
A Survey of Itemset Mining

Philippe Fournier-Viger ∗, Jerry Chun-Wei Lin†, Bay Vo‡§,

Tin Truong Chi¶, Ji Zhang‖, Hoai Bac Le ∗∗

Article Type:

Advanced Review

Abstract

Itemset mining is an important subfield of data mining, which consists of discovering
interesting and useful patterns in transaction databases. The traditional task of frequent
itemset mining is to discover groups of items (itemsets) that appear frequently together in
transactions made by customers. Although itemset mining was designed for market basket

analysis, it can be viewed more generally as the task of discovering groups of attribute
values frequently co-occurring in databases. Due to its numerous applications in domains
such as bioinformatics, text mining, product recommendation, e-learning, and web click

stream analysis, itemset mining has become a popular research area.
This paper provides an up-to-date survey that can serve both as an introduction and as a
guide to recent advances and opportunities in the field. The problem of frequent itemset
mining and its applications are described. Moreover, main approaches and strategies to

solve itemset mining problems are presented, as well as their characteristics. Limitations of
traditional frequent itemset mining approaches are also highlighted, and extensions of the

task of itemset mining are presented such as high-utility itemset mining, rare itemset
mining, fuzzy itemset mining and uncertain itemset mining. The paper also discusses

research opportunities and the relationship to other popular pattern mining problems such
as sequential pattern mining, episode mining, sub-graph mining and association rule

∗School of Natural Science and Humanities, Harbin Institute of Technology Shenzhen Graduate School,
China
†School of Computer Science and Technology, University 2, Harbin Institute of Technology Shenzhen

Graduate School, China
‡Faculty of Information Technology, Ho Chi Minh City University of Technology, Ho Chi Minh City,

Vietnam
§College of Electronics and Information Engineering, Sejong University, Seoul, Republic of Korea
¶Department of Mathematics and Informatics, University of Dalat, Vietnam
‖Faculty of Health, Engineering and Sciences, University of Southern Queensland, Australia
∗∗Faculty of Information Technology, University of Science, Vietnam

1

phil
Typewriter

phil
Text Box
Fournier-Viger, P., Lin, J. C.-W., Vo, B, Chi, T.T., Zhang, J., Le, H. B. (2017). A Survey of Itemset Mining. WIREs Interdisciplinary reviews - Data Mining and Knowledge Discovery, Wiley, to appear.

"This is the pre-peer reviewed version. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

mining. Main open-source libraries of itemset mining implementations are also briefly
presented.

2

INTRODUCTION

The goal of data mining is to predict the future or to understand the past1,2. Techniques used

for predicting the future such as neural networks are often designed to behave as black-boxes

because the goal is generally to obtain a model that is as accurate as possible rather than to

obtain a model that is explanatory. On the other hand, several data mining techniques aim at

discovering patterns in data that are understandable by humans. Approaches for discovering

patterns in data can be classified by the types of patterns that they discover. Some common

types of patterns found in databases are clusters, itemsets, trends, and outliers2. This paper

is a survey that focuses on the discovery of itemsets in databases, a popular data mining

task for analyzing symbolic data.

The task of discovering itemsets in databases was introduced in 1993 by Agrawal and

Srikant3 as large itemset mining, but it is nowadays called frequent itemset mining (FIM).

The task of FIM is defined as follows. Given a database of customer transactions, FIM

consists of discovering groups of items (itemsets) that are frequently purchased together by

customers. For example, one may analyze a customer transaction database and discover

that many customers buy taco shells with peppers. Discovering associations between items

is useful to understand customer behavior. For instance, a retail store manager can use this

knowledge to take strategic marketing decisions such as co-promoting products or putting

them closer on the shelves.

Although FIM was originally proposed for analyzing customer data, it is now viewed

as a general data mining task that is applicable to many domains. In fact, a customer

transaction database can be more generally viewed as a database of instances describing

objects (the transactions), where each object is described using nominal attribute values

(the items). Thus, FIM can be equivalently defined as the task of finding attribute values

that frequently co-occur in a database. Because many types of data can be represented as

transaction databases, FIM has many applications in a wide-range of domains such as bioin-

formatics5, image classification6, network traffic analysis7,8, analyzing customer reviews9,

activity monitoring10, malware detection11 and e-learning12, to name just a few. FIM has

also been extended in many ways to address specific needs. For example, some extensions of

3

TID Transaction

T1 {a, c, d}

T2 {b, c, e}

T3 {a, b, c, e}

T4 {b, e}

T5 {a, b, c, e}

Table 1: A transaction database

FIM are to discover rare patterns13, correlated patterns14–16, patterns in sequences17,18 and

graphs19, and patterns that generate a high profit20–26.

The field of itemset mining is a very active research field, where hundreds of new algo-

rithms are proposed every year. This paper provides an up-to-date survey that can serve

both as an introduction and as a guide to recent advances and opportunities in the field.

The rest of this paper is organized as follows. The paper first describes the problem of FIM,

and the main techniques employed in FIM. Then, the paper discusses popular extensions

of the problem of FIM, and other problems in data mining that are closely related to FIM.

Then, the paper discusses research opportunities and discusses open-source implementations

for itemset mining. Finally, a conclusion is drawn.

Frequent itemset mining

The problem of frequent itemset mining is formally defined as follows3. Let there be a set

of items (symbols) I = {i1, i2, . . . im}. A transaction database D = {T1, T2 . . . Tn} is a set

of transactions such that each transaction Tq ⊆ I(1 ≤ q ≤ m) is a set of distinct items,

and each transaction Tq has a unique identifier q called its TID (Transaction IDentifier).

For example, consider the transaction database shown in Table 1. This database contains

five transactions, where the letters a, b, c, d, e represents items bought by customers. For

example, the first transaction T1 represents a customer that has bought the item a, c and d.

An itemset X is a set of items such that X ⊆ I. Let the notation |X| denote the set

cardinality or, in other words, the number of items in an itemset X. An itemset X is said

4

to be of length k or a k-itemset if it contains k items (|X| = k). The goal of itemset mining

is to discover interesting itemsets in a transaction database, that is interesting associations

between items. In general, in itemset mining, various measures can be used to assess the

interestingness of patterns. In FIM, the interestingness of a given itemset is traditionally

defined using a measure called the support. The support (or absolute support) of an itemset

X in a database D is denoted as sup(X) and defined as the number of transactions containing

X, that is sup(X) = |{T |X ⊆ T ∧ T ∈ D}|. For example, the support of the itemset {a, b}

is 2 because this itemset appears in two transactions (T3 and T5). Note that some authors

prefer to define the support of an itemset X as a ratio. This definition called the relative

support is relSup(X) = sup(X)/|D|. For example, the relative support of the itemset {a, b}

is 0.4.

The task of frequent itemset mining 3 consists of discovering all frequent itemsets in a

given transaction database. An itemset X is frequent if it has a support that is no less than

a given minimum support threshold minsup set by the user (i.e. sup(X) ≥ minsup). For

example, if we consider the database shown in Table 1 and that the user has set minsup = 3,

the task of FIM is to discover all groups of items appearing in at least three transactions. In

this case, there are exactly nine frequent itemsets: {a} : 3, {b} : 4, {c} : 4, {e} : 4, {a, c} : 3,

{b, c} : 3, {b, e} : 4, {c, e} : 3, {b, c, e} : 3, where the number besides each itemset indicates

its support.

FIM is an enumeration problem. The goal is to enumerate all patterns that meet the

minimum support constraint specified by the user. Thus, there is always a single correct

answer to a FIM task. FIM is a difficult problem. The naive approach to solve this problem

is to consider all possible itemsets to then output only those meeting the minimum support

constraint specified by the user. However, such a naive approach is inefficient for the following

reason. If there are m distinct items in a transaction database, there are 2m − 1 possible

itemsets. If a database has for example 1000 distinct items, the number of possible itemsets

is 21000 − 1 itemsets, which is clearly unmanageable using a naive approach. It is important

to note that the FIM problem can be very difficult even for a small database. For example,

a database containing a single transaction with 100 items, with minsup = 1 still generates

a search space of 2100 itemsets. Thus, the number of itemsets in the search space generally

5

matters more than the size of the data in FIM. But what influences the number of itemsets

in the search space? The number of itemsets depends on how similar the transactions are in

the database, and also on how low the minsup threshold is set by the user.

To discover frequent itemsets efficiently, it is thus necessary to design algorithms that

avoid exploring the search space of all possible itemsets and that process each itemset in the

search space as efficiently as possible. Several efficient algorithms have been proposed for

FIM. Some of the most famous are Apriori3, FP-Growth27, Eclat28, H-Mine29 and LCM30.

All of these algorithms have the same input and the same output. However, the difference is

the strategies and data structures that these algorithms employ to discover frequent itemsets

efficiently. More specifically, FIM algorithms differ in (1) whether they use a depth-first or

breadth-first search, (2) the type of database representation that they use internally or

externally, (3) how they generate or determine the next itemsets to be explored in the search

space, and (4) how they count the support of itemsets to determine if they satisfy the

minimum support constraint.

In the rest of this section, we first explain the concept of breadth-first search and depth-

first search in itemset mining. Then, we provide an overview of the key techniques used

by some of the most popular FIM algorithms and explain their advantages and limitations.

These techniques are very important as they have inspired numerous algorithms in the field

of pattern mining.

Breadth-first search and depth-first search

Most of the existing itemset mining algorithms can be described as either using a breadth-first

search or a depth-first search. Assume that there are m items in a database. A breadth-

first search algorithm (also called a level-wise algorithm) such as Apriori explores the search

space of itemsets by first considering 1-itemsets, then 2-itemsets, 3-itemsets . . . , and lastly

m-itemsets. For example, Fig. 1 depicts the search space of all possible itemsets for the

running example. In this figure, the search space is represented as a Hasse diagram1. A

breadth-first search algorithm will first consider 1-itemsets {a}, {b}, {c}, {d} and {e}. Then,

1A Hasse diagram draws an arrow from an itemset X to another itemset Y if and only if X ⊆ Y and

|X|+ 1 = |Y |

6

it will generate 2-itemsets such as {a, b}, {a, c}, {a, d}, and then 3-itemsets, and so on, until it

generates the itemset {a, b, c, d, e} containing all items. On the other hand, depth-first search

algorithms such as FPGrowth, H-Mine and LCM start from each 1-itemset and then recur-

sively try to append items to the current itemset to generate larger itemsets. For example,

in the running example, a typical depth-first search algorithm would explore itemsets in that

order: {a}, {a, b}, {a, b, c}, {a, b, c, d}, {a, b, c, d, e}, {a, b, c, e}, {a, b, d}, {a, b, d, e}, {a, b, e},

{a, c}, {a, c, d}, {a, c, d, e}, {a, c, e}, {a, d}, {a, d, e}, {a, e}, {b}, {b, c}, {b, c, d}, {b, c, d, e},

{b, c, e}, {b, d}, {b, d, e}, {b, e}, {c}, {c, d}, {c, d, e}, {c, e}, {d}, {d, e}, {e}.

Figure 1: The search space for I = {a, b, c, d, e}.

To design an efficient FIM algorithm, it is important that the algorithm avoid exploring

the whole search space of itemsets because the search space can be very large. To reduce

the search space, search space pruning techniques are used. In FIM, the key observation for

reducing the search space is that the support is a monotone measure, that is for any itemsets

X and Y such that X ⊂ Y , it follows that sup(X) ≥ sup(Y)3. This has the implication

that if an itemset is infrequent, all its supsersets are also infrequent, and thus do not need to

be explored. For example, assuming that minsup = 3 and that the support of the itemset

{a, b} is 2, it can be concluded that {a, b} and all its supersets are infrequent and do not need

to be considered. This property, called the downward-closure property 3, anti-monotonicity-

property or Apriori-property is very powerful and can greatly reduce the search space. For

7

example, it can be observed in Fig. 1 that only 9 itemsets are frequent out of 31 possible

itemsets (excluding the empty set). Thus by applying the above property, many itemset can

potentially be avoided when exploring the search space.

Apriori: an horizontal breadth-first search algorithm

Apriori3 is the first FIM algorithm. Apriori takes a transaction database and the minsup

threshold as input. Apriori uses a standard database representation, as shown in Table

1, also called a horizontal database. The pseudocode of Apriori is given in Algorithm 1.

Apriori first scans the database to calculate the support of each item, i.e. 1-itemset (line

1). Then, Apriori uses this information to identify the set of all frequent items, denoted as

F1 (line 2). Then, Apriori performs a breadth-first search to find larger frequent itemsets

(line 4 to 10). During the search, Apriori uses the frequent itemsets of a given length k − 1

(denoted as Fk−1) to generate potentially frequent itemsets of length k (denoted as Ck). This

is done by combining pairs of items of length k that share all but one item (line 5). For

example, if the frequent 1-itemsets are {a}, {b}, {c} and {e}, Apriori will combine pairs of

these itemsets to obtain the following candidate 2-itemsets: {a, b}, {a, c}, {a, e}, {b, c}, {b, e},

and {c, e}. After generating candidates of length k, Apriori checks if the (k − 1)-subsets of

each candidate are frequent. If a candidate itemset X has an infrequent (k − 1)-subset, X

cannot be frequent (it would violate the downward-closure property) and it is thus removed

from the set of candidate k-itemsets. Then, Apriori scans the database to calculate the

support of all remaining candidate itemsets in Ck (line 7). Each candidate having a support

not less than minsup is added to the set Fk of frequent k-itemsets (line 8). This process

is repeated until no candidates can be generated. The set of all frequent itemsets is then

returned to the user (line 11).

Apriori is an important algorithm as it has inspired many other algorithms. However, it

suffers from important limitations. The first one is that because Apriori generates candidates

by combining itemsets without looking at the database, it can generate some patterns that

do not even appear in the database. Thus, it can spend a huge amount of time processing

candidates that do not exist in the database. The second limitation is that Apriori has to

repeatedly scan the database to count the support of candidates, which is very costly. The

8

third limitation is that the breadth-first search approach can be quite costly in terms of

memory as it requires at any moment to keep in the worst case all k and k − 1 itemsets

in memory (for k > 1). In terms of complexity, a very detailed complexity analysis of the

Apriori algorithm has been done by Hegland31. Briefly, the time complexity is O(m2n),

where m is the number of distinct items and n is the number of transactions.

Algorithm 1: The Apriori algorithm

input : D: a horizontal transaction database, minsup: a user-specified threshold

output: the set of frequent itemsets

1 Scan the database to calculate the support of all items in I;

2 F1 = {i|i ∈ I ∧ sup({i}) ≥ minsup} ; // F1 : frequent 1-itemsets

3 k = 2;

4 while Fk 6= ∅ do

5 Ck = CandidateGeneration (Fk−1) ; // Ck : candidate k-itemsets

6 Remove each candidate X ∈ Ck that contains a (k− 1)-itemset that is not in Fk−1;

7 Scan the database to calculate the support of each candidate X ∈ Ck;

8 Fk = {X|X ∈ Ck ∧ sup(X) ≥ minsup} ; // Fk : frequent k-itemsets

9 k = k + 1;

10 end

11 return
⋃

k=1...k Fk;

Eclat: a vertical depth-first search algorithm

The Eclat28 algorithm improves upon the Apriori approach by using a depth-first search to

avoid keeping many itemsets in memory. Contrarily to Apriori, Eclat utilizes what is called

a vertical database representation. A vertical database representation indicates the list of

transactions where each item appears. For an itemset i, the list of transactions containing

the item i is called its TID-list, and it is denoted as tid(X). For example, the vertical

representation of the database presented in Table 1 is shown in Table 2.

This vertical representation can be obtained by scanning the original horizontal database

9

Item (x) TID-set (tid(x))

a {T1, T3, T5}

b {T2, T3, T4, T5}

c {T1, T2, T3, T5}

d {T1}

e {T2, T3, T4, T5}

Table 2: The vertical representation of the database of Table 1

only once. Furthermore, note that it is also possible to regenerate a horizontal database from

a vertical database. The vertical representation is very useful in itemset mining because it

possesses the following two properties. First, for any itemsets X and Y , the TID-list of

the itemset X ∪ Y can be obtained without scanning the original database by intersecting

the TID-lists of X and Y , that is: tid(X ∪ Y) = tid(X) ∩ tid(Y). Second, the TID-list of

an itemset X allows to directly derive its support without scanning the database, by using

the property that sup(X) = |tid(X)|. For example, the TID-list of {a, c} can be calculated

as tid({a, c}) = tid(a) ∩ tid(c) = {T1, T3, T5}, and it can thus be derived that the support

of {a, c} is |tid({a, c})| = 3. Thus, using these two properties, vertical algorithms such as

Eclat can explore the search space by scanning the database only once to create the initial

TID-lists. Candidate generation and support counting is done directly without scanning the

database.

The pseudocode of Eclat is shown in Algorithm 2. The Eclat algorithm takes as input

a vertical database (a set R containing all items annotated with their tidsets, as shown in

Table 2) and the minsup threshold. The Eclat algorithm performs a loop where it considers

each itemset X in R that is frequent according to its tidset (line 2 to 10). The itemset

X is first output. Then, a search is performed to find frequent itemsets extending X with

one item. This is done by attempting to combine each itemset Y in R that shares all but

the last item with X to obtain an itemset X ∪ Y (line 4 to 10). For example, if X = {a},

Eclat will attempt to combine X with {b}, {c}, {d} and {e} to generate the extensions {a, b},

{a, c}, {a, d} and {a, e}, respectively. During this process, the tidset of an extension X ∪ Y

10

is calculated as tid(X) ∩ tid(Y) (line 6). Then, if X ∪ Y is frequent according to its tidset,

X ∪ Y is added to a set E of frequent extensions of X (line 6 and 7). After that the Eclat

algorithm is recursively called with E to explore all extensions of X ∪ Y . Then, the loop of

line 1 to 10 is repeated for other itemsets in R. When the algorithm terminates, all frequent

itemsets have been output.

The Eclat algorithm is considered to be a depth-first search algorithm as it outputs all

frequent itemsets according to the depth-first search order. Eclat is generally much faster

than Apriori as it does not perform multiple database scans. However, Eclat still has some

drawbacks. First, because Eclat also generates candidates without scanning the database,

it can spend time considering itemsets that do not exist in the database. Second, although

TID-lists are useful, they can consume a lot of memory especially for dense datasets (datasets

where all items appear in almost all transactions). It is important to note however, that

there has been some work to reduce the size of TID-lists using an improved structure called

diffsets32. Also other proposed improvements are for example to encode TID-lists as bit

vectors32,33 to reduce the memory usage and the speed of intersecting TID-lists, on dense

datasets. TID-lists can also be used in breadth-first search algorithms. For example, Apriori-

TID is a version of Apriori that relies on TID-lists to calculate the support of itemsets3

Pattern-growth algorithms

To address the main limitation of algorithms such as Apriori and Eclat, a major advance

in the field has been the development of pattern-growth algorithms such as FP-Growth27,

H-Mine29 and LCM30. The main idea of pattern-growth algorithms is to scan a database

to find itemsets, and thus avoid generating candidates that do not appear in the database.

Furthermore, to reduce the cost of scanning the database, pattern-growth algorithms have

introduced the concept of projected database to reduce the size of databases as an algorithm

explore larger itemsets with its depth-first search.

The pseudocode of a typical pattern-growth algorithm is shown in Algorithm 3. It takes

as input a transaction database D, the empty set, and the minsup threshold. Without loss

of generality, assume that there exists a total order on items ≺ such as the lexicographical

order (a ≺ b ≺ c ≺ d ≺ e). A pattern-growth algorithm explores the search space using

11

Algorithm 2: The Eclat algorithm

input : R: a set of itemsets with their tidsets, minsup: a user-specified threshold

output: the set of frequent itemsets

1 foreach itemset X ∈ R such that |tid(X)| ≥ minsup do

2 Output X; // X is a frequent itemset

3 E = ∅; // frequent itemsets that are extensions of X

4 foreach itemset Y ∈ R sharing all but the last item with X do

5 tid(X ∪ Y) = tid(X) ∩ tid(Y); // calculate the tidset of X ∪ Y

6 if |tid(X ∪ Y)| ≥ minsup then // if X ∪ Y is frequent

7 E = E ∪ {X ∪ Y }; // add X ∪ Y to frequent extensions of X

8 end

9 Eclat (E,minsup); // recursive call using E

10 end

11 end

a depth-first search by recursively appending items according to the ≺ order to frequent

itemsets, to obtain larger frequent itemsets. At the beginning, a pattern-growth algorithm

considers that the current itemset X is the empty set. A pattern-growth algorithm scans the

database D to find the set Z of all frequent items in D (line 1). Then, for each such item z,

the itemset X ∪ {z} is output as it is a frequent itemset (line 3). Then, the pattern-growth

procedure is called to perform a depth-first search to find larger frequent itemsets that are

extensions of X∪{z} in the same way (line 5). However, it can be observed that not all items

in D can be appended to X ∪ {z} to generate larger itemsets. In fact, the itemset X ∪ {z}

may not even appear in all transactions of the database D. For this reason, a pattern-growth

algorithm will create the projected database of the itemset X ∪ {z} (line 4) and will use

this database to perform the depth-first search (line 5). This will allows reducing the cost

of scanning the database. After recursively performing the depth-first search for all items,

the set of all frequent itemsets will have been output.

Now, let’s illustrate these steps in more details with an example. Assume that minsup =

3. By scanning the database of Table 1, it can be found that the frequent 1-itemsets are a, b, c

12

and e. The algorithm will first consider the item a to try to find larger frequent itemsets

starting with the prefix {a}. The algorithm will thus build the projected database of {a} as

shown in Table 3. The projected database of an item i is defined as the set of transactions

where i appears, but where the item i and items preceding i according to the ≺ order have

been removed. Then, to find frequent itemsets starting with {a} containing one more item,

the algorithm will scan the projected database of {a} and count the support of all items

appearing in that database. For example, the support of items in the projected database

of {a} are: {b} : 2, {c} : 3 and {e} : 1. This means that the support of {a, b} is 2, that

the support of {a, c} is 3, and that the support of {a, e} is 1. Thus, only the itemset {a, c}

is frequent (recall that we assume that minsup = 3 in the running example). Then the

algorithm will pursue the depth-first search to find frequent itemsets starting with the prefix

{a, c}. The algorithm will build the projected database of {a, c} from the projected database

of {a}. The projected database of {a, c} is shown in Table 4. Then, the algorithm will scan

the projected database of {a, c} to find frequent items in that database. This process will

continue until all frequent itemsets have been explored by the depth-first search.

A major advantage of pattern-growth algorithms is that they only explore the frequent

itemsets in the search space thus avoiding considering many itemsets not appearing in the

database, or infrequent itemsets. Besides, the concept of projected database is also useful

to reduce the cost of database scans. A common question about the concept of projected

database is: is it costly to create all these copies of the original database? The answer is no if

an optimization called pseudo-projection is used, which consists of implementing a projected

database as a set of pointers on the original database29,30. For example, Fig. 2 shows the

pseudo-projected database of {a, c}, which is equivalent to the projected database of Table 4,

excepts that it is implemented using three pointers on the original database, to avoid creating

a copy of the original database. Note that many other optimizations can also be integrated

in pattern-growth algorithms. For example, LCM30 also integrates a mechanism to merge

identical transactions in projected databases to further reduce their size, and an efficient

array-based support counting technique called occurrence-delivery. The FP-Growth27 and

H-Mine29 algorithms respectively introduce a prefix-tree structure and a hyper-structure for

representing projected-databases to also reduce memory usage.

13

Algorithm 3: A pattern-growth algorithm

input : D: a transaction database, X: the current itemset (initially X = ∅),

minsup: a user-specified threshold

output: the set of frequent itemsets

1 Scan the database D to find the set Z of all frequent items in D;

2 foreach item z ∈ Z do

3 Output X ∪ {z}; // X ∪ {z} is a frequent itemset

4 D′ = Projection(D, z) ; // Create projected database of X ∪ {z}

5 PatternGrowth (D,X ∪ {z},minsup); // recursive call to extend X ∪ {z}

6 end

TID Transaction

T1 {c, d}

T3 {b, c, e}

T5 {b, c, e}

Table 3: The projected database of {a}

TID Transaction

T1 {d}

T3 {e}

T5 {e}

Table 4: The projected database of {a, c}

Figure 2: The pseudo-projected database of {a,c}

Table 5 provides a summary of the characteristics of the algorithms discussed in this sec-

tion. In recent years, a lot of research has been carried on further improving the performance

of algorithms for FIM since it is a computationally expensive task. These improvements have

14

Algorithm Type of search Database representation

Apriori 3 breadth-first (candidate generation) Horizontal

Apriori− TID 3 breadth-first (candidate generation) Vertical (TID-lists)

Eclat28 depth-first (candidate generation) Vertical (TID-lists, diffsets)

FP −Growth27 depth-first (pattern-growth) Horizontal (prefix-tree)

H −Mine29 depth-first (pattern-growth) Horizontal (hyperlink structure)

LCM 30 depth-first (pattern-growth) Horizontal (with transaction merging)

Table 5: A summary of six representative FIM algorithms

been in terms of proposing novel algorithms with additional optimizations34–37, and also to

design FIM algorithms that can run on GPU processors38, on multi-core processors39, and

cloud platforms such as Hadoop40 and Spark41.

Variations of the Itemset Mining Problem

Although the task of frequent itemset mining has numerous applications, it can also be

viewed as having limitations in terms of the assumptions that it makes. This section reviews

some of the most important limitations of FIM and discusses extensions to the task of itemset

mining that are designed to address these limitations.

One the most important limitation of FIM is that an algorithm may find a huge amount

of itemsets, depending on how the minimum support threshold is set. Discovering too many

patterns makes it difficult for a human to analyze the patterns found. Moreover, itemsets

can be viewed as containing a lot of redundancy, since, for example, if an itemset is frequent,

all its subsets are also frequent. To reduce the number of itemsets found and present more

meaningful itemsets to the user, researchers have designed algorithms to extract concise

representations of frequent itemsets. A concise representation is a set of frequent itemsets

that is smaller and summarize the whole set of all frequent itemsets. In practice the size of

concise representations can sometimes be several orders of magnitude smaller than the set

of frequent itemsets. Moreover, discovering these concise representations is often faster than

discovering the full set of frequent itemsets30,33,42–48. It was also shown that for task such as

15

classification, using concise representations of items can increase classification accuracy50.

Let FI denotes the set of frequent itemsets. The most popular concise representations of

frequent itemsets are the following.

• Closed itemsets 30,33,42–45 are the frequent itemsets that have no superset having the

same support, i.e. CI = {X|X ∈ FI∧ 6 ∃Y ∈ FI such that X ⊂ Y ∧ sup(X) =

sup(Y)}. In the example of Table 1, out of nine frequent itemsets, only four of them

are closed: {c}, {e}, {a, c}, {b, c, e}. Thus, a considerable reduction in terms of number

of itemsets is achieved by discovering only closed itemsets. An interesting property

of closed itemsets is that they are a lossless representation of all frequent itemsets.

In other words, using closed itemsets the information about all frequent itemsets,

including their support, can be recovered without scanning the database30,33,42–45. In

market basket analysis, closed itemsets are also interesting because they represent the

largest sets of items common to groups of customers.

• Maximal itemsets 30 are the set of frequent itemsets that do not have supersets that

are frequent, i.e. MI = {X|X ∈ FI∧ 6 ∃X ∈ FI such that X ⊂ Y }. In other words,

maximal itemsets are the largest frequent itemsets. The representation of maximal

itemsets is a subset of the representation of closed itemsets (MI ⊆ CI ⊆ FI), and thus

can further reduce the number of itemsets presented to the user. However, maximal

itemsets are not a lossless representation. Maximal itemsets can be used to recover

all frequent itemsets, but they cannot be used to recover the support of all frequent

itemsets. In the example of Table 1, there are only two maximal itemsets: {a, c} and

{b, c, e}.

• Generator itemsets (key itemsets)46–48 are the set of frequent itemsets that have no

subsets having the same support, i.e. GI = {X|X ∈ FI∧ 6 ∃X ∈ FI such that

Y ⊂ X ∧ sup(X) = sup(Y)}. The set of generator itemsets is always of equal size as

or larger than the set of closed itemsets and the set of maximal itemsets. But the set

of generators is interesting according to the Minimum Description Length principle49

since it represents the smallest sets of items that are common to sets of transactions.

For example, in market basket analysis, generator itemsets represent the smallest sets

16

of items common to group of customers.

Another popular way of reducing the number of patterns found by itemset mining al-

gorithms is to introduce constraints to filter less interesting patterns. Many different types

of more or less complex constraints have been introduced. The naive way of applying con-

straints in FIM is to apply them as a post-processing step after all the frequent itemsets

have been found. However, this approach may suffer from important performance issues

since discovering all patterns can be time-consuming and require a lot of space. A better

way of applying constraints is to push them deep in the mining process, i.e. to use the

constraints to reduce the search space, and thus improve the performance of the algorithms.

Algorithms that use constraints to reduce the search space can sometimes be orders of mag-

nitude faster, since constraints can greatly reduce the size of the search space, and produce

orders of magnitude less patterns. Some of the first itemset mining algorithms to integrate

constraints are the Reorder and Direct algorithms, which are Apriori-based algorithms that

let the user specify boolean constraints on items that can appear in frequent itemsets51.

Another example of constraint is the use of the occupancy 52, a measure used to find itemsets

that occupy a large portion of transactions where they appear. Measures have also been pre-

sented to assess how correlated each itemset is14–16. For example, the bond 14 of an itemset

X = {i1, i2, . . . ip} is defined as bond(X) = |tid(X)|/|tid(i1) ∩ tid(i2) ∩ . . . tid(ip)|. Thus, a

frequent itemset having a high bond is not just frequent but also contains items that often

co-occur. Many other alternative interestingness measures have also been proposed in the

itemset mining literature53 such as the affinity55, all-confidence54, coherence and mean15,16,

each having different advantages and limitations. The interested reader may refer to the

paper of Geng et al.53 for more details.

In terms of constraints that can be used in itemset mining, not all constraints can be

pushed deep into the mining process to reduce the search space. Some studies56–58 have

categorized constraints into several categories such as monotone, anti-monotone, succinct,

convertible and other constraints. Anti-monotone constraints such as the minimum support

threshold are some of the easiest and most beneficial to integrate in a FIM mining algorithm,

as they can be used to prune the search space by applying the downward closure property.

Convertible constraints are constraints that are neither monotone nor anti-monotone but

17

that can be converted to anti-monotone constraints if some additional strategies are applied

by the FIM algorithm. For example, assume that a weight is assigned to each item. A

constraint that is neither anti-monotone nor monotone is the maximum average weight of an

itemset. But this constraint can be easily converted into an anti-monotone constraint if items

are sorted by increasing order of weights, and itemsets are explored by following that order

56. A succinct constraint is a constraint that can be checked for an itemset by only looking

at the single items that it contains. For example, the constraint that the sum of the weights

of an itemset should be less than a given value can be checked by simply adding the weights

of its items. This constraint is both succint and anti-monotone. For more information about

the use of constraints, the reader may refer to the referenced papers56–58 .

Another limitation of traditional FIM is that it assumes that all items are equal. But

in real-life applications, items are often very different from each other59. For example, two

items such as bread and caviar do not have the same selling frequencies in a retail store,

and one should not expect these items to have the same frequencies since bread is a very

common type of product while caviar is a specialized and expensive product. Thus, some

items have naturally more chance of being frequent than others. This leads to the rare item

problem 59, which means that some items are much less likely to appear in frequent itemsets

than others. To address this issue, researchers have developed algorithms to find frequent

itemsets using multiple minimum support thresholds, such as MSApriori59, CFPGrowth60

and CFPGrowth++61. These algorithms let the user select a different minimum support

threshold for each item. As a result, these algorithms can find frequent itemsets containing

rare items and/or frequent items. For example, a user could assign a lower minimum support

threshold for the item caviar than for the item bread. A related problem with databases

having a skewed item support distribution is that patterns involving both frequent and

infrequent items may be spurious as infrequent items may appear with frequent items simply

because those latter are frequent. Measures have thus been designed to eliminate such

patterns, called cross-support patterns 55.

A lot of research has also been carried on finding rare itemsets in databases13,63,64 in-

stead of frequent itemsets, since frequent itemsets may not always be the most interesting in

real-life applications. The problem of discovering rare patterns is quite challenging as there

18

is generally much more rare patterns than frequent patterns. As a result, various definitions

of rare patterns have been proposed, each providing different restrictions on what is a rare

pattern to avoid discovering a huge number of rare patterns. For example, the AprioriIn-

verse62 algorithm finds perfectly rare itemsets. A perfectly rare itemset is an itemset that

has a support no less than a minimum support threshold and not higher than a maximum

support threshold. Furthermore, it is required that all subsets of a perfectly rare itemset

also have a support not greater than the maximum support threshold. Another type of

rare itemsets is the minimal rare itemsets 63,64. A minimal rare itemset is an itemset that is

infrequent according to the minimum support threshold and that all its subsets are frequent.

Thus, minimal rare itemsets can be viewed as the itemsets that are almost frequent. Both

the perfectly rare itemsets and minimal rare itemsets are subsets of the set of all infrequent

itemsets.

Another drawback of traditional FIM algorithms is that they are designed to be applied

as batch algorithms, i.e. they are designed to be run only once. This is a problem if FIM

algorithms are applied in a dynamic environment. For example, if a transaction database

is updated, a user will need to apply a FIM algorithm again to get an updated view of the

patterns in the database. This is inefficient because sometimes only small changes are made

to a database. In these cases, it would be preferable to not recompute all frequent itemsets

from scratch. Various algorithms have been designed to provide updated results to a user

when a database changes. There are three main types of algorithms:

• Incremental mining algorithms are designed to update the set of frequent itemsets when

new transactions are inserted, deleted or modified65–68 in a transaction database. An

example of strategy used by this type of algorithms to avoid recalculating all frequent

itemsets from scratch is to keep a buffer of almost-frequent itemsets in memory. Using

a buffer, it is unnecessary to perform a database scan to calculate the support of

itemsets, when a database is only slightly changed.

• Stream mining algorithms are designed to cope with a potentially infinite stream of

transactions. They assume that transactions may arrive at a very high speed. Thus,

these algorithms are optimized to process transactions as quickly as possible and gen-

19

erally to calculate an approximate set of frequent itemsets rather than an exact set of

frequent itemsets72. Some popular algorithms for mining frequent itemsets in streams

are estDec69 and estDec+70. These algorithms use a tree structure for maintaining

information about frequent itemsets, and also include a recency constraint to discover

itemsets that are recently frequent, but that may have been infrequent in the past, and

calculate upper-bounds on the approximation error of support calculation for frequent

itemsets. Similarly, algorithms have also been designed to find and maintain closed71

and maximal itemsets73 in streams.

• Interactive mining algorithms propose a different solution to the problem of handling

dynamic databases. The idea is that instead of mining and updating a large number of

itemsets that may not all be useful, one could mine the itemsets that are needed on-the-

fly, when they are needed. For example, the Itemset-Tree74 and the improved Memory-

Efficient Itemset-Tree75 are tree-based data structures that can be created from a

transaction database, and that can be updated incrementally with new transactions.

These structures are optimized for quickly answering queries about itemsets on-the-fly

such as (1) computing the support of a given itemset, (2) finding all supersets of a

given itemset that has a support greater than a given minimum support threshold,

and (3) finding all association rules having a given itemset as antecedent. Interactive

algorithms can be very efficient. For example, it was reported that the above structure

can process more than 10,000 queries in just a few seconds for some datasets, on a

standard personal computers75.

Another important limitation of traditional FIM algorithms is the database format. As

previously explained, FIM assumes that the input database only contains binary attributes

(items). But in real-life this assumption does not always hold. Thus, several extensions of

FIM have been proposed to handle richer database types. Some of the most important ones

are the following.

• Weighted itemset mining is an extension of frequent itemset mining where weights are

associated to each item to indicate their relative importance76–78. The goal of weighted

itemset mining is to find itemsets that have a minimum weight. A popular variation

20

of this problem is to mine infrequent weighted itemsets79.

• High-utility itemset mining (HUIM) is an extension of weighted itemset mining where

not only weights are considered but also purchase quantities in transactions20–26. In

traditional FIM, purchase quantities are assumed to be binary, i.e. either an itemset

appears in a transaction or not. In HUIM, the number of units bought for each item is

indicated in transactions. For example, a transaction could indicate that a customer

has bought four breads and two bottles of wine, which is different than a customer

having bought one bread and four bottles of wine. In HUIM, weights can be viewed as

the unit profit of items (how much profit is generated by each unit sold of a product).

The goal of HUIM is to find all itemsets that have a utility higher than a given threshold

in a database (i.e. itemsets generating a high profit). A major challenge in HUIM is

that the utility measure is neither monotone nor anti-monotone20. Hence, the utility-

measure cannot be directly used to prune the search space. To solve this problem,

HUIM algorithms have introduced the concept of upper-bound. For example, the Two-

Phase algorithm20 uses an upper-bound, called the TWU, on the utility of itemsets

that is monotone to reduce the search space. A major challenge in HUIM has been to

develop tighter upper-bounds on the utility to be able to prune a larger part of the

search space, and improve the performance of HUIM algorithms24–26,67. One of the

current fastest HUIM algorithm is EFIM25. Various extensions of the utility-mining

problem have also been proposed to consider for example the shelf-time periods of

items80, discount strategies applied in retail stores81, and also to discover the top-k

most profitable itemsets82,83.

• Uncertain itemset mining is another popular extension of FIM, designed to consider

uncertainty about the data84–88. Uncertainty play a role in several real-life applica-

tions since data collected is often imperfect, inaccurate, or may be collected through

noisy sensors. Two main models have been proposed for uncertain frequent itemset

mining86. The first model is the expected-support model 85,87,88. It considers that each

item i appearing in a transaction Tq is associated to an expected support value e(i, Tq)

representing the certainty that this item appeared in the transaction (a value in the

21

[0,1] interval). For example, consider a transaction database where items represent

symptoms and transactions represent hospital patients. A symptom such as stomach

pain may be associated to a patient with an expected-support of 0.75 (representing

a probability of 75%) based on medical tests or discussion with the patient. The

expected-support of an itemset X in a transaction is defined as the product of the

expected-support of its items in the transaction, i.e. exp(X,Tq) =
∏

i∈X e(i, T q). The

expected-support of an itemset in a database D is the sum of its expected-support

in all transactions where X appears, i.e. exp(X,D) =
∑

Tq∈D∧X⊆Tq
exp(X,Tq). The

task of uncertain itemset mining in the expected support model is to discover all item-

sets that are expected to be frequent. The second model is the probabilistic itemset

model 85. It utilizes the same database format, but it considers two thresholds: the

minimum support threshold minsup, as well as a second threshold called the mini-

mum probability threshold minprob. An itemset is considered a probabilistic frequent

itemset if the calculated probability that it appears in more than minsup transactions

by considering possible worlds is greater than minprob.

• Fuzzy itemset mining 89–92 is also a well-studied extension of itemset mining. In fuzzy

itemset mining, quantitative values are assigned to each item in transactions and fuzzy

membership functions are defined for each attribute (item) to map these values to nom-

inal values. For example, an attribute of a transaction could be the “height” of a person

and a corresponding fuzzy membership function could be defined to map a height to

nominal values such as short, average or tall. Fuzzy FIM algorithms discover itemsets

where each item is associated with a nominal value and a membership percentage.

For example, a fuzzy FIM algorithm can discover itemsets such as “height(tall=80%)

age(young = 60%)”. Some of the most important applications of fuzzy itemset mining

are in text mining, including text clustering91.

Another limitation of frequent itemset mining is that it is traditionally applied to find

itemsets in a single set of transactions. However, in real-life, it is often useful to discover

patterns that are different or vary greatly in two or more sets of transactions. For example,

one may wish to discover patterns that explain the difference between the shopping behavior

22

of adults and teenagers. For this purpose, algorithms have been designed to mine emerging

patterns. An emerging pattern is a pattern that is significantly more frequent in a set of

transactions than in another93. It was shown that emerging patterns are useful for tasks

such as classification94.

Other pattern mining problems related to itemset mining

The previous section has described popular extensions of the problem of FIM to address some

of its limitations. This section describes some other important pattern mining problems that

are closely related to itemset mining and are solved using similar techniques.

• Association rule mining 3,95,96 is the task of discovering rules of the form X → Y in a

transaction database, where X and Y are itemsets such that X ∩ Y = ∅. The inter-

estingness of a rule is traditionally assessed by the support measure sup(X → Y) =

sup(X ∪ Y) and the confidence measure conf(X → Y) = sup(X ∪ Y)/sup(X)3. The

confidence is a very useful measure since it assesses how “strong” an association be-

tween some items is. The confidence represents the conditional probability P (Y |X).

Thus, for any rule X → Y , if follows that conf(X → Y) is not necessarily equal

to conf(Y → X). To discover frequent and confident association rules, a user has

to specify a minimum support threshold minsup and a minimum confidence thresh-

old minconf . An association rule mining algorithm then finds all the valid association

rules, i.e. those having a support and confidence respectively no less than these thresh-

olds. For example, for the database of Figure 1 and minsup = 3 and minconf = 1

(which means 100 % confidence), the valid association rules are {a} → {c}, {e} → {b},

{b} → {e}, {c, e} → {b} and {b, c} → {e}, which all have a confidence of 100%, and

respectively have a support of 3, 4, 4, 3 and 3 transactions. Using the confidence

measure, association rule mining algorithms can discover patterns representing strong

associations between items. This addresses a limitation of traditional frequent itemset

mining, which is that it may find many frequent itemsets that are weakly correlated.

For example, {a, c} is a frequent itemset for minsup = 3. But the rule {a} → {c}

has a higher confidence (100%) than the rule {c} → {a} (75%). Thus association rules

23

can provide a more detailed information about this itemset. Note that more than 20

alternative interestingness measures have been proposed for association mining beside

the support and confidence. The interested reader may refer to Lenca et al.96 for a

survey of association rule measures. Association rules are typically generated in two

steps by first discovering frequent itemsets using a standard FIM algorithm and then

generating the rules using the frequent itemsets3.

• Sequential pattern mining 17,18,97–100 consists of discovering sequences frequently appear-

ing in a set of sequences. The problem is similar to the problem of frequent itemset

mining except that the input database is a sequence database, where each sequence

is a sequence of transactions. The output of a sequential pattern mining algorithm is

a set of frequent sequential patterns, that is subsequences that appear in no less than

minsup sequences in the database, where minsup is the minimum threshold specified

by the user. Applications of sequential pattern mining include analyzing the genome,

analyzing web-click stream, and analyzing alarm data in telecommunications97. A

variation of the sequential pattern mining problem is to discover sequential rules 109,110

of the form X → Y indicating that if some items X appear in a sequence it will be

followed by some other items Y with a given confidence. A sequential rule X → Y can

be viewed as an association rule that respect the restriction that X must appear be-

fore Y . Sequential rules have been reported as more effective than sequential patterns

for some tasks involving prediction109. They have been applied in various applications

such as e-learning, web page prefetching, anti-pattern detection, alarm sequence analy-

sis and restaurant recommendation110. Another variation is to discover frequent partial

orders 111,112 rather than sequential patterns or rules. Items in a frequent partial orders

are only partially ordered sequentially. Thus a frequent partial order can summarize

several sequential patterns111.

• Episode mining 101,102 is similar to the problem of sequential pattern mining except that

patterns are mined in a single sequence rather than in a set of sequences. The goal is

to discover itemsets or episode rules of the form X → Y that appears many times in a

sequence of transactions. An itemset or rule occurs in a sequence if it appears within

24

a time window set by the user. Episode mining can be used to analyze various types

of data such as web-click streams, telecommunication data, sensor readings, sequences

of events on an assembly line and network traffic data101,102.

• Periodic pattern mining 103–105 is the problem of discovering patterns in a single se-

quence of transactions. The goal of periodic pattern is not just to find patterns that

regularly appear in a sequence, but that also appear periodically. The time elapsed

or number of transactions between two occurrences of an itemset is called the period

length. A user typically has to set parameters on the maximum, minimum or average

period lengths to discover periodic patterns104. For example, in the database of Table

1, the itemset {a, c} could be considered as a periodic pattern, since it appears peri-

odically every two transactions. Applications of periodic pattern mining include stock

market analysis, market analysis and bioinformatics103.

• Sub-graph mining 106–108 is another problem with many similarities to the problem of

frequent itemset mining. The difference is that the goal is to discover frequent sub-

graphs in a database of graphs rather than frequent itemsets in transactions. The

traditional problem of sub-graph mining requires the user to set a minimum support

threshold as in FIM. Some of the key challenges in sub-graph mining is that the search

space is generally very large and that it is necessary to design strategies to check if

different generated graphs are isomorphic (if generated graphs contain the same number

of vertices connected in the same manner)106. As for frequent itemset mining, several

extensions of the problem of sub-graph mining have also been proposed, for example

to mine closed and maximal frequent sub-graphs107. Applications of sub-graph mining

are varied and include for example the analysis of chemical compounds106,107.

• Formal concept analysis (FCA)113 is a problem that consists of extracting formal con-

cepts from a table of objects (transactions) described using binary attributes (items). A

formal concept is the equivalent of a closed itemset in FIM, obtained using minsup = 0,

and annotated with the set of objects (transactions) where it appears. An interesting

aspect of FCA is that it organizes formal concepts as a lattice based on the subset

relation, which can be visualized. For example, Fig. 3 shows the lattice of formal

25

concepts extracted from the database of Table 1. FCA has been extensively studied

and there exist many variations of the FCA problem113.

Figure 3: The lattice of formal concepts for the database of Table 1

Research opportunities

Itemset mining and related pattern mining problems have been an active research topic for

more than 20 years, and there is still countless opportunities for research in this area. We

here provide a classification of the main types of research opportunities in this field:

• Novel applications. The first research opportunities is to apply existing pattern mining

algorithms in new ways in terms of application domains. Since pattern mining algo-

rithms are quite general, they can be applied in a multitude of domains. In particular,

the use of pattern mining methods in emerging research areas such as social network

analysis, the Internet of Things, sensor networks provides several novel possibilities in

terms of applications.

• Enhancing the performance of pattern mining algorithms. Since pattern mining can

be quite time-consuming, especially on dense databases, large databases, or databases

26

containing many long transactions, a lot of research is carried on developing more

efficient algorithms. This is an important problem especially for new extensions of

the pattern mining problem such as uncertain itemset mining or high-utility itemset

mining, which have been less explored. Many opportunities also lies in distributed,

GPU, multi-core or parallel algorithm development to increase speed and scalability of

the algorithms.

• Extending pattern mining to consider more complex data. Another research opportu-

nity is to develop pattern mining algorithms that can be applied on complex types of

data. As mentioned in this paper, various extensions have been proposed. But it still

remains a problem to handle more complex types of data. Some recent papers have

for example focused on mining spatial patterns114.

• Extending pattern mining to discover more complex and meaningful types of patterns.

Related to the above opportunity, another important issue to discover more complex

types of patterns. Also, another research opportunity is to work on the evaluation of

patterns using for example novel interestingness measures96, because it is also key to

ensure that the most interesting or useful patterns are found.

Open-source Software

An issue in the frequent itemset and pattern mining research community is that most re-

searchers do not release the source code of their algorithms, or even their binary files. This

has led to the following problems. First, several researchers need to re-implement algo-

rithms proposed by other researchers to compare their algorithm performance thus spending

a great amount of time re-implementing algorithms. Second, in these cases, it remains unsure

if reimplemented algorithms are as efficient as the original implementations. Besides, even

when binary files are released it has been noted in studies such as the one of Goethal115 that

results may vary greatly depending on the compiler used and the machine architecture used

for running performance comparison. Third, if algorithm implementations are not released

by researchers, fewer people may use them in real applications, as they would need to be

27

reimplemented.

The main solution to this issue is that researchers release their algorithms as open-source

implementations, ideally in a common programming language to facilitate comparison. Cur-

rently, the largest collection of open-source implementations of algorithms for pattern mining

is by far the SPMF data mining library 116 (http://www.philippe-fournier-viger.com/

spmf/). It offers more than 110 algorithms for mining patterns such as itemsets, sequential

patterns, sequential rules, periodic patterns, and association rules. It is a multi-platform

library developed in Java and released under the GPL3 license. It is designed to be easily

integrated in other Java software programs, and can be run as a standalone software using

its command-line or graphical user interface. The other main collection of open-source im-

plementation is the FIMI 2004 competition repository website (http://fimi.ua.ac.be/),

which provides about twenty C++ implementations of itemset mining algorithms published

before 2005. Datasets used for benchmarking itemset and pattern mining algorithms can be

found on the SPMF and FIMI websites.

Itemset mining algorithms are also offered as part of some general purpose open-source

data mining platform or libraries such as Weka (http://www.cs.waikato.ac.nz/ml/weka/),

Mahout (http://mahout.apache.org/) and Knime (http://www.knime.org/), implemented

in Java, and R (https://www.r-project.org/). These software offer a wide range of

data mining techniques. However, they offer a very limited set of algorithms for itemset

mining, offering mostly implementations of Apriori, FP-Growth and association rule gen-

eration. Some specialized platforms offering itemset mining algorithms are Coron (http:

//coron.loria.fr/) and LUCS-KDD (http://),developed in Java, and Illimine (http:

//illimine.cs.uiuc.edu/),developed in C++. However, the source code of Coron is not

public, Illimine provides the source code of only one of its pattern mining algorithms and

LUCS-KDD source code cannot be used for commercial purposes.

Related to the importance of sharing implementations of algorithms in the research com-

munity, another issue is that researchers in the field of pattern mining do not always compare

the performance of new algorithms with the previous best algorithms because of the lack of

public implementations or other reasons. To illustrate this problem, consider the task of sub-

graph mining. Various algorithms have been proposed for this task. Among them, the GAS-

28

TON , FFSM, SPIN algorithms have been shown to outperform GSPAN107. Furthermore,

SPIN and MARGIN were shown to outperform FFSM107. And recently, FPGraphMiner117

was shown to outperform MARGIN and FFSM. However, to our knowledge no algorithm

has been compared to GASTON, even though it is one of the first proposed algorithms for

frequent sub-graph mining. And SPIN, GASTON and FPGraphMiner have also never been

compared with each other. Moreover, can we really make the transitive inference that an

algorithm like FPGraphMiner is faster than GSPAN, because it is faster than MARGIN

and FFSM? Thus, in this type of cases, it remains uncertain, which algorithm is the most

efficient.

CONCLUSIONS

Itemset mining is an active field of research having numerous applications. This paper has

presented the problem of frequent itemset mining, discussed the main techniques for exploring

the search space of itemsets, employed by itemset mining algorithms. Then, the paper has

discussed several extensions of the basic frequent itemset mining problem to overcome some

of its limitations, for example, to handle dynamic databases, uncertain data and the use of

various constraints. The paper has also briefly discussed pattern mining problems that are

closely related to the problem of itemset mining such as sequential pattern mining, sequential

rule mining, association rule mining, periodic pattern mining and episode mining. Lastly,

the paper has discussed research opportunities and open-source implementations of pattern

mining algorithms.

Acknowledgement. This work is supported by the Youth 1000 Talent funding from

the National Science Fundation of China, and an initiating fund from the Harbin Institute

of Technology.

References

1. Aggarwal, CC. Data mining: the textbook. Heidelberg:Springer; 2015.

29

2. Han, J, Pei, J, Kamber, M. Data mining: concepts and techniques. Amsterdam:Elsevier;

2011.

3. Agrawal, R, Srikant, R. Fast algorithms for mining association rules. In: Proc. 20th

int. conf. very large data bases, VLDB 1994, Santiago de Chile, Chile, 12-15 September,

1994: 487–499).

4. Pei, J, Han, J Lakshmanan, LV. Pushing convertible constraints in frequent itemset

mining. Data Mining and Knowledge Discovery, 2004, 8(3):227-252.

5. Naulaerts, S, Meysman, P, Bittremieux, W, Vu, TN, Berghe, WV, Goethals, B, Laukens,

K. A primer to frequent itemset mining for bioinformatics. Briefings in bioinformatics,

2015, 16(2), 216–231.

6. Fernando, B, Elisa F, Tinne T. Effective use of frequent itemset mining for image clas-

sification. In: European Conference on Computer Vision. Florence, Italy, 7-13 October,

2012: 214–227.

7. Glatz, E, Mavromatidis, S, Ager, B, Dimitropoulos, X. Visualizing big network traffic

data using frequent pattern mining and hypergraphs. Computing, 2014, 96(1):27–38.

8. Brauckhoff, D, Dimitropoulos, X, Wagner, A, Salamatian, K. Anomaly extraction in

backbone networks using association rules. IEEE/ACM Transactions on Networking,

2012, 20(6):1788–1799

9. Mukherjee, A, Liu, B, Glance, N. Spotting fake reviewer groups in consumer reviews.

In: Proc. 21st international conference on World Wide Web. Lyon, France, 16-20 April,

2012: 191–200.

10. Liu, Y, Zhao, Y, Chen, L, Pei, J, Han, J. Mining frequent trajectory patterns for ac-

tivity monitoring using radio frequency tag arrays. IEEE Transactions on Parallel and

Distributed Systems, 2012, 23(11):2138–2149.

11. Duan, Y, Fu, X, Luo, B, Wang, Z, Shi, J, Du, X. Detective: Automatically identify

and analyze malware processes in forensic scenarios via DLLs. In: Proc. 2015 IEEE

30

International Conference on Communications, London, United Kingdom, 8-12 June,

2015: 5691–5696.

12. Mwamikazi, E, Fournier-Viger, P, Moghrabi, C, Baudouin, R. A Dynamic Questionnaire

to Further Reduce Questions in Learning Style Assessment. In: Proc. 10th Int. Conf.

Artificial Intelligence Applications and Innovations, Rhodes, Greece, 19-21 September,

2014: 224–235.

13. Koh, YS, Ravana, SR. Unsupervised Rare Pattern Mining: A Survey. ACM Transactions

on Knowledge Discovery from Data, 2016, 10(4): article no. 45.

14. Fournier-Viger, P, Lin, JCW, Dinh, T, Le, HB. Mining Correlated High-Utility Itemsets

using the Bond Measure. In: Proc. Intern. Conf. Hybrid Artificial Intelligence Systems.

Seville, Spain, 18-20 April, 2016:53–65).

15. Barsky, M, Kim, S, Weninger, T, Han, J. Mining flipping correlations from large datasets

with taxonomies. VLDB Endowment, 2011, 5(4):370–381.

16. Soulet, A, Raissi, C, Plantevit, M, Cremilleux, B. Mining dominant patterns in the sky.

In: Proc. 11th IEEE Int. Conf. on Data Mining, Vancouver, Canada, 11-14 December,

2011:655–664.

17. Mabroukeh NR, Ezeife CI. A taxonomy of sequential pattern mining algorithms. ACM

Computing Surveys. 2010, 43(1):3.

18. Fournier-Viger, P, Gomariz, A, Campos, M, Thomas, R. Fast Vertical Mining of Se-

quential Patterns Using Co-occurrence Information. In: Proc. 18th Pacific-Asia Conf.

Knowledge Discovery and Data Mining. Tainan, Taiwan, 13-16 May, 2014:40–52.

19. Yan, X, Han, J. 2002. gspan: Graph-based substructure pattern mining. In: Proc. 2002

Intern. Conf. Data Mining. Maebashi City, Japan, 9-12 December, 2002:721–724.

20. Liu, Y., Liao, W.K. and Choudhary, AN. A two-phase algorithm for fast discovery of

high utility itemsets. In: Pacific-Asia Conference on Knowledge Discovery and Data

Mining, Hanoi, Vietnam, 18-20 May, 2005:689–695.

31

21. Lin, CW, Hong, TP, Lu, WH. An effective tree structure for mining high utility itemsets.

Expert Systems with Applications. 2011,30;38(6):7419–24.

22. Lin, YC, Wu, CW, Tseng, VS. Mining high utility itemsets in big data. In: Proc.

Pacific-Asia Conference on Knowledge Discovery and Data Mining 2015. Ho Chi Minh

City, Vietnam, 19-22 May, 2015:649–661.

23. Liu, M, Qu,. J. Mining high utility itemsets without candidate generation. In: Proc. 21st

ACM Intern. Conf. Information and knowledge management. Maui, USA, 29 October -

2 November, 2012:55–64.

24. Fournier-Viger P, Wu CW, Zida S, Tseng VS. FHM: Faster high-utility itemset mining

using estimated utility co-occurrence pruning. In: Proc. Inter. Symp. Methodologies for

Intelligent Systems, Roskilde, Denmark, 25-27 June, 2014:83–92.

25. Zida, S., Fournier-Viger, P, Lin, JC.W, Wu, CW, Tseng, VS. EFIM: A Highly Effi-

cient Algorithm for High-Utility Itemset Mining. In: Proc. 14th Mexican Intern. Conf.

Artificial Intelligence, Cuernavaca, Mexico, 25-31 October, 2015:530–546.

26. Yun, U, Ryang, H, Ryu, KH. High utility itemset mining with techniques for reducing

overestimated utilities and pruning candidates. Expert Syst. Appl. 2014, 41(8):3861-3878.

27. Han, J, Pei, J, Ying, Y, Mao, R. Mining frequent patterns without candidate generation:

a frequent-pattern tree approach. Data Min. Knowl. Discov., 2004, 8(1):53–87.

28. Zaki, MJ. Scalable Algorithms for Association Mining. IEEE Trans. Knowl. Data Eng.,

2000, 12(3):372–390, 2000.

29. Pei, J, Han, J, Lu, H, Nishio, S, Tang, S, Yang, D,H-mine: Hyper-structure mining of

frequent patterns in large databases. In: Proc. 2001 IEEE Intern. Conf. Data Mining,

San Jose, USA, 29 November - 2 December, 2001:441–448.

30. Uno, T, Kiyomi, M, Arimura, H. LCM ver. 2: Efficient mining algorithms for fre-

quent/closed/maximal itemsets. Proc. ICDM’04 Workshop on Frequent Itemset Mining

Implementations, CEUR, 2004.

32

31. Hegland M. The apriori algorithma tutorial. Mathematics and computation in imaging

science and information processing. 2005;11:209-62.

32. Zaki, MJ, Gouda, K. Fast vertical mining using diffsets. In: Proc. 9th ACM SIGKDD

Intern. Conf. Knowledge Discovery and Data Mining, Washington DC, USA, 24 - 27

August, 2003:326-335.

33. Lucchese, C., Orlando, S., Perego, R. Fast and Memory Efficient Mining of Frequent

Closed Itemsets. IEEE Trans. Knowl. Data Eng., 2006, 18(1):21–36.

34. Chen J, Xiao K. BISC: A bitmap itemset support counting approach for efficient frequent

itemset mining. ACM Transactions on Knowledge Discovery from Data. 2010, 1;4(3):12.

35. Deng ZH, Lv SL. PrePost+: An efficient N-lists-based algorithm for mining frequent

itemsets via ChildrenParent Equivalence pruning. Expert Systems with Applications.

2015, 1;42(13):5424–3

36. Pyun G, Yun U, Ryu KH. Efficient frequent pattern mining based on linear prefix tree.

Knowledge-Based Systems. 2014, 31;55:125-39.

37. Vo, B, Le, T, Coenen, F. Hong, TP. Mining frequent itemsets using the N-list and

subsume concepts. International Journal of Machine Learning and Cybernetics. 2016,

7(2):253–265.

38. Zhang F, Zhang Y, Bakos JD. Accelerating frequent itemset mining on graphics process-

ing units. The Journal of Supercomputing. 2013, 1;66(1):94-117.

39. Schlegel B, Karnagel T, Kiefer T, Lehner W. Scalable frequent itemset mining on many-

core processors. In: Proc. 9th Intern. Workshop Data Management on New Hardware,

New York, USA, 24 June, 2013:paper 3.

40. Moens S, Aksehirli E, Goethals B. Frequent itemset mining for big data. In: 2013 IEEE

International Conference on Big Data, Santa Clara, USA, 6-9 October, 2013:111–118.

33

41. Qiu H, Gu R, Yuan C, Huang Y. Yafim: a parallel frequent itemset mining algorithm with

spark. In: Proc. 2014 IEEE International Parallel and Distributed Processing Symposium

Workshops, Phoenix, USA, 19-23 May, 2014:1664–1671.

42. Zaki, MJ, Hsiao, CJ, CHARM: An efficient algorithm for closed itemset mining. In: Proc.

12th SIAM Intern. Conf. Data Mining, Anaheim, USA, 26-28 April, 2012:457–473.

43. Pasquier N, Bastide Y, Taouil R, Lakhal L. Discovering frequent closed itemsets for

association rules. In: Proc. Intern. Conf. Database Theory, Jerusalem, Israel, 10-12

January, 1999:398–416.

44. Aliberti, G, Colantonio, A, Di Pietro, R, Mariani, R. EXPEDITE: EXPress closED

ITemset Enumeration. Expert Systems with Applications, 2015, 42(8):3933–3944.

45. Vo B, Hong TP, Le B. DBV-Miner: A Dynamic Bit-Vector approach for fast mining

frequent closed itemsets. Expert Systems with Applications. 2012, 39(8):7196–206.

46. Soulet A, Rioult F. Efficiently depth-first minimal pattern mining. In: Proc. 18th Pacific-

Asia Conf. Knowledge Discovery and Data Mining. Tainan, Taiwan, 13-16 May, 2014:28-

39.

47. Fournier-Viger P, Wu CW, Tseng VS. Novel concise representations of high utility item-

sets using generator patterns. In: Proc. Intern. Conf. International Conference on

Advanced Data Mining and Applications, Guilin, China, 19-21 December, 2014:30–43.

48. Szathmary L, Valtchev P, Napoli A, Godin R, Boc A, Makarenkov V. A fast compound

algorithm for mining generators, closed itemsets, and computing links between equiva-

lence classes. Annals of Mathematics and Artificial Intelligence. 2014, 1;70(1-2):81-105.

49. Barron, A, Rissanen, J, Yu, B. The minimum description length principle in coding and

modeling. IEEE Transactions on Information Theory. 1998, 44(6):2743-60.

50. Antonie, L, Zaiane, OR, Holte, RC. Redundancy reduction: does it help associative

classifiers? In: Proc. 31st Annual ACM Symposium on Applied Computing, Pisa, Italy,

4-8 April, 2016:867–874

34

51. Srikant, R, Vu, Q, Agrawal, R, Mining Association Rules with Item Constraints. In:

Proc. 3rd Intern. Conf. Knowledge Discovery and Data Mining, Newport Beach, USA,

14-17 August, 1997:67–73.

52. Tang L, Zhang L, Luo P, Wang M. Incorporating occupancy into frequent pattern mining

for high quality pattern recommendation. In: Proc. 21st ACM Intern. Conf. Informa-

tion and knowledge management, In: Proc. 21st ACM Intern. Conf. Information and

knowledge management. Maui, USA, 29 October - 2 November, 2012:75-84.

53. Geng L, Hamilton HJ. Interestingness measures for data mining: A survey. ACM Com-

puting Surveys. 2006, 30;38(3):9.

54. Omiecinski, E. Alternative Interest Measures for Mining Associations in Databases.

IEEE Transactions on Knowledge Discovery and Data Engineering. 2003, 15(1):57-69.

55. Xiong H, Tan PN, Kumar V. Mining strong affinity association patterns in data sets with

skewed support distribution. In: Proc. 2003 IEEE Intern. Conf. Data Mining. Melbourne,

USA, 19-22 December, 2003:387–394.

56. Pei, J, Han, J, Lakshmanan, LV. Mining frequent itemsets with convertible constraints.

In: Proc. 17th Intern. Conf. Data Engineering, Heidelberg, Germany 2-6 April, 2001:433-

442.

57. Pei, J, Han, J, Lakshmanan, LV. 2004. Pushing convertible constraints in frequent item-

set mining. Data Mining and Knowledge Discovery, 8(3):227-252.

58. Bonchi F, Lucchese C. Pushing tougher constraints in frequent pattern mining. In:

Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hanoi, Vietnam,

18-20 May, 2005:114–124).

59. Liu, B., Hsu, W., Ma, Y. Mining Association Rules with Multiple Minimum Supports.

In: Proc. ACM SIGKDD Intern. Conf. Knowledge Discovery and Data Mining, San

Diego, USA, 15-18 August, 1999:337-341.

35

60. Hu, YH, Chen, YL. Mining association rules with multiple minimum supports: a new

mining algorithm and a support tuning mechanism. Decision Support Systems, 2006,

42(1):1–24.

61. Kiran, R. U, Reddy, PK. Novel techniques to reduce search space in multiple mini-

mum supports-based frequent pattern mining algorithms. In: Proc. 14th Intern. Conf.

Extending Database Technology, Uppsala, Sweden, 21-24 March, 2011:11–20.

62. Koh, YS, Rountree, N. Finding Sporadic Rules Using Apriori-Inverse. In: Proc. 9th

Pacific-Asia Conference, PAKDD 2005, Hanoi, Vietnam, 18-20 May, 2005:97–106.

63. Szathmary, L, Napoli, A, Valtchev, P. Towards Rare Itemset Mining. In: Proc. 19th

IEEE Intern. Conf. Tools with Artificial Intelligence, Patras, Greece, 29-31 October,

2007:305–312.

64. Szathmary, L, Valtchev, P, Napoli, A, Godin, R. Efficient Vertical Mining of Minimal

Rare Itemsets. In: Proc. 9th Intern. Conf. Concept Lattices and Their Applications,

Fuengirola, Spain, 11-14 October, 2012: 269–280.

65. Koh JL, Shieh SF. An efficient approach for maintaining association rules based on

adjusting FP-tree structures. In: Proc. 9th Intern. Conf. Database Systems for Advanced

Applications, Jeju Island, Korea, 17-19 March, 2004:417–424.

66. Leung CK, Khan QI, Li Z, Hoque T, CanTree: a canonical-order tree for incremental

frequent-pattern mining. Knowledge and Information Systems. 2007, 1;11(3):287–311.

67. Lin CW, Hong TP, Lu WH. The Pre-FUFP algorithm for incremental mining. Expert

Systems with Applications. 2009, 31;36(5):9498–505.

68. Nath B, Bhattacharyya DK, Ghosh A. Incremental association rule mining: a survey. Wi-

ley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2013, 1;3(3):157–

69.

69. Chang, JH, Lee, WS. Finding recent frequent itemsets adaptively over online data

streams. In: Proc. 9th ACM SIGKDD Intern. Conf. Knowledge Discovery and Data

Mining, Washington DC, USA, 24 - 27 August, 2003:487-492

36

70. Shin, SJ, Lee, DS, Lee, WS. CP-tree: An adaptive synopsis structure for compressing

frequent itemsets over online data streams, Information Sciences, 2014, 278;10:559-576

71. Chi Y, Wang H, Philip SY, Muntz RR. Catch the moment: maintaining closed frequent

itemsets over a data stream sliding window. Knowledge and Information Systems. 2006,

10(3):265–94.

72. Calders T, Dexters N, Gillis JJ, Goethals B. Mining frequent itemsets in a stream.

Information Systems, 2014, 31;39:233–55.

73. Farzanyar Z, Kangavari M, Cercone N. Max-FISM: Mining (recently) maximal frequent

itemsets over data streams using the sliding window model. Computers and Mathematics

with Applications. 2012, 30;64(6):1706–18.

74. Kubat, M, Hafez, A, Vijay Raghavan, V, Lekkala, JR, Chen, WK. Itemset Trees for

Targeted Association Querying. IEEE Trans. Knowl. Data Eng., 2003, 15(6):1522–1534.

75. Fournier-Viger, P., Mwamikazi, E., Gueniche, T., Faghihi, U. (2013). Memory Efficient

Itemset Tree for Targeted Association Rule Mining. Proc. 9th Intern. Conf. Advanced

Data Mining and Applications, Hangzhou, China, 14-16 December, 2013:95–106.

76. Torres-Verdn C, Chiu KY, Vasudeva Murthy AS. WFIM: weighted frequent itemset

mining with a weight range and a minimum weight. In: Proc. 2005 SIAM Intern. Conf.

Data Mining, Newport Beach, USA, 21-23 April, 2005:636–640.

77. Yun, U. Efficient mining of weighted interesting patterns with a strong weight and/or

support affinity. Information Sciences, 2007, 177(17): 3477-3499.

78. Yun, U. On pushing weight constraints deeply into frequent itemset mining. Intelligent

Data Analysis, 2009, 13(2):359-383.

79. Cagliero, L, Garza, P, Infrequent weighted itemset mining using frequent pattern growth.

IEEE transactions on knowledge and data engineering, 2014, 26(4):903-915.

37

80. Fournier-Viger, P, Zida, S. FOSHU: Faster On-Shelf High Utility Itemset Mining with or

without negative unit profit. Proc. 30th Symposium on Applied Computing. Salamanca,

Spain, 13-17 April, 2015:857–864.

81. Lin, JC. W, Gan, W, Fournier-Viger, P, Hong, TP, Tseng, VS. Fast Algorithms for

Mining High-Utility Itemsets with Various Discount Strategies. Advanced Engineering

Informatics, 2016.

82. Tseng, V, Wu, C, Fournier-Viger, P, Yu, PS. Efficient Algorithms for Mining Top-K

High Utility Itemsets. IEEE Transactions on Knowledge and Data Engineering, 2016,

28(1):54–67.

83. Duong, QH., Liao, B, Fournier-Viger, P, Dam, TL. An efficient algorithm for mining

the top-k high utility itemsets, using novel threshold raising and pruning strategies.

Knowledge-Based Systems, 2016.

84. Bernecker, T, Kriegel, HP, Renz, M, Verhein, F, Zuefle, A. Probabilistic frequent itemset

mining in uncertain databases. In: Proc. 15th ACM SIGKDD Intern. Conf. Knowledge

discovery and data mining, Paris, France, June 28 - July 1, 2009:119–128.

85. Chui, CK, Kao, B, Hung, E. Mining frequent itemsets from uncertain data. In: Pacific-

Asia Conference on Knowledge Discovery and Data Mining, Nanjing, China, 22-25 May,

2007:47–58.

86. Tong, Y, Chen, L, Cheng, Y, Yu, PS. Mining frequent itemsets over uncertain databases.

VLDB Endowment, 2012, 5(11):1650–1661.

87. Leung, CKS, MacKinnon, RK. (2014, September). BLIMP: a compact tree structure

for uncertain frequent pattern mining. In: Proc. Intern. Conf. Data Warehousing and

Knowledge Discovery, Munich, Germany, 2-4 September, 2014:115–123.

88. Lin, JCW, Gan, W, Fournier-Viger, P, Hong, TP, Tseng, VS. Weighted frequent itemset

mining over uncertain databases. Applied Intelligence, 2015, 44(1):232–250.

38

89. Chen, CH, Li, AF, Lee, YC, Actionable high-coherent-utility fuzzy itemset mining. Soft

Computing, 2014, 18(12):2413–2424.

90. Hong TP, Kuo CS, Wang SL. A fuzzy AprioriTid mining algorithm with reduced com-

putational time. Applied Soft Computing. 2004, 31;5(1):1–10.

91. Chen CL, Tseng FS, Liang T. Mining fuzzy frequent itemsets for hierarchical document

clustering. Information processing and management. 201, 31;46(2):193–211.

92. Lin, JCW, Tin, L, Fournier-Viger, P, Hong, TP. A fast Algorithm for mining fuzzy

frequent itemsets. Journal of Intelligent and Fuzzy Systems, 2015, 9(6):2373–2379.

93. Dong G, Li J. Efficient mining of emerging patterns: Discovering trends and differences.

In: Proc. ACM SIGKDD Intern. Conf. Knowledge Discovery and Data Mining, San

Diego, USA, 15-18 August, 1999:43-52.

94. Garca-Borroto M, Martinez-Trinidad JF, Carrasco-Ochoa, JA. A survey of emerging

patterns for supervised classification. Artificial Intelligence Review. 2014, 42(4):705-21.

95. Fournier-Viger, P, Wu, CW, Tseng, VS Mining Top-K Association Rules. In: Proc. 25th

Canadian Conf. on Artificial Intelligence, Toronto, Canada, 28-30 May, 2012: 61-73.

96. Lenca P, Vaillant B, Meyer P, Lallich S. Association rule interestingness measures: Ex-

perimental and theoretical studies. In: Proc. of the Quality Measures in Data Mining

Workshop. 2007:51-76.

97. Mooney CH, Roddick JF. Sequential pattern mining–approaches and algorithms. ACM

Computing Surveys. 2013, 45(2):1–19.

98. Ayres, J, Flannick, J, Gehrke, J, Yiu, T. Sequential pattern mining using a bitmap

representation. In: Proc. 8th ACM SIGKDD Intern. conf. knowledge discovery and data

mining, Edmonton, Alberta, 23-26 July, 2002: 429–435.

99. Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu MC. Mining

sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions on

knowledge and data engineering. 2004, 16(11):1424–40.

39

100. Gouda K, Hassaan M, Zaki MJ. Prism: An effective approach for frequent sequence

mining via prime-block encoding. Journal of Computer and System Sciences. 2010,

28;76(1):88–102.

101. Mannila H, Toivonen H, Verkamo AI. Discovery of frequent episodes in event sequences.

Data mining and knowledge discovery. 1997, 1;1(3):259-89.

102. Zimmermann A. Understanding episode mining techniques: Benchmarking on diverse,

realistic, artificial data. Intelligent Data Analysis. 2014, 1;18(5):761-91.

103. Fournier-Viger, P, Lin, CW, Duong, QH., Dam, TL. PHM: Mining Periodic High-Utility

Itemsets. In: Proc. 16th Industrial Conference on Data Mining. New York, USA, 13-17

July, 2016:64–79.

104. Tanbeer SK, Ahmed CF, Jeong BS, Lee YK. Discovering periodic-frequent patterns in

transactional databases. In: Pacific-Asia Conference on Knowledge Discovery and Data

Mining, Bangkok, Thailand, 27-30 April, 2009:242–253.

105. Kiran, U, Venkatesh, JN, Fournier-Viger, P, Toyoda, M, Reddy, PK, Kitsuregawa, M.

Discovering Periodic Patterns in Non-Uniform Temporal Databases. Proc. 21th Pacific-

Asia Conference on Knowledge Discovery and Data Mining, Jeju, Korea, 23-27 May,

2017.

106. Yan, X, Han, J. gSpan: Graph-Based Substructure Pattern Mining. In: Proc. 2002

IEEE Intern. Conf. Data Mining, Maebashi City, Japan, 9-12 December, 2002:721-724

107. Jiang C, Coenen F, Zito M. A survey of frequent subgraph mining algorithms. The

Knowledge Engineering Review. 2013, 28(1):75–105.

108. Bhuiyan MA, Al Hasan M. An iterative MapReduce based frequent subgraph mining

algorithm. IEEE Transactions on Knowledge and Data Engineering. 2015, 1;27(3):608-

20.

109. Fournier-Viger, P, Wu, CW, Tseng, VS, Cao, L, Nkambou, R, Mining Partially-Ordered

Sequential Rules Common to Multiple Sequences. IEEE Transactions on Knowledge and

Data Engineering, 2015, 27(8):2203-2216.

40

110. Fournier-Viger P, Gueniche T, Zida S, Tseng VS. ERMiner: sequential rule mining using

equivalence classes. In: Proc. 13th Intern. Symp. Intelligent Data Analysis, Leuven,

Belgium, October 30 - November 1, 2014:108-119.

111. Fabregue, M, Braud, A, Bringay, S, Le Ber, F, Teisseire, M, Mining closed partially

ordered patterns, a new optimized algorithm. Knowledge-Based Systems, 2015, 79:68-79.

112. Pei, J, Wang, H, Liu, J, Wang, K, Wang, J, Yu, PS. Discovering frequent closed par-

tial orders from strings. IEEE Transactions on Knowledge and Data Engineering, 2006,

18(11):1467-1481.

113. Poelmans, J, Kuznetsov, SE, Ignatov, DI, Dedene, G, Formal Concept Analysis in

knowledge processing: A survey on models and techniques. Expert Systems with Appli-

cations, 2013, 40(16):6601-6623

114. Sengstock, C, Gertz, M. Spatial Itemset Mining: A Framework to Explore Itemsets in

Geographic Space. In: Proc. East European Conference on Advances in Databases and

Information Systems, Genoa, Italy, 1-4 September, 2013:148-161

115. Goethals B. Survey on frequent pattern mining. Univ. of Helsinki. 2003.

116. Fournier-Viger, P, Gomariz, A, Gueniche, T, Soltani, A, Wu, CW, Tseng, VS. SPMF: a

Java Open-Source Pattern Mining Library, Journal of Machine Learning Research, 2014,

15:3389–3393.

117. Vijayalakshmi, R, Nadarajan, R, Roddick, JF, Thilaga, M, Nirmal,a P. FP-

GraphMiner-A Fast Frequent Pattern Mining Algorithm for Network Graphs. J. Graph

Algorithms Appl.. 2011, 15(6):753-76.

41

