C ≺ · · · ≺ Z). This process is repeated recursively to build larger
episodes (going down a tree branch) until no episode can be extended. Then,
the algorithm backtracks to generate larger episodes from other nodes using the
same process.

The depth-first search exploration process is illustrated with an example
based on Fig. 3 (bold arrows). The DFS search starts by calculating the set of
frequent episodes of size 1, F = {< A >,< B >,< C >,< D >}. The DFS
strategy then grows each episode by combining it with 1-episodes (episodes of
size 1) to make larger episodes. For example, the episode < A > is combined
with < B > to obtain < A,B >. If that episode is frequent, the algorithm grows
it with by combining it with the single episode < C > to obtain a new episode
< A,B,C >. If that episode is frequent it will be grown with < D > to obtain
< A,B,C,D >. If such an episode is infrequent, the algorithm backtracks on
the same prefix and then try to combine it with another 1-episode. For example,
given the episode < A,B > and the 1-episode < C >, if the resulting episode
< A,B,C > is infrequent, the process keeps the episode < A,B > and grows it
with the 1-episode < D >. This process is pursused in the same way to explore
the whole search space. Note that each new frequent episode is immediately
added to the result set.

By using a DFS, the number of episodes that is kept in memory at any mo-
ment is generally much smaller than that of breath-first search algorithms, which
reduces memory consumption. The combination process to generate episodes can
also be more time-efficient.

14 A Survey of Episode Mining

Many algorithms give good results under a support definition. However, the
mining process of these algorithms may need to be adapted if the support def-
inition is changed and they may then generate more or less frequent episodes.
For instance, an algorithm that uses the head frequency may not provide the
same set of frequent episodes if the window frequency or any other frequency
definition is used instead.

To provide a flexible algorithm supporting multiple definitions, Zhu et al.
proposed a general algorithm called FEM-DFS [32] (Frequent Episode Mining
in Depth-First-Search). It is an efficient algorithm for counting frequent serial
episodes under an occurrence-based frequency definition called earliest transiting
occurrences, which was proposed in [1]. Let h (as already defined in paragraph
2.1) be an occurrence of a serial episode α = A1 → A2 · · · → Ak. The occur-
rence h is said to be an earliest transiting occurrence of α if the first occurrence
time th(Ai) is the first occurrence of the event Ai after Th(Ai−1) for (2 ≤ i ≤ k).
The set of all earliest transiting occurrences of α is denoted by eto(α). For in-
stance, consider α = N → A. The events (N, 55)(A, 56) constitute an earliest
transiting occurrence of the episode α. The other two earliest transiting occur-
rences of α are (N, 58), (A, 60) and (N, 65), (A, 66).

The input parameters of FEM-DFS are an event sequence, a minimum sup-
port threshold, and a frequency definition def sup to be used for calculating the
support of episodes (i.e, total frequency, minimal occurrence-based frequency,
etc.). FEM-DFS first extracts the set of all earliest transiting occurrences and
then use them to calculate the support of any episode using the selected fre-
quency definition. FEM-DFS explores the search space in a depth-first way to
find larger episodes. After concatenating a pair of k-episodes, FEM-DFS com-
putes the set eto of the resulting (k+1)-episode. Then, based on this set, FEM-
DFS calculates the subset of the occurrences that satisfy the selected frequency
definition def sup. A similar process is used by the FEM-BFS algorithm (as
called in [32]), which performs a breadth-first search but also utilizes the set
of earliest transiting occurrence to obtain a global view of the event sequence
for every collection of ordered events. The pseudocode of FEM-DFS is shown in
Algorithm 2. As other depth-first search algorithms, FEM-DFS was shown to
perform well in experiments [32].

In general, FEM algorithms differ from each other in: (1) the search strategy
followed (depth-first or breadth-first search); (2) how they count the support
to determine whether an episode is frequent enough or not; in other words,
what kind of frequency definition is used in order to calculate the support of an
episode; (3) what kind of episodes is considered to be calculated; and (4) the
strategy for pruning the search space to reduce the amount of time and memory
consumption. Moreover, there are other topics that attracted the interest of
researchers, like the design of FEM algorithms that can perform well in particular
practical contexts, such as in a cloud environment [7,8]. Moreover, the majority
of existing algorithms consider the discovery of just one category of episodes,

A Survey of Episode Mining 15

Algorithm 2: General Algorithm of FEM-DFS

Input: E - set of event types
min sup - minimum support threshold,
S - an event sequence over E,
def sup: one of the support definitions.
Output: F -set of all frequent episodes

1 Scan the sequence to obtain P the set of frequent episodes of size 1.
2 F ← P
3 for each frequent episode α ∈ F do
4 for each frequent 1-episode β ∈ P do
5 if def sup 6=′ to′ then

// Grow the episode α with episode β
6 γ ← concat(α, β)

else
// Grow the episode β with episode α

7 γ ← concat(β, α)
// The earliest transiting occurrences of concat(α, β)

8 eto(γ)← ComputeETO(eto(α), eto(β), def sup)
9 sup(γ)← ComputeSup(eto(γ), def sup)

10 if sup(γ) ≥ minsup then
11 F ← F ∪ {γ}
12 return F

which is that of sequential episodes, whereas many applications encounter too
many events that happen simultaneously. Some recent works start considering
this case study in many applications, such as medical applications [85]. This
research line needs to be further explored. Besides, most of the algorithms that
are designed for episode mining have only been applied in centralized systems.
Hence, designing algorithms that perform on distributed systems or developing
parallel algorithms for mining efficiently episodes constitutes a big challenge to
increase the scalability and speed of the mining process.

4 Extensions of Traditional Episode mining

Although frequent episode mining has many applications, it can also be viewed
as having limitations in terms of its assumptions. This section first discusses
key limitations of FEM and then reviews some extensions that address these
limitations. The identified limitations are:

– A huge number of episodes. In general, the minimum support threshold
greatly affects the number of episodes that are discovered in an event se-
quence. For small threshold values, any FEM algorithm may discover a very
large number of patterns, that can even be counted in millions. In those

16 A Survey of Episode Mining

cases, not only may algorithms have long runtimes and high memory usage,
but analyzing the output can become very difficult for humans. Furthermore,
the resulting set of frequent episodes may contain a lot of redundancy, since
for example, if an episode is frequent, all its sub-episodes are also frequent
for several frequency definitions. Fortunately, algorithms have been proposed
for mining concise representations of episodes (see sub-section 4.1). The
aim of these representations is to reduce the redundancy in the collection of
frequent episodes without losing any information about them. Thus, these
concise representations can be viewed as summarizing the whole set of fre-
quent episodes. Algorithms for mining concise representations are generally
faster than traditional algorithms.

– Difficulty to set the minimum support threshold. Another concern with tra-
ditional FEM algorithms is that it is difficult to find a suitable threshold
value to obtain not too many episodes nor too few, but just enough. With-
out background knowledge, the user is left to find a good threshold value
by trial and error, and a small change can give very different results. Thus,
this process of fine-tuning the threshold can be very time-consuming. To ad-
dress this issue, it was proposed to mine the top-k frequent episodes (see
section 4.2), where k is set by the user and replaces the minimum support
threshold.

– The need for more constraints. For time-sensitive applications, it is desirable
to set additional constraints on the occurrences of episodes. For instance,
some constraints may be set on the gap between two consecutive occurrences
or on the duration of occurrences. An algorithm that allows constraints is
said to be a constraint-based episode mining algorithm(see sub-section 4.3).

– Frequency is not always the most important criterion to select patterns. For
some applications such as market basket analysis, alternative importance
measures have been developed, such as the utility. It allows for assessing
aspects such as the profit made by episodes instead of their frequency. A
review of high utility episode mining is given in sub-section 4.5.

– Unsuitable to mine episodes in a dynamic environment. In some scenarios,
it is desirable to mine episodes in a stream of events that is continuously
updated rather than in a static sequence. Traditional FEM algorithms can-
not update episodes incrementally. Many algorithms have been proposed to
extract frequent episodes from dynamic sequences (see sub-section
4.4).

– Events are considered equally important. An assumption of traditional FEM
is that all event types have the same importance. But in practical contexts,
this is often not true. To address this issue, algorithms were proposed for
weighted episode mining, where a weight is assigned to each event type (see
sub-section 4.6).

– Inability to deal with imperfect event sequences. Real-life event sequences
are often marred by imperfections. A prominent case is when occurrences of
events are uncertain (see sub-section 4.7) or imprecise (see sub-section 4.8).

A Survey of Episode Mining 17

4.1 Episodes with concise representations

Many studies have been done on extracting concise representations of episodes to
reduce the number of discovered episodes and have shown that those representa-
tions can provide better accuracy for various prediction tasks [7,8,28,33,34,45,48]
[53,60,78,79,84].

In Table 2, we describe the characteristics of the main algorithms that use
concise representations in terms of the frequency definition and the type of
episodes targeted by each algorithm.

Table 2: Overview of algorithms with concise representations
Algorithm Frequency definition Episode type Concise representation

LA-FEMH+[8] minimal occurrence-based Serial Maximal Episodes

MaxFEM[24] head frequency Serial and
Parallel

Maximal Episodes

Extractor[33] minimal and non-
overlapped occurrence-
based

Serial Generator Episodes

FCEMinner[34] minimal and non-
overlapped occurrence-
based

Serial Closed Episodes

2PEM[28] minimal and non-
overlapped occurrence-
based

Serial Closed Episodes

WFECM4[45] window-based frequency Serial Closed Episodes

MineEpisode[78] minimal and non-
overlapping occurrence-
based

Serial and
Parallel

Closed Episodes

CloEpi[79] minimal occurrence-based Serial Closed Episodes

PPT/EPS[84] minimal occurrence-based Serial Maximal Episodes

The most popular representations are maximal episodes [8], closed episodes
[7,28,34,45,60,78,79], and generator episodes. Some of those representations, such
as generator episodes, have been used to mine representative episode rules [33].
In the following, we formally define each of those episode types. The notation
FE will be used to denote the full set of frequent episodes obtained from an
input event sequence.

Closed episodes. Closed Episodes (CE) are frequent episodes that do not have
any proper super-episode with the same support count, i.e.:

CE = {δ|δ ∈ FE ∧ @δ′ ∈ FE, δ @ δ′ ∧ sup(δ) = sup(δ′)}

18 A Survey of Episode Mining

Algorithms such as CloEpi mine the set of frequent closed episodes by check-
ing the forward, backward, or middle extensions of each frequent episode [79].
Put simply, this means to check if an event can be appended to a frequent episode
before, inside, or after, to create a larger episode that has the same support. If
yes, then the episode is closed, and otherwise, it is not.

Mining closed episodes instead of all frequent ones can greatly reduce the
result set without losing any information. From the closed episodes, it is possible
to recover all the frequent episodes without scanning the event sequence again.
This property holds for frequency definitions that are anti-monotonic, and hence
closed episodes are only used in this context. Some recent algorithms for mining
frequent closed episodes include FCEMinner [34], CloEpi [79], MineEpisode [78]
and 2PEM [28].

Maximal episodes. Maximal episodes (ME) [8,24,84] are the set of episodes
that have no frequent super-episode, that is:

ME = {α|α ∈ FE ∧ @β ∈ FE s.t. α @ β}

An interesting property of maximal episodes is that ME ⊆ CE ⊆ FE. Thus,
maximal episodes are a more compact representation than the closed episodes.
There exist two algorithms that have been proposed for mining maximal episode
mining in sequences called LA-FEMH+ [8] and [24]. The main purpose of these
algorithms is to provide a smaller result set of episodes. In this context, an
episode is viewed as redundant if it is a proper sub-episode of another frequent
episode and it is not output. The LA-FEMH+ algorithm is restricted to discov-
ering serial episodes, while MaxFEM can find both parallel and serial episodes.

Generator Episodes. Generator episodes (GE) are frequent episodes that have
no sub-episode with the same support count and have closed super-episodes with
the same support count [33], formally:

GE = {γ|γ ∈ FE ∧ ∀γ′ @ γ : sup(γ) 6= sup(γ′)∧

∃δ ∈ CE : γ @ δ ∧ sup(γ) = sup(δ)}

Contrary to the closed episodes, the generator episodes are not a lossless rep-
resentation of frequent episodes. Zhu et al. proposed a depth-first strategy for
stream prediction called Extractor [33] by computing frequent closed episodes
with their generators and generating the set of all representative episode rules
between episode generators and closed episodes. This algorithm mines the gener-
ator episodes following a depth-first search strategy and extracts the set of repre-
sentative episode rules. It calculates the set of frequent episodes with respect to
a support threshold under the minimal and non-overlapping occurrences-based

A Survey of Episode Mining 19

frequency. Then, it checks the closure of the discovered frequent episodes (see
Subsection 4.1). Then, the algorithm calculates the generator episodes. Finally,
the algorithm utilize the generator episodes and closed episodes to create the
set of representative episode rules. The inputs of this step are the confidence
threshold and the set of generator and closed episodes. Given an episode rule
γ, γ is said to be representative if there is no other episode rule γ′ having the
same support count and confidence, of which the antecedent is a subepisode of
the antecedent of γ, and the consequent is a superepisode of the consequent of γ.
These rules can be viewed as meaningful for predictions as they attempt to pre-
dict the maximum amount of information (largest consequents) from the least
amount of information (smallest consequents) for rules having the same support
and confidence.

Some other types of frequent episodes have also been studied. Avinash et
al. proposed the concept of injective episodes. An episode α is said to be injec-
tive if and only if all its event types are unique (there’s no repetition of event
types). The only algorithm that discovers such episodes is the one of Avinash
et al. [5], which mines injective episodes with unrestricted order based on the
non-overlapped frequency measure. Avinash et al. also proposed a new class of
episodes that includes serial or parallel (injective or otherwise) episodes called
chain episodes with an efficient algorithm to mine chain episodes [4]. There
are few works that treat advanced types of patterns that could be mined from
temporal data (closed, maximal, or generator episodes). Therefore, this is an
excellent opportunity to advance the state of the art in episode mining with
concise representations.

To reduce the number of discovered episodes, in addition to concise represen-
tations, Tatti introduced an additional measure called episode significance [59].
The computation of the significance of an episode is a post-processing step to
test whether the discovered frequent episodes are truly interesting. The compu-
tation of the significance of such a frequent episode is based on minimal windows,
such that a frequent episode is said to be significant if the average lengths of
its minimal windows exceed the expected length according to the independence
model.

4.2 Top-k frequent episode mining

Another extension of episode mining is top-k episode mining [27,44,71]. In this
task, the user can directly indicate the number of episodes to be found. This task
was proposed after observing that it is generally hard for users to determine an
appropriate minimum threshold value. In fact, if the support threshold is too low,
the mining process generates too many frequent episodes and hence requires a
lot of memory or may have a long runtime. Similarly, if the threshold is set too
high, the process may ignore many significant episodes. Running an algorithm

20 A Survey of Episode Mining

several times with different threshold values to find just enough episodes can be
time-consuming.

Top-k episode mining algorithms provide a solution to this problem by letting
the user directly set a parameter k that is the number of episodes k to be found.
Then, a top-k algorithm will return the top-k most frequent episodes to the
user. Hence, a benefit of those algorithms is that the user does not have to run
an algorithm several times and adjust the minimum threshold to find a given
number of episodes.

However, the main drawback of top-k episode mining algorithms is that this
task is more difficult than traditional frequent episode mining if the respective
parameters (k and the minimum threshold) are set to generate the same number
of episodes [27]. This is because for top-k episode mining, no assumption can be
initially made about the support of the top-k episodes to reduce the search space.
Hence, top-k algorithms typically set an internal minimum support threshold to
0 and then start searching for episodes. Then, as soon as k episodes are found,
the algorithms can increase the internal threshold and then continue searching.
When no more episodes can be found, the top-k episodes are returned to the user.
Due this search process, top-k episode mining have to explore a larger search
space to find the same number of episodes as a traditional FEM algorithm [27].

4.3 Constraint-based episode mining

Several algorithms were designed for constraint-based episode mining. These al-
gorithms integrate one or more constraints into the FEM process to filter out
episodes deemed uninteresting. Constraints are user-specified criteria that fre-
quent episodes must respect. Many kinds of constraints have been proposed in
the literature. Constraints are either applied to the output of a FEM algorithm
as a post-processing step (by discarding frequent episodes that do not meet the
constraints) or during the search for frequent episodes. In terms of efficiency, it is
preferable to integrate constraints in the search procedure for mining episodes, as
some constraints can help reduce the search space. Constraint-based algorithms
can be faster and consume less memory than traditional FEM algorithms, de-
pending on the chosen constraints.

A representative constraint-based episode mining algorithm is DiscoveryTotal
[2]. It introduces two types of constraints. The first constraint considers the max-
imum allowed time between the first and last events of an episode’s occurrence
(the so-called span constraint or expiry-time constraint). Using this constraint,
the algorithm reduces the frequency of any episode by ignoring occurrences con-
taining events that are too far apart. The second constraint is the maximum
amount of time between two consecutive events (gap or inter-event constraint).
The consideration of time constraints has been used in WinMiner [53], EPS,
and PPT [84] among others. Researchers have also studied the integration of the

A Survey of Episode Mining 21

minimum and maximum number of events per episode (length constraint) for
the analysis of heterochrony in developmental biology [65].

4.4 Frequent episode mining in a dynamic sequence

A limitation of traditional episode mining algorithms is the assumption that
the input sequence is static. In fact, traditional episode mining algorithms are
designed to be applied once to a single long event sequence to obtain relevant
episodes. Then, if new events are logged or if the information about previous
events is revised, the mining algorithms have to be run again from scratch to
obtain up-to-date frequent episodes. Hence, the traditional task of FEM is not
efficient in such situations. Fortunately, several online and stream episode mining
algorithms have been designed [20,33,37,85,48,52,73,74,82,91,40,77]. Zhu et al.
have proposed the Extractor algorithm for mining episodes in an event stream
and derive prediction rules from them [33]. The proposed approach consists
of discovering closed episodes and their generators in an event log, and then
generating non-redundant rules (called representative rules) to be matched on
the event stream. To also deal with the problem of mining episodes from event
streams, Xing et al. proposed an algorithm called MESELO (Mining frEquent
Serial Episodes via Last Occurrence) [82]. The new algorithm discovers episodes
in an event stream by organizing events from the stream into smaller batches,
such that at any time, the algorithm captures and stores only the latest incoming
batch. The input of this algorithm is an event-growing sequence S, a support
threshold minsup, a maximum windows size δ, and a window size ∆ for the
current valid sequence. The new problem of OFEM (Online Frequent Episode
Mining) consists in extracting all frequent episodes such that S contains the
latest time stamps ∆, the size of each episode’s occurrence is not greater than
δ, and the frequency of the episodes is at least minsup. Algorithms such as
ONCE and ONCE+ [48] were also designed for mining serial episodes with time
constraints in a streaming sequence by searching for the last occurrence of each
episode.

Some other extensions of episodes mining extend the event sequence repre-
sentation in different ways to extract richer episodes. In the next sections, we
summarize the most popular of these extensions.

4.5 High utility episode mining.

A limitation of traditional FEM is that it focuses on the frequency of events
but treats all events as having the same importance. However, in real life, all
event types are generally not equally important. High utility episode mining is
a generalization of FEM where the utility (importance) of events is considered

22 A Survey of Episode Mining

to find important episodes [12]. Algorithms designed for High Utility Episode
Mining (abbreviated as HUEM) consider as input a complex event sequence
(where events may appear simultaneously) and where information is available
about the external and internal utility of events. The external utility represents
the relative importance of an event type in the whole sequence, while the internal
utility represents the importance of an event when it occurred. All utility values
are expressed as positive numbers, and the goal is to enumerate episodes having
a utility that is no less than a minimum utility threshold (called high utility
episodes).

HUEM is a difficult problem because the functions to calculate the utility are
not anti-monotonic and thus cannot be directly used to reduce the search space.
The first proposed algorithm, UP-Span [12], discovers all high utility episodes
and their minimal occurrences. To reduce the search space, it relies on an upper
bound on the utility that is anti-monotonic. Then, TSpan [29] and HUE-Span
[25] were proposed as improved algorithms to further reduce the search space
and achieve better performance on large databases.

An application of HUEM that has been studied in prior work is for stock
investment prediction. A methology was presented combining HUEM and a ge-
netic algorithm that provided better result than a compared method based on
frequent episodes [87].

4.6 Weighted episode mining

Another interesting extension of FEM is weighted episode mining, which aims
to extract episodes from multiple sequences. The concept of weight in this ex-
tension of FEM is utilized to measure the relative importance of each sequence.
Weighted episode mining can be viewed as a type of utility-based episode min-
ing framework, except that in the utility model, each event is associated with
a weight. To the best of our knowledge, only Liao et al. [45] studied weighted
episode mining. The problem definition is as follows: Let there be a collection
D of sequences, a user-specified maximal window width maxwin, minsup and
a parameter minsup wa. The goal is to discover all weighted frequent closed
episodes in D, where each episode P =< e1, e2, ..., ek > must satisfy the follow-
ing conditions :
(i) tk – t1 ≤ maxwin,
(ii) There is at least a sequence Si ∈ D, such that supi(P) ≥ minsup, and there
is no any P ′ ∈ Si, such that P ⊆ P ′ and supi(P

′) = supi(P),
(iii) sup wa(P) ≥ minsup wa.
Here, supi(P) is the support of the episode P in the ith event sequence from
D under window-based frequency and sup wa(P) is the weighted support of P
such that sup wa(P) = NI

N ×
∑
i∈I(ωi × supi(P)) where:

1) I is the set of sequences where P is a frequent closed episode.

A Survey of Episode Mining 23

2) NI is the number of sequences that contain the episode P.
3) N represents the total number of sequences.
4) ωi represents the weight of the ith event sequence of D.

For instance, consider the collection of three sequences (S1, S2 and S3 with
the weights 1, 2 and 3, respectively) presented in Fig. 5(N=3). Let P =< CDE >
be an episode. P occurs respectively in S1, S2 and S3 3, 3, and 4 times (NI = 3).
For minsup wa = 10, minsup = 3, and maxwin = 5, episode P is a frequent
closed episode in all the sequences (under the support definition mentioned in
[45]). Hence, its weighted support may be calculated as sup wa(P) = 3

3 × (1 ×
3+2×3+3×4) = 21 and hence, P is a weighted frequent closed episode because
sup wa(P) ≥ minsup wa.

In general, weights in weighted-episode mining can be set using various meth-
ods depending on the application, and designing such methods could be further
investigated. Some potential methods include setting them, by hand based on
statistics, external data, or previous experience.

S1

E

1

B

2

C

3

D

4 5 6

E

7

B

8

C

9

D

10 11 12

E

13

B

14

C

15

D

16

E

17

S2

C

1

D

2

E

3

A

4 5

C

6 7

D

8

E

9

A

10

F

11

C

12

D

13

E

14 15

A

16

B

17

S3

E

1

C

2

D

3

E

4 5

C

6

D

7

E

8

C

9 10

D

11

E

12 13

A

14

C

15

D

16

E

17

Fig. 5: A collection of three event sequences

Now, suppose that episode P occurs only in the sequence S1 10 times (NI =
1). In this case, the weighted support will be sup wa(P) = 1

3 × (1 × 10) = 3.3.
Consequently, episode P will not be a weighted frequent closed episode.

4.7 Uncertain episode mining

Uncertain episode mining is an extension of episode mining that considers un-
certain data. For many applications, logged events may be collected using noisy
sensors, or the events themselves are inaccurate or imperfect, which makes tradi-
tional episode mining ineffective for their analysis. The main uncertainty model
used in this new extension is the probabilistic episode mining model. Accord-
ing to this model, the user should set two thresholds: a minimum probability

24 A Survey of Episode Mining

threshold that indicates the confidence in the frequency of the episodes, and the
support threshold to check whether generated episodes are probably frequent,
i.e., the frequentness probability of a given episode must be no less than the
probability threshold.

In the area of uncertain episode mining, the events are redefined such that
each event is associated with a value p in the interval [0, 1] indicating the proba-
bility that the event is present in the sequence. The resulting sequence of proba-
bilistic events to be analyzed is then an uncertain sequence. Li et al. have formally
defined these concepts and proposed some approaches to discovering probabilistic
frequent serial episodes (P-FSE) [50], namely: (1) an exact approach that calcu-
lates the exact frequency of a given episode, (2) an approximate approach that
approximates the frequency using a probability distribution of the frequency;
and (3) an optimized approach that estimates an upper bound of the frequency
without recognizing all episodes’ occurrences. Another algorithm for uncertain
episode mining is P-DFSE [49] for the discovery of probabilistic frequent serial
episodes with respect to the dependence between the occurrences of a given
episode. Those two algorithms calculate the frequency probability based on the
possible world semantics theory such that, for a given episode, each occurrence
is considered a possible world. An episode is considered a probabilistic frequent
episode if and only if the calculated probability in a possible world [49] [50] is
not less than the probability threshold.

4.8 Fuzzy episode mining

Fuzzy episode mining is a recent extension of traditional episode mining to deal
with imprecise events using the fuzzy sets theory. This task considers sequences
of events S = {E1, E2, . . . , En} and event attributes A = {a1, a2, . . . , am}.
Each event E = {E.a1, E.a2, . . . , E.am} consists of m values and an integer T
that represents its occurrence in the sequence S. To the best of our knowledge,
the only existing algorithm for mining fuzzy episodes was proposed by Luo et al.
[39]. That work defines an episode P (e1, e2, . . . , ek) as a set of event variables.
An event variable of q attributes is denoted by eq{attr1 = v1, . . . , attrq = vq}
Because the attributes are quantitative (fuzzy) or categorical, a membership
degree is associated with any value of an attribute ai for a given fuzzy set or
category of ai. The occurrence of an episode is the product of the occurrences
of its events variables in any event E. The proposed algorithm of Luo et al.
uses the algorithm of Mannila et Toivonen that mines episodes under minimal
occurrences [31].

Then, the problem is defined as follows: given an event sequence and a min-
imum occurrence threshold min occ, the framework discovers all episodes with
an occurrence frequency not less than min occ. That work has demonstrated the
applicability of fuzzy episode rules for real time intrusion detection.

A Survey of Episode Mining 25

5 Other Pattern Mining Problems related to episode
Mining

The previous sections have described the problem of episode mining and some of
its extensions. This section describes some other pattern mining problems that
are strongly related to the episode mining problem.

Episode Rule Mining. The most important problem related to episode min-
ing is that of Episode Rule Mining (ERM) in an event sequence. An episode
rule is an implication β → α, where β and α are two frequent episodes. The
interpretation is that if some episode β is observed, another episode α is likely
to follow. The exact definitions of β, α and their dependence relation may take
different forms, and their interpretation and practical use may vary from one
algorithm to another. Finding episode rules can be useful to predict the future
or to understand the data so as to perform recommendations or take useful
decisions.

The concept of episode rules is similar to that of association rules [6] in
traditional pattern mining, which consists of finding associations between sets
of values (itemsets) that appear in a binary table. However, a key difference
between association rules and episode rules is that the former do not consider
time, while the latter are extracted from temporal data (a sequence of events).
Thus, episode rules are useful to uncover temporal associations.

The process of extracting all episode rules is called episode rule mining.
The first proposed approach to mine episode rules was proposed by Mannila et
al.[30] in the paper where they introduced the WINEPI and MINEPI algorithms.
The approach consists of first finding the frequent episodes and then generating
episode rules by combining pairs of frequent episodes. To decide if a candidate
rule is interesting, its confidence is calculated and compared with a confidence
threshold. If the obtained value exceeds the minimum confidence min conf , the
concerned rule is output, and the user may utilize it to predict future events.
Otherwise, the candidate rule is discarded. Numerous episode rule mining have
been proposed [17,19,21,33,47,46,53,54,83,88,86].

The first designed algorithm MINEPI (mentioned above) adopts a breadth-
first search for discovering episode rules. Among the algorithms that use a depth-
first search, we note WinMiner [53] which mines efficiently all episode rules with
a window constraint. Moreover, there exist some algorithms that perform the
discovery of episode rules without candidate generation [47]. Various algorithms
also have been proposed for analyzing event streams [19,33] and discovering
utility-based episode rules from event sequences [88]. Episode rule mining has
numerous applications, such as the analysis of telecommunication alarms [30],
intrusion detection [55] and internet anomaly detection [54].

26 A Survey of Episode Mining

However, an episode rule requires a strict ordering between events. Thus, an
episode rule mining algorithm may return many rules that are slightly differ-
ent but describe the same situation in practice. To overcome this key problem,
another kind of episodes is used to retrieve relationships between events, called
partially-ordered episode rules. Recently, a new algorithm for mining partially-
ordered episode rules called POERM [22] was proposed to find relationships
between events in a complex event sequence. POERM efficiently finds all rules
of the form X → Y , where X and Y are two event sets. The problem tackled
in POERM is the following: Given a complex event sequence S, three values
XSpan, Y Span,XY Span ∈ Z+, the minimum support and confidence thresh-
olds minsup and minconf , a rule X → Y is said to be valid iff: (1) the maximum
duration of each occurrence of X and Y do not exceed some values XSpan and
Y Span respectively; (2) the duration of the span between any pairs of occurrence
of X and Y is at most equal to a value XY Span and (3) sup(X) ≥ minsup and
sup(Y) ≥ minsup×minconf .

Some studies proposed other perspectives of how to compute the confidence
of an episode rule. For instance, a collection of episode rule mining algorithms
called MARBLES [17] was presented to mine all episode rules based on three
new frequencies: (i) using fixed windows, minimal windows and weighted mini-
mal windows-based frequencies. MARBLES also uses the minimal-extensibility
and weighted-extensibility for minimal window-based frequency and weighted-
frequency respectively, to find interesting episode rules. For such a frequency,
a new confidence definition is used to capture episode rules that maximize the
confidence.

While the majority of existing works discover only frequent episodes in sim-
ple or complex sequences, the main goal of knowledge discovery is to use this
knowledge to detect dependencies between patterns to be used for explanation or
prediction purposes. In the context of episode mining, these forms of associations
are captured thanks to the notion of episode rules. Research in this direction aim
is to develop new algorithms for extracting such rules in different contexts and
interpreting them in practical applications.

Periodic episode mining. Periodic episode discovery [73] is a variation of
episode mining. The goal is to find episodes that not only appear frequently in
an event sequence or stream but that also occur periodically. To identify periodic
patterns, the period lengths of each candidate episode are calculated, which is
the elapsed amount of time between any two consecutive occurrences of the
episode. An episode is said to be periodic if its period lengths are no greater
than some threshold.

A Survey of Episode Mining 27

6 Some recent applications of episode mining

According to the previous discussions, it is apparent that frequent episode mining
is an efficient framework to analyze sequential (temporal) data. Consequently,
it has been used in many applications, and several recent studies have used it
to enhance the performance of different systems. In spite of this, The majority
of existing studies propose new algorithms based only on theoretical aspects,
while building interactive tools for episode mining is an understudied topic. For-
tunately, there exists an interactive tool called SNIPER [72] to analyze and
understand the behavior of a recommender system using episode mining to en-
able the user to interact with the system to answer questions about the quality
of recommendations. Various systems based on episode mining and tools can be
built.

Frequent episode mining approaches have been extended to explore new ways
of seeking important patterns in new practical domains like cyber-physical sys-
tems such as intelligent cars [90] or for monitoring in situ decommissioning sensor
networks [89,9]. These recent works maintain a well-defined paradigm of pre-
diction mechanism and mine frequent and abnormal episodes, respectively. For
each framework, a specific FEM algorithm has been explicitly used to analyze
the collected data and look for the sequential relationships between actions in
each system. However, these two studies differ in the sequence construction step
inside the framework. In the next subsections, we describe the process of those
two frequent episode mining applications and show how the episode mining was
used to fulfill the specified goal.

6.1 Event prediction in cyber-physical systems

A cyber-physical system (CPS) is a tight integration of cyberspace and physical
components to achieve intelligent interactions with users. For instance, intelligent
homes, smart cities, and autonomous cars are typical examples of CPS. These
systems offer a large amount of data that can be used to build powerful tools
with the aim of enhancing the performance of such systems or for prediction
purposes.

Consequently, an efficient framework was proposed to predict the next event
in a CPS like car usage, as in [90] where sequential events are analyzed in order
to predict future events by using a graph data structure that enables building
event chains (episodes). Mainly, there are three layers in the framework, and the
fourth layer is composed of the application of the prediction model. In the fourth
layer, we can integrate applications such as decision aid, system monitoring, and
intelligent control. The three aforementioned layers are detailed as follows:

28 A Survey of Episode Mining

– Event instance extraction. It is the first layer of the framework. It con-
sists of extracting event instances from incoming data from various phys-
ical components. Each component associates each event instance with its
corresponding occurrence time. An event instance is composed of specific
characteristics of any action, and it is represented by linked data as follows:
eventinstance =< URI, source,Attr > where URI is a unique identifica-
tion of the event instance, source is a link to a set of data from which the
event instance is extracted and Attr is a tuple (A,S,O,D, T, P) (A:action,
S:subject, O: Object, D:Device, T :Time, P : place).

– Event graph extraction. After the extraction of event instances, sequen-
tial relationships between can be extracted between them. In the previous
layer, we have shown that each event instance is associated with an oc-
currence time. The time field includes the starting and ending times. Con-
sequently, all the event instances can be arranged in a single long event
sequence, and thus, one can apply a FEM algorithm to extract several rela-
tionships between the events from the built sequence.
Formally, given a set of event instances IS = [ei1 , . . . , ein], the event sequence
from IS is an ordered set ES = 〈(e1, e1.str), . . . , (en, en.str)〉 where ei is ith

event in the sequence and ei.str is the starting time of ei. Next, an efficient
FEM algorithm called MANEPI [35] is applied to discover the relationships
from ES. Briefly, MANEPI is an efficient frequent episode mining algorithm
from a long event sequence that uses a depth-first search under minimal
and non-overlapping occurrence-based frequency. Besides, this work aims at
mining frequent episodes by MANEPI while respecting a time gap constraint
to reduce redundancy in the frequent episodes set. Since this approach uses
a gap constraint, it is considered to be a constraint-based episode mining
algorithm.
Finally, the framework builds the event graphs of each event chain (serial
episodes) based on the sequential relations and the corresponding probability
of transition between two adjacent events, such that:

P (eki+1 |eki) =
count(eki , eki+1

)

count(eki)

where P (eki+1 |eki) is the conditional probability that describes the occur-
rence of eki+1

knowing that ei1 has already happened, count(eki , eki+1
) is the

total number of occurrences of (eki , eki+1
) in all serial episodes.

– Event prediction on the event graph: It consists of building the pre-
diction model from the event instance stream with the corresponding event
graphs already extracted in the previous layer. To fulfill this goal, first, the
framework identifies the event contexts and the candidate events. An event
context refers to events that have occurred. A candidate event is a possi-
ble subsequent of such an event context. The second process in this layer is
the prediction of the next events. A structured model called SGNN of three
stages was built to fulfill this process.

A Survey of Episode Mining 29

The three layers previously discussed constitute the important parts of the frame-
work. There is another layer that constitutes the potential application. Conse-
quently, the discussed work applied the proposed framework to car usage as
Application layer. It can also be integrated into systems that depend on the IoT
(Internet of Things) such as smart cities. For instance, the prediction mecha-
nism could be used in various domains such as intelligent control, decision aid,
behavior monitoring, and early warnings.

6.2 Frequent episodes from In-Situ Decommissioning sensor
network

Another recent application that uses episode mining as an analysis technique
consists of a set of sensors installed in a nuclear site called In-Situ Decommis-
sioning (ISD). Episode mining techniques are used to process the large amount of
data generated by ISD sensors [89,9] because the collected data is time-specific
(each action is associated with a timestamp that constitutes its occurrence).
ISD sensors are installed in the aim of monitoring the nuclear site. The col-
lected data from the sensors at the nuclear site can be viewed as a single long
sequence as defined previously. This data is composed of large records about (1)
battery information, (2) strain information, (3) temperature information of four
thermocouples, and (4) tilt-meter data (tilt degrees and local temperature of
tilt-meter). For each sensor in the network, there exist two event types: High or
Low. For example, given one of the four temperature sensors, say T1, if the cap-
tured value is higher than an adjacent data point, then the corresponding event
type is T1H (high temperature). Otherwise, the corresponding event type is T1L
(low temperature). Consequently, the events of four thermocouples constitute the
set [T1H,T1L, T2H,T2L, T3H,T3L, T4H,T4L]. Similarly, the same concept is
applied for the rest of the sensors such as for strain information [SH, SL], for
Biaxial tilt meter[BH,BL], and for battery information (voltage) [V H, V L]. For
the timestamps, the sensors also capture, for each action, its occurrence time.

Finally, the proposed approach uses the FEM algorithm presented in [68].
This algorithm uses the frequency definition based on non-overlapping occur-
rences. It is adapted for temporal analysis in the ISD sensor network in the
aim of reducing the frequent episode searching time and improving the perfor-
mance of the miner program. The final result of this application demonstrates
the power of the FEM framework for analyzing temporal data. The approach
also efficiently detects abnormal frequent episodes for ISD [9].

6.3 Intelligent collaboration framework for wheel manufacturing

In the last decades, the Internet of Things (IoT) had an increasing number of
applications for many complex systems that are made of a large number of con-

30 A Survey of Episode Mining

nected devices, which themselves capture a large amount of data. Many complex
systems interoperate with each other to perform a shared task, enhance the per-
formance of such a process, or invoke new services by collaborating with services
provided by different systems. The incorporation of services in IoT environments
raises several challenges that must be overcome to fulfill its goals. Heterogeneity,
changeable invocation logic, and spatio-temporal constraints are among the sig-
nificant challenges of service collaboration. To overcome these challenges, Zhu et
al. proposed a full framework of service collaboration for a wheel manufacturing
process [58].

The proposed framework is very similar to the one proposed for CPS in [90].
Generally, the framework does five tasks. The first one is the event instance
extraction from multi-source IoT data.

In this step, the framework models the event logic graph as linked data, where
each ELG (Event Logic Graph) is denoted by: ELG← (URL, events, relations)
such that: URL is a unique identifier of the ELG, events and relations are the
set of events and the relations between them, respectively. Then, the framework
constructs the event instances using a dispatcher, which feeds some detectors
that recognize such an event. For example, the dispatcher may feed a detector
that focuses on turning on a specific machine and another detector that increases
its temperature. Notice that the detector can be a rule engine or a machine
learning model.

Secondly, the framework constructs the event logic graph. In this step, the
framework arranges the event instances into a sequence according to a chrono-
logical order. Then, an efficient episode mining framework is used to extract all
significant episodes from sequential data. To do so, the framework follows an
approach based on the well-known MANEPI algorithm [35] which is also used
for Cyber-Physical Systems as mentioned above [90]. The inspired approach
maintains a time gap constraint and a duration constraint to only recognize
occurrences where both the time interval between two consecutive occurrences
and the occurrences themselves are not too long. Hence, the set of event chains
(serial episodes) does not contain any redundancy.

The final two tasks concern the application aspect. Their role is to predict
future events. Among the practical applications where this prediction model
may be used, we can cite, for instance, service recommendation, dynamic service
composition, and service orchestration optimization.

The previous three application domains clearly show that FEM is an efficient
tool to analyze temporal data. Other existing algorithms are potential tools
for other applications. For instance, NonEpi [63] is an interesting algorithm for
predicting diseases from observed symptoms since it discovers episode rules of
the form α → β such that α is the predecessor of β. A benefit of discovering

A Survey of Episode Mining 31

patterns that have the form of rules is that they can also be interpreted by
humans.

6.4 Mining Train Delays

The railway network is a critical piece of infrastructure in any country. Delays
may be very harmful and may cause shutdowns or serious disturbances to railway
transportation. To build an intelligent solution to predict train delays [16], an
episode mining algorithm called CloEpi [79] was used to reveal hidden patterns
in sequential train data [92].

Before performing episode mining, data is preprocessed to obtain a single long
sequence of events. The output of that step consists of a set of event sequences of
delays of each characteristic point where the train passed, such that each event
in such a sequence is denoted as (Train id, timestamp) where Train id ∈ N is
a unique integer that represents the delayed train and timestamp is an integer
representing the delay of the train at a given point. Finally, the algorithm CloEpi
is used to analyze the sequence. This algorithm mines closed episodes to reduce
the output size without any information loss.

7 Conclusion

Episode mining has been an active research field in the last few decades. It
is used to analyze temporal data and help in understanding the behavior of
systems, detect abnormalities, and predict the future.

We have presented in this paper an overview of that framework, and explained
the concepts of episode mining and presented a classification of existing algo-
rithms in terms of breadth-first and depth-first search. We have also discussed
limitations of traditional episode mining algorithms and different extensions of
traditional algorithms to deal with these limitations.

This paper is an up-to-date survey of the existing algorithms for discovering
frequent episodes. It can serve both as an introduction to this domain and as a
guide to recent research opportunities. The paper provides an overview of the
different problems that can be solved by an episode mining framework in terms of
criteria that each episode must respect. This can help in selecting an appropriate
algorithm for a given application.

There are many opportunities for research on episode mining. Some of the re-
search opportunities that have been mentioned in this survey are: (1) enhancing
the performance of existing episode mining algorithms, (2) extending the serial

32 A Survey of Episode Mining

episode mining algorithms to consider parallel episodes, (3) extending episode
mining to discover more complex or meaningful types of episodes, (4) designing
algorithms to discover episode rules, and (5) building tools for episode mining.
Besides that, researchers can draw inspiration from extensions to other pat-
tern mining tasks such as sequential pattern [23] mining, sequential rule mining
[64,26], itemset mining [93] and association rule mining [6], where many exten-
sions have been proposed to address different needs but have not yet been used
in episode mining.

References

1. A. Achar, S. Laxman, P. Sastry, A unified view of the apriori-based algorithms
for frequent episode discovery, Knowledge and Information Systems, vol. 31, pp.
223–250, 2012.

2. A. Achar, I. A. Majeed, P. S. Sastry, Pattern-growth based frequent serial episode
discovery, Data and Knowledge Engineering 87:91–108 (2013).

3. A. Ng and A. W.-C. Fu. Mining frequent episodes for relating financial events and
stock trends. In Proceedings of The 7th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD), 2003.

4. Achar, A., Sastry, P.S. Discovering frequent chain episodes. Knowledge and Infor-
mation Systems, 60, 447-494.(2019)

5. Achar, A., Laxman, S., Viswanathan, R. et al. Discovering injective
episodes with general partial orders, Data Min Knowl Disc (2012) 25: 67.
https://doi.org/10.1007/s10618-011-0233-y

6. Agrawal, R. and Srikant, R., 1994, September. Fast algorithms for mining associ-
ation rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp.
487-499).

7. Amiri, M., Mohammad-Khanli, L. , Mirandola, R. Computing (2019), A new effi-
cient approach for extracting the closed episodes for workload prediction in cloud
https://doi.org/10.1007/s00607-019-00734-3

8. Ao, Xiang, Shi, Haoran, Wang, Jin, Li, Hongwei, He, Qing. (2019). Large-Scale
Frequent Episode Mining from Complex Event Sequences with Hierarchies. ACM
Transactions on Intelligent Systems and Technology.

9. Biswajit Biswal, Andrew Duncan, Zaijing Sun, ADA: Advanced data analytics meth-
ods for abnormal frequent episodes in the baseline data of ISD, Nuclear Engineering
and Technology, Volume 54, Issue 11, 2022, Pages 3996-4004

10. B. Bouqata, C. D. Carothers, B. K. Szymanski, and M. J. Zaki, “Vogue: a novel
variable order-gap state machine for modeling sequences,” in PKDD, 2006.

11. Borgelt C., Picado-Muiño D. (2013) Finding Frequent Patterns in Parallel Point
Processes. In: Tucker A., Höppner F., Siebes A., Swift S. (eds) Advances in Intel-
ligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science, vol 8207.
Springer, Berlin, Heidelberg

12. C.-Wei Wu, Yu-Feng Lin, P. S. Yu and Vincent S. Tseng, Mining high utility
episodes in complex event sequences. Knowledge Discovery and Data Mining (KDD
2013).

13. Cappart Q., Aoga J.O.R., Schaus P. (2018) EpisodeSupport: A Global Constraint
for Mining Frequent Patterns in a Long Sequence of Events. In: van Hoeve WJ.

A Survey of Episode Mining 33

(eds) Integration of Constraint Programming, Artificial Intelligence, and Operations
Research. CPAIOR 2018. Lecture Notes in Computer Science, vol 10848. Springer,
Cham

14. Casas-Garriga, G. (2003). Discovering Unbounded Episodes in Sequential Data. In:
Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds) Knowledge Discovery
in Databases: PKDD 2003. PKDD 2003. Lecture Notes in Computer Science(), vol
2838. Springer, Berlin, Heidelberg.

15. Chen Y., Fournier-Viger P., Nouioua F., Wu Y. (2021) Mining Partially-Ordered
Episode Rules with the Head Support. In: Golfarelli M., Wrembel R., Kotsis
G., Tjoa A.M., Khalil I. (eds) Big Data Analytics and Knowledge Discovery.
DaWaK 2021. Lecture Notes in Computer Science, vol 12925. Springer, Cham.
https://doi.org/10.1007/978-3-030-86534-4 26

16. Cule, B., Goethals, B., Tassenoy, S., Verboven, S. (2011). Mining Train Delays.
In: Gama, J., Bradley, E., Hollmén, J. (eds) Advances in Intelligent Data Analy-
sis X. IDA 2011. Lecture Notes in Computer Science, vol 7014. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-24800-9 13

17. Cule, B., Tatti, N., Goethals, B. (2014), MARBLES: Mining association rules
buried in long event sequences. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 7: 93-110. https://doi.org/10.1002/sam.11199

18. Cule, B., & Goethals, B., Robardet, C. (2009). A New Constraint for Mining Sets in
Sequences. Proceedings of the 2009 SIAM International Conference on Data Mining.
1. 317-328. 10.1137/1.9781611972795.28.

19. D. Chen and X. Zhang, ”Internet Anomaly Detection with Weighted Fuzzy
Matching over Frequent Episode Rules,” 2008 International Conference on Ap-
perceiving Computing and Intelligence Analysis, Chengdu, 2008, pp. 299-302. doi:
10.1109/ICACIA.2008.4770028.

20. D. Patnaik, S. Laxman, B. Chandramouli and N. Ramakrishnan, Efficient Episode
Mining of Dynamic Event Streams, 2012 IEEE 12th International Conference on
Data Mining, Brussels, 2012, pp. 605-614. doi: 10.1109/ICDM.2012.84

21. Dai H.K., Wang Z. (2013) Mining Serial-Episode Rules Using Minimal Occurrences
with Gap Constraint. ICCSA 2013. Lecture Notes in Computer Science, vol 7971.
Springer, Berlin, Heidelberg

22. Fournier-Viger P., Chen Y., Nouioua F., Lin J.CW. (2021) Mining Partially-
Ordered Episode Rules in an Event Sequence. In: Nguyen N.T., Chittayasothorn
S., Niyato D., Trawiński B. (eds) Intelligent Information and Database Systems.
ACIIDS 2021. Lecture Notes in Computer Science, vol 12672. Springer, Cham.
https://doi.org/10.1007/978-3-030-73280-6 1

23. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S. and Thomas, R., 2017. A
survey of sequential pattern mining. Data Science and Pattern Recognition, 1(1),
pp.54-77.

24. Fournier-Viger, P., Nawaz, M.S., He, Y., Wu, Y., Nouioua, F., Yun, U. 2022.
MaxFEM: Mining Maximal Frequent Episodes in Complex Event Sequences. In:
Surinta, O., Kam Fung Yuen, K. (eds) Multi-disciplinary Trends in Artificial Intel-
ligence. MIWAI 2022. Lecture Notes in Computer Science(), vol 13651. Springer,
Cham.

25. Fournier Viger, Philippe, Yang, Peng , Lin, Chun-Wei , Yun, Unil. (2019). HUE-
Span:Fast High Utility Episode Mining. 10.1007/978-3-030-35231-812.

26. Fournier-Viger, P., Wu, C.W., Tseng, V.S., Cao, L. and Nkambou, R., 2015. Mining
partially-ordered sequential rules common to multiple sequences. IEEE Transactions
on Knowledge and Data Engineering, 27(8), pp.2203-2216.

34 A Survey of Episode Mining

27. Fournier-Viger, P., Yang, Y., Yang, P., Lin, J.C.W. and Yun, U., 2020, September.
Tke: Mining top-k frequent episodes. In International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems (pp. 832-845).
Springer, Cham.

28. G. Liao, X. Yang, S. Xie and P. S. Yu,Two-Phase Mining for Frequent Closed
Episodes, In WAIM 2016, Part I, LNCS 9658, pp. 55-66, 2016.

29. Guo G., Zhang L., Liu Q., Chen E., Zhu F., Guan C. (2014) High Utility Episode
Mining Made Practical and Fast. In: ADMA 2014. Lecture Notes in Computer
Science, vol 8933.

30. H. Mannila, H. Toivonen and A. I. Verkamo , Discovery of frequent episodes in
event sequences, In Data Mining and Knowledge Discovery 1, 259-289, 1997.

31. H. Mannila, H. Toivonen, Discovering generalized episodes using minimal occur-
rence, In Proceedings ; KDD-96 .

32. H. Zhu, L. Chen, J. Li, A. Zhou, P. Wang and W. Wang, A General Depth-
First-Search based Algorithm for Frequent Episode Discovery, In Preceedings of
14th IEEE International Conference on Natural Computation Fuzzy Systems and
Knowledge Discovery, 2018

33. H. Zhu, P. Wang, W. Wang and B. Shi,Stream Prediction Using Representative
Episode Rules, In Proceedings of the 11th IEEE International Conference on Data
Mining Workshops,2011

34. H. Zhu, P. Wang, W. Wang, B. Shi, Discovering frequent closed episodes from an
event sequence, In IJCNN 2012. IEEE, pp. 2292–2299.

35. H. Zhu, P. Wang, X. He, Yujia Li and Wei Wang, Baile Shi, Efficient Episode
Mining with Minimal and Non-overlapping Occurrences, In Predeedings of IEEE
International Conference on Data Mining, 2010

36. Iwanuma K., Takano Y., Nabeshima H. (2004) On anti-monotone frequency mea-
sures for extracting sequential patterns from a single very-long sequence. Proc. IEEE
Conf. Cybernetics and Intelligent Systems, pages 213–217, Dec 2004.

37. J. C. C. Tseng, J. Gu, P. F. Wang, C. Chen, C. Li and V. S. Tseng, A scalable
complex event analytical system with incremental episode mining over data streams,
2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, 2016,
pp. 648-655.

38. Jianxiong Luo, S. M. Bridges and R. B. Vaughn, ”Fuzzy frequent episodes for real-
time intrusion detection,” 10th IEEE International Conference on Fuzzy Systems.
(Cat. No.01CH37297),2001, pp. 368-371 vol.1. doi: 10.1109/FUZZ.2001.1007325

39. J. Luo and S. Bridges, M. Mining fuzzy association rules and fuzzy fre-
quent episodes for intrusion detection. International Journal of Intelligent Sys-
tems,15(8):687–703, Jun 2000.

40. Jiawen Qin, Jinyan Wang, Qiyu Li, Shijian Fang, Xianxian Li, Lei Lei, Differen-
tially private frequent episode mining over event streams, Engineering of Artificial
Intelligence, Volume 110, 2022, 104681

41. K. Huang, C. Chang, Efficient mining of frequent episodes from complex sequences,
Information Systems, vol. 33, no. 1, pp. 96–114, 2008.

42. K. Iwanuma, R. Ishihara, Y. Takano, H. Nabeshima, “Extracting frequent subse-
quences from a single long data sequence,” In ICDM 2005. IEEE, pp. 186–193.

43. K. P. Unnikrishnan, Basel Q. Shadid, P. S. Sastry, and Srivatsan Laxman. Root
cause diagnostics using temporal datamining. U.S.Patent no. 7509234, 24 Mar 2009.

44. Komate Amphawan, Julie Soulas, Philippe Lenca, Mining top-k Regular Episodes
from Sensor Streams, Procedia Computer Science, Volume 69, 2015, Pages 76-85

A Survey of Episode Mining 35

45. Liao, Guoqiong, Yang, Xiaoting, Xie, Sihong, Yu, Philip, Wan, Changxuan. (2018).
Mining Weighted Frequent Closed Episodes over Multiple Sequences. Tehnicki Vjes-
nik.

46. Lina Fahed, Armelle Brun, Anne Boyer, Influencer Events in Episode Rules: A
Way to Impact the Occurrence of Events, Procedia Computer Science, Volume 60,
2015, Pages 527-536.

47. Lina Fahed and Armelle Brun and Anne Boyer, DEER: Distant and Essential
Episode Rules for early prediction,Expert Systems with Applications,vol. 93,p.:283-
298,(2018),https://doi.org/10.1016/j.eswa.2017.10.035

48. Li, Hui, Peng, Sizhe, Li, Jian, Li, Jingjing, Cui, Jiangtao, Ma, Jianfeng. (2018).
ONCE and ONCE+: Counting the Frequency of Time-constrained Serial Episodes
in a Streaming Sequence. Information Sciences. 10.1016/j.ins.2019.07.098.

49. Li Wan,Ling Chen and C. Zhang, Mining Dependent Frequent Serial Episodes from
Uncertain Sequence Data, In Proceedings of IEEE 13th International Conference
on Data Mining,2013

50. Li Wan , Chen, Ling and Zhang, Chengqi. (2013). Mining frequent serial episodes
over uncertain sequence data. ACM International Conference Proceeding Series.
10.1145/2452376.2452403.

51. Li, X., Zhao, Y., Li, D., Guan, W. 2022. Error Serial Episodes Discovery from
Mobile Payment Log in Distributed ETC. In: Lai, Y., Wang, T., Jiang, M., Xu,
G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Pro-
cessing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13155. Springer,
Cham.

52. M. Narmatha, Shri Hari Aravind .K, An Online Malicious Attack Detection using
Honey Pot and Episode Mining, International Journal of Advanced Research in
Computer and Communication Engineering, Vol. 5, Issue 11, November 2016

53. Méger N., Rigotti C. Constraint-Based Mining of Episode Rules and Optimal Win-
dow Sizes. In PKDD 2004,pp 313-324

54. Min Qin and Kai Hwang, ”Frequent episode rules for Internet anomaly detec-
tion,” 3rd IEEE International Symposium on Network Computing and Applica-
tions, 2004. (NCA 2004). Proceedings., Cambridge, MA, 2004, pp. 161-168. doi:
10.1109/NCA.2004.1347773

55. Min-Feng Wang, Yen-Ching Wu, and Meng-Feng Tsai. Exploiting frequent episodes
in weighted suffix tree to improve intrusion detection system. In Proc. Int’l Conf.
Advanced Information Networking and Applications(AINA’08), pages 1246–1252,
Mar 2008.

56. Ming-Yang Su, Discovery and prevention of attack episodes by frequent episodes
mining and finite state machines, Journal of Network and Computer Application
33, pp. 156-167, 2010

57. Ming-Yang Su, Internet worms identification through serial episodes mining,
ECTICON2010: The 2010 ECTI International Confernce on Electrical Engineer-
ing/Electronics, Computer, Telecommunications and Information Technology, Chi-
ang Mai, 2010, pp. 132-136.

58. Min Zhu, Han Yu, Zhiyuan Liu, Bingqing Shen, Lihong Jiang, Hongming Cai, An
intelligent collaboration framework of IoT applications based on event logic graph,
Future Generation Computer Systems, Volume 137, 2022, Pages 31-41

59. N. Tatti, Significance of Episodes Based on Minimal Windows, in 2013 IEEE 13th
International Conference on Data Mining, Miami, Florida, 2009 pp. 513-522.

60. Nikolaj Tatti, Boris Cule, Mining Closed Episodes with Simultaneous Events, Pro-
ceeding KDD ’11 Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining Pages 1172-1180 (2011)

36 A Survey of Episode Mining

61. Nouioua, M., Fournier-Viger, P., He, G., Nouioua, F. and Min, Z., 2020. A Survey
of Machine Learning for Network Fault Management. In: Machine Learning and
Data Mining for Emerging Trends in Cyber Dynamics, Springer, Pages 1-27.

62. O. Quiroga, M. Joaquim and S. Herraiz (2012), Frequent and significant episodes in
sequences of events: Computation of a new frequency measure based on individual
occurrences of the events. In Proceedings of the International Conference on Know.
Disc. and Info. Retrieval .p-p: 324-328.

63. Ouarem O., Nouioua F., Fournier-Viger P. (2021) Mining Episode Rules from Event
Sequences Under Non-overlapping Frequency. In: Fujita H., Selamat A., Lin J.CW.,
Ali M. (eds) Advances and Trends in Artificial Intelligence. Artificial Intelligence
Practices. IEA/AIE 2021. Lecture Notes in Computer Science, vol 12798. Springer,
Cham. https://doi.org/10.1007/978-3-030-79457-6 7

64. Pham, T.T., Luo, J., Hong, T.P. and Vo, B., 2014. An efficient method for mining
non-redundant sequential rules using attributed prefix-trees. Engineering Applica-
tions of Artificial Intelligence, 32, pp.88-99.

65. R. Bathoorn, M. Welten, M. Richardson, A. Siebes, and F. J. Verbeek, Frequent
Episode Mining to Support Pattern Analysis in Developmental Biology, (2010) In:
Dijkstra T.M.H., Tsivtsivadze E., Lecture Notes in Computer Science, vol 6282.
Springer, Berlin, Heidelberg

66. R. Gwadera, M. J. Atallah, and W. Szpankowski. Reliable detection of episodes in
event sequences. In Proc. IEEE Int’l Conf. Data Mining (ICDM’03), pages 67–74,
Nov 2003.

67. S. Laxman, P. S. Sastry, and K. P. Unnikrishnan, A fast algorithm for finding
frequent episodes in event streams. In KDD, 2007.

68. S. Laxman, P. Sastry, and K. Unnikrishnan, Discovering frequent episodes and
learning hidden markov models: A formal connection, IEEE TKDE, 2005.

69. S. Laxman, P. Sastry, and K. Unnikrishnan, “Discovering frequent generalized
episodes when events persist for different durations,” IEEE TKDE, 2007.

70. S. Lin, J Qiao, An episode mining method based on episode matrix and frequent
episode tree, Journal of Control and Decision, vol. 28, no. 3,pp. 339–344, (2013).

71. Komate Amphawan, Julie Soulas, Philippe Lenca, Mining top-k Regular Episodes
from Sensor Streams, Procedia Computer Science, Volume 69, 2015, Pages 76-85

72. Moens, S., Jeunen, O., Goethals, B. 2019. Interactive evaluation of recommender
systems with SNIPER: an episode mining approach. In Proceedings of the 13th ACM
Conference on Recommender Systems (RecSys ’19). Association for Computing Ma-
chinery, New York, NY, USA, 538–539. https://doi.org/10.1145/3298689.3346965

73. Soulas J., Lenca P. (2015) Periodic Episode Discovery Over Event Streams. In:
Pereira F., Machado P., Costa E., Cardoso A. (eds) Progress in Artificial Intelligence.
EPIA 2015. Lecture Notes in Computer Science, vol 9273. Springer, Cham

74. Srivatsan Laxman, Vikram Tankasali, and Ryen W. White. Stream prediction us-
ing a generative model based on frequent episodes in event sequences. In Proc.
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD’09), pages
453–461, Jul 2008.

75. T. Katoh, H. Arimura, K. Hirata, An Efficient Depth-first Search Algorithm for
Extracting Frequent Diamond Episodes from Event Sequences, IPSJ Online Trans-
actions (2010)

76. T. Katoh, S.-I. Tago, T. Asai, H. Morikawa,J. Shigezumi, and H. Inakoshi, Mining
Frequent Partite Episodes with Partwise Constraints, International Workshop on
New Frontiers in Mining Complex Patterns,vol: 8399, pp:117-131,(2013)

77. T. You, Y. Li, B. Sun and C. Du, ”Multi-Source Data Stream Online Frequent
Episode Mining,” in IEEE Access, vol. 8, pp. 107465-107478, 2020.

A Survey of Episode Mining 37

78. Tatti, N., Cule, B. Mining closed strict episodes, Data Min Knowl Disc (2012) 25:
34. https://doi.org/10.1007/s10618-011-0232-z

79. W. Zhou, H. Liu, and H. Cheng, Mining closed episodes from event sequences
efficiently, In Proceedings of PAKDD 2010, pp. 310-318, 2010

80. Wu J., Wan L., Xu Z. (2012) Algorithms to Discover Complete Frequent Episodes
in Sequences. In: Cao L., Huang J.Z., Bailey J., Koh Y.S., Luo J. (eds) New Frontiers
in Applied Data Mining. PAKDD 2011. Lecture Notes in Computer Science, vol
7104.

81. Xiang Ao, Ping Luo, Chengkai Li, Fuzhen Zhuang, Qing He, Discovering and learn-
ing sensational episodes of news events, Information Systems, Volume 78, 2018,
Pages 68-80, ISSN 0306-4379.

82. X. Ao, P. Luo, C. Li, F. Zhuang, Q. He. Online Frequent Episode Mining, In
Proceeding; ICDE Conference 2015

83. X. Ao, P. Luo, J. Wang, F. Zhuang and Q. He, ”Mining Precise-Positioning Episode
Rules from Event Sequences,” 2017 IEEE 33rd International Conference on Data
Engineering(ICDE),2017, pp. 83-86.

84. X. Ma,H. Pang, K.-L. TAN, Finding Constrained Frequent Episodes Using Minimal
Occurrences. 4th IEEE International Conference on Data Mining: ICDM 2004 471-
474.

85. Y. Cao, D. Patnaik , S. Ponce,J. Archuleta, P. Butler, W. Feng, N. Ramakrishnan,
Parallel Mining of Neuronal Spike Streams on Graphics Processing Units. The Int
J Parallel Prog (2012)

86. Y. Chen, P. Fournier-Viger, F. Nouioua and Y. Wu, ”Sequence Prediction using
Partially-Ordered Episode Rules,” 2021 International Conference on Data Mining
Workshops (ICDMW), 2021, pp. 574-580.

87. Y. Lin, C. Huang, V. Tseng, “A novel methodology for stock investment using high
utility episode mining and genetic algorithm,” Applied Soft Computing vol. 59, pp.
303–315, 2017.

88. Yu-Feng Lin, Cheng-Wei Wu, Chien-Feng Huang, Vincent S. Tseng, Discovering
utility-based episode rules in complex event sequences, Expert Systems with Appli-
cations, Volume 42, Issue 12,2015

89. Z.J. Sun, A. Duncan, Y. Kim, K. Zeigler, Seeking frequent episodes in baseline
data of In-Situ Decommissioning (ISD) Sensor Network Test Bed with temporal
data mining tools, Progress in Nuclear Energy, Volume 125, (2020), 103372.

90. Z. Liu, H. Cai, H. Yu, B. Shen and L. Jiang, ”Constructing the Sequential Event
Graph for Event Prediction towards Cyber-Physical Systems,” 2021 IEEE 24th
International Conference on Computer Supported Cooperative Work in Design
(CSCWD), 2021, pp. 1292-1297, doi: 10.1109/CSCWD49262.2021.9437885.

91. Zhongyi Hu, Wei Liu and Hongan Wang, Mining both frequent and rare
episodes in multiple data streams, 2013 10th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), Shenyang, 2013, pp. 753-761. doi:
10.1109/FSKD.2013.6816295

92. Infrabel Open Data portal, https://opendata.infrabel.be/pages/home Last Ac-
cessed 19 May 2023

93. J.M. Luna, P. Fournier-Viger, P. and S. Ventura, ”Frequent itemset mining: A
25 years review,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 9, no. 6, e1329, 2019.

https://opendata.infrabel.be/pages/home

	Lecture Notes in Computer Science

