
A Survey of High Utility Itemset Mining

Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

Abstract High utility pattern mining is an emerging data science task, which
consists of discovering patterns having a high importance in databases. The utility
of a pattern can be measured in terms of various objective criterias such as its profit,
frequency, and weight. Among the various kinds of high utility patterns that can
be discovered in databases, high utility itemsets are the most studied. A high utility
itemset is a set of values that appears in a database and has a high importance to
the user, as measured by a utility function. High utility itemset mining generalizes
the problem of frequent itemset mining by considering item quantities and weights.
A popular application of high utility itemset mining is to discover all sets of items
purchased together by customers that yield a high profit. This chapter provides an
introduction to high utility itemset mining, reviews the state-of-the-art algorithms,
their extensions, applications, and discusses research opportunities. This chapter is
aimed both at those who are new to the field of high utility itemset mining, as well
as researchers working in the field.

1 Introduction

The goal of data mining is to extract patterns or train models from databases to
understand the past or predict the future. Various types of data mining algorithms

Philippe Fournier-Viger
Harbin Institute of Technology (Shenzhen), Shenzhen, China, e-mail: philfv8@yahoo.com

Jerry Chun-Wei Lin
Department of Computing, Mathematics, and Physics, Western Norway University of Applied
Sciences (HVL), Bergen, Norway e-mail: jerrylin@ieee.org

Tin Truong Chi
University of Dalat, Dalat, Vietnam, e-mail: tintc@dlu.edu.vn

Roger Nkambou
University of Quebec in Montreal, e-mail: nkambou.roger@uqam.ca

1

philfv8@yahoo.com
jerrylin@ieee.org
tintc@dlu.edu.vn
nkambou.roger@uqam.ca
phil
Machine à écrire
Fournier-Viger., P., Lin, J. C.-W., Truong, T., Nkambou, R. (2019). A survey of high utility itemset mining. In: Fournier-Viger et al. (eds). High-Utility Pattern Mining: Theory, Algorithms and Applications, Springer (to appear), p. 1-46.

This is the draft of the chapter. Final version on SpringerLink.

phil
Machine à écrire

2 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

have been proposed to analyze data [1, 38]. Several algorithms produce models that
operates as black boxes. For example, several types of neural networks are designed
to perform predictions very accurately but cannot be easily interpreted by humans.
To extract knowledge from data that can be understood by humans, pattern mining
algorithms are designed [27, 28]. The goal is to discover patterns in data that are
interesting, useful, and/or unexpected. An advantage of pattern mining over several
other data mining approaches is that discovering patterns is a type of unsupervised
learning as it does not require labeled data. Patterns can be directly extracted from
raw data, and then be used to understand data and support decision-making. Pattern
mining algorithms have been designed to extract various types of patterns, each
providing different information to the user, and for extracting patterns from different
types of data. Popular types of patterns are sequential patterns [27], itemsets [28],
clusters, trends, outliers, and graph structures [38].

Research on pattern mining algorithms has started in the 1990s with algorithms
to discover frequent patterns in databases [2]. The first algorithm for frequent pattern
mining is Apriori [2]. It is designed to discover frequent itemsets in customer transac-
tion databases. A transaction database is a set of records (transactions) indicating the
items purchased by customers at different times. A frequent itemset is a group of val-
ues (items) that is frequently purchased by customers (appears in many transactions)
of a transaction database. For example, a frequent itemset in a database may be that
many customers buy the item noodles with the item spicy sauce. Such patterns are
easily understandable by humans and can be used to support decision-making. For
instance, the pattern {noodles, spicy sauce} can be used to take marketing decisions
such as co-promoting noodles with spicy sauce. The discovery of frequent itemsets
is a well-studied data mining task, and has applications in numerous domains. It can
be viewed as the general task of analyzing a database to find co-occurring values
(items) in a set of database records (transactions) [10, 16, 20, 37, 61, 64, 65, 66].

Although, frequent pattern mining is useful, it relies on the assumption that
frequent patterns are interesting. But this assumption does not hold for numerous
applications. For example, in a transaction database, the pattern {milk, bread} may
be highly frequent but may be uninteresting as it represents a purchase behavior that
is common, and may yield a low profit. On the other hand, several patterns such as
{caviar, champagne} may not be frequent but may yield a higher profit. Hence, to
find interesting patterns in data, other aspects can be considered such as the profit or
utility.

To address this limitation of frequent itemset mining, an emerging research area
is the discovery of high utility patterns in databases [31, 52, 56, 58, 59, 83, 87, 94].
The goal of utility mining is to discover patterns that have a high utility (a high
importance to the user), where the utility of a pattern is expressed in terms of a
utility function. A utility function can be defined in terms of criteria such as the
profit generated by the sale of an item or the time spent on webpages. Various types
of high utility patterns have been studied. This chapter surveys research on the most
popular type, which is high utility itemsets [83]. Mining high utility itemsets can be
seen as a generalization of the problem of frequent itemset mining where the input is
a transaction database where each item has a weight representing its importance, and

A Survey of High Utility Itemset Mining 3

where items can have non binary quantities in transactions. This general problem
formulation allows to model various tasks such as discovering all itemsets (sets of
items) that yield a high profit in a transaction database, finding sets of webpages
where users spend a large amount of time, or finding all frequent patterns as in
traditional frequent pattern mining. High utility itemset mining is a very active
research area. This chapter provides a comprehensive survey of the field that is both
an introduction and a guide to recent advances and research opportunities.

The rest of this chapter is organized as follows. Section 2 introduces the problem
of high utility itemset mining, its key properties, and how it generalizes frequent
itemset mining. Section 3 surveys popular techniques for efficiently discovering
high utility itemsets in databases. Section 4 presents the main extensions of high
utility itemset mining. Section 5 discusses research opportunities. Section 6 present
open-source implementations. Finally, section 7 draws a conclusion.

2 Problem Definition

This section first introduces the problem of frequent itemset mining [2], and then
explains how it is generalized as high utility itemset mining [31, 52, 56, 58, 59,
83, 87, 94]. Then, key properties of the problem of high utility itemset mining are
presented and contrasted with those of frequent itemset mining.

2.1 Frequent Itemset Mining

The problem of frequent itemset mining consists of extracting patterns from a trans-
action database. In a transaction database, each record (called transaction) is a
set of items (symbols). Formally, a transaction database D is defined as follows.
Let there be the set I of all items (symbols) I = {i1, i2, . . . , im} that occur in the
database. A transaction database D is a set of records, called transactions, denoted
as D = {T0,T1, . . . ,Tn}, where each transaction Tq is a set of items (i.e. Tq ⊆ I),
and has a unique identifier q called its TID (Transaction IDentifier). For example,
consider the customer transaction database shown in Table 1. The database in Table
3 contains five transactions denoted as T0,T1, T3 and T4. The transaction T2 indicates
that the items a, c and d were purchased together by a customer in that transaction.

The goal of frequent itemset mining is to discover itemsets (sets of items) that
have a high support (that appear frequently). Formally, an itemset X is a finite set
of items such that X ⊆ I. Let the notation |X | denote the set cardinality or, in other
words, the number of items in an itemset X . An itemset X is said to be of length k
or a k-itemset if it contains k items (|X | = k). For instance, {a, b, c} is a 3-itemset,
and {a, b} is a 2-itemset. The support measure is defined as follows.

4 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

Table 1: A transaction database

TID Transaction
T0 a, b, c, d, e
T1 b, c, d, e
T2 a, c, d
T3 a, c, e
T4 b, c, e

Definition 1 (Support measure). The support (frequency) of an itemset X in a
transaction database D is denoted as sup(X) and defined as sup(X) = |{T |X ⊆
T ∧ T ∈ D}|, that is the number of transactions containing X .

For example, the support of the itemset {a, c} in the database of Table 3 is 3, since
this itemset appears in three transactions (T0,T2 andT3). This definition of the support
measure is called relative support. Another equivalent definition is to express the
support as a percentage of the total number of transactions (called absolute support).
For example, the absolute support of {a,c} is 60% since it appears in 3 out of 5
transactions. The problem of frequent itemset mining is defined as follows:

Definition 2 (Frequent itemset). Let there be a threshold minsup > 0, defined by
the user. An itemset X is a frequent itemset if its support sup(X) is no less than that
minsup threshold (i.e. sup(X) ≥ minsup). Otherwise, X is an infrequent itemset.

Definition 3 (Problem definition). The problem of frequent itemset mining is to
discover all frequent itemsets in a transaction database D, given theminsup threshold
set by the user.

For example, consider the database of Table 3 and minsup = 3. There are 11
frequent itemsets, listed in Table 2.

Table 2: The frequent itemsets for minsup = 3

Itemset Support Itemset Support Itemset Support
{a} 3 {e} 4 {b, e} 3
{b} 3 {a, c } 3 {c, e} 4
{c } 5 {b, c } 3 {b, c, e} 3
{d} 3 {c, d} 3

The problem of frequent itemset mining has been studied for more than two
decades. Numerous algorithms have been proposed to discover frequent patterns
efficiently, including Apriori [2], FP-Growth [39], Eclat [91], LCM [81] and H-
Mine [69]. Although frequent itemset mining has many applciations, a strong as-
sumption of frequent itemset mining is that frequent patterns are useful or interesting
to the user, which is not always true. To address this important limitation of tradi-
tional frequent pattern mining, it has been generalized as high utility itemset mining,
where items are annotated with numerical values and patterns are selected based on
a user-defined utility function.

A Survey of High Utility Itemset Mining 5

2.2 High Utility Itemset Mining

The task of high utility itemset mining [31, 52, 56, 58, 59, 87, 94] consists of
discovering patterns in a generalized type of transaction database called quantitative
transaction database, where additional information is provided, that is the quantities
of items in transactions, and weights indicating the relative importance of each item
to the user.

Formally, a quantitative transaction database D is defined as follows. Let there be
the set I of all items I = {i1, i2, . . . im}. A quantitative transaction database D is a
set of transactions, denoted as D = {T0,T1, . . . ,Tn}, where each transaction Tq is a
set of items (i.e. Tq ⊆ I), and has a unique identifier q called its TID (Transaction
IDentifier). Each item i ∈ I is associated with a positive number p(i), called its
external utility. The external utility of an item is a positive number representing its
relative importance to the user. Furthermore, every item i appearing in a transaction
Tc has a positive number q(i,Tc), called its internal utility, which represents the
quantity of i in the transaction Tc .

To illustrate these definitions, consider an example customer transaction database
depicted in Table 3, whichwill be used as running example. In this example, the set of
items is I = {a, b, c, d, e}. It can be considered as representing different products sold
in a retail store such as apple, bread cereal, duck and egg. The database in Table
3 contains five transactions (T0,T1, . . .T4). The transaction T3 indicates that items a,
c, and e were bought with purchase quantities (internal utilities) of respectively 2, 6,
and 2. Table 4 provides the external utilities of the items, which represents their unit
profits. Assume that the dollar ($) is used as currency. The sale of a unit of items a,
b, c, d, and e yields a profit of 5$, 2$, 1$, 2$ and 3$, respectively.

Table 3: A quantitative transaction database

TID Transaction
T0 (a, 1), (b, 5), (c, 1), (d, 3), (e, 1)
T1 (b, 4), (c, 3), (d, 3), (e, 1)
T2 (a, 1), (c, 1), (d, 1)
T3 (a, 2), (c, 6), (e, 2)
T4 (b, 2), (c, 2), (e, 1)

Table 4: External utility values

Item External utility
a 5
b 2
c 1
d 2
e 3

6 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

The goal of high utility itemset mining is to discover itemsets (sets of items) that
appear in a quantitative database and have a high utility (e.g. yield a high profit). The
utility of an itemset is a measure of its importance in the database, which is computed
using a utility function. The utility measure is generally defined by the following
definition, although alternative measures have been proposed [83] (which will be
reviewed in Section 4). In the running example, the utility measure is interpreted as
the amount of profit generated by each set of items.

Definition 4 (Utility measure). The utility of an item i in a transactionTc is denoted
as u(i,Tc) and defined as p(i)×q(i,Tc). In the context of analyzing customer transac-
tions, it represents the profit generated by the sale of the item i in the transaction Tc .
The utility of an itemset X in a transaction Tc is denoted as u(X,Tc) and defined as
u(X,Tc) =

∑
i∈X u(i,Tc) if X ⊆ Tc . Otherwise u(X,Tc) = 0. The utility of an itemset

X in a database D is denoted as u(X) and defined as u(X) =
∑

Tc ∈g(X) u(X,Tc), where
g(X) is the set of transactions containing X . It represents the profit generated by the
sale of the itemset X in the database.

For example, the utility of item a in transaction T2 is u(a,T2) = 5 × 2 = 10. The
utility of the itemset {a, c} inT2 is u({a, c},T2) = u(a,T2)+u(c,T2) = 5×2+1×6 = 16.
The utility of the itemset {a, c} in the database is u({a, c}) = u(a)+u(c) = u(a,T0)+
u(a,T2)+ u(a,T3)+ u(c,T0)+ u(c,T2)+ u(c,T3) = 5+ 5+ 10+ 1+ 1+ 6 = 28. Thus,
the utility of {a, c} in the database can be interpreted as the total amount of profit
generated by items a and c when they are purchased together. The problem of high
utility itemset mining is defined as follows:

Definition 5 (High-utility itemset).An itemset X is a high-utility itemset if its utility
u(X) is no less than a user-specified minimum utility threshold minutil set by the
user (i.e. u(X) ≥ minutil). Otherwise, X is a low-utility itemset.

Definition 6 (Problem definition). The problem of high-utility itemset mining is to
discover all high-utility itemsets, given a minutil threshold set by the user [83].

Note that in some studies, the utility of an itemset is expressed as a percentage
of the total utility in the database. Discovering patterns using this definition called
absolute utility [79], is equivalent to using the above definition, and results in finding
the same set of patterns.

High utility itemset mining has numerous applications. For the application of
market basket analysis, the problem of high-utility itemset mining can be interpreted
as finding all sets of items that have generated a profit greater than or equal tominutil.
For example, for the running example, if minutil = 25, the set of HUIs is shown
in Table 5. Several algorithms have been proposed to discover high utility itemsets
(reviewed in the next section).

It is interesting to note that because the problem of high utility itemset mining
is more general than the problem of frequent itemset mining, any algorithm for
discovering high utility itemsets can also be used to discover frequent itemsets in a
transaction database. To do that, the following steps can be applied:

A Survey of High Utility Itemset Mining 7

Table 5: The high utility itemsets for minutil = 25

Itemset Utility Itemset Utility Itemset Utility
{a, c } 28 {b, c, d} 34 {b, d, e} 36
{a, c, e} 31 {b, c, d, e} 40 {b, e} 31

{a, b, c, d, e} 25 {b, c, e} 37 {c, e} 27
{b, c } 28 {b, d} 30

1. The transaction database is converted to a quantitative transaction database. For
each item i ∈ I, the external utility value of i is set to 1, that is p(i) = 1 (to indicate
that all items are equally important). Moreover, for each item i and transaction
Tc , if i ∈ Tc , set q(i,Tc) = 1. Otherwise, set q(i,Tc) = 0.

2. Then a high utility mining algorithm is applied on the resulting quantitative
transaction database with minutil set to minsup, to obtain the frequent itemsets.

For example, the database of Table 1 can be transformed in a quantitative database.
The result is the transaction database of Tables 6 and 7. Then, frequent itemsets
can be mined from this database using a high utility itemset mining algorithm.
However, although a high utility itemset mining algorithm can be used to mine
frequent itemsets, it may be preferable to use frequent itemset mining algorithms
when performance is important as these latter are optimized for this task.

Table 7: External utility values for the
database of Table 6

TID Transaction
T0 (a, 1), (b, 1), (c, 1), (d, 1), (e, 1)
T1 (b, 1), (c, 1), (d, 1), (e, 1)
T2 (a, 1), (c, 1), (d, 1)
T3 (a, 1), (c, 1), (e, 1)
T4 (b, 1), (c, 1), (e, 1)

Item External utility
a 1
b 1
c 1
d 1
e 1

2.3 Key Properties of the Problem of High Utility Itemset Mining

For a given quantative database and minimum utility threshold, the problem of high
utility itemset mining always has a single solution. It is to enumerate all patterns that
have a utility greater than or equal to the user-specified minimum utility threshold.

The problem of high utility itemset mining is difficult for two main reasons. The
first reason is that the number of itemsets to be considered can be very large to find
those that have a high utility. Generally, if a database contains m distinct items there
are 2m − 1 possible itemsets (excluding the empty set). For example, if I = {a, b, c},
the possible itemsets are {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, and {a, b, c}. Thus, there

8 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

are 23 − 1 = 7 itemsets, which can be formed with I = {a, b, c}. A naive approach
to solve the problem of high utility itemset mining is to count the utilities of all
possible itemsets by scanning the database, to then keep the high utility itemsets.
Although this approach produces the correct result, it is inefficient. The reason is
that the number of possible itemsets can be very large. For example, if a retail store
has 10,000 items on its shelves (m = 10, 000), the utilities of 210,000 − 1 possible
itemsets should be calculated, which is unmanageable using the naive approach. It is
to be noted that the problem of high utility itemset mining can be very difficult even
for small databases. For example, a database containing a single transaction of 100
items can produce 2100 − 1 possible itemsets. Thus, the size of the search space (the
number of possible itemsets) can be very large even if there are few transactions in
a database. In fact, the size of the search space does not only depend on the size of
the database, but also on how similar the transactions are in the database, how large
the utility values are, and also on how low the minutil threshold is set by the user.

A second reason why the problem of high utility itemset mining is difficult is
that high utility itemsets are often scattered in the search space. Thus, many itemsets
must be considered by an algorithm before it can find the actual high utility itemsets.
To illustrate this, Fig. 1 provides a visual representation of the search space for
the running example, as a Hasse diagram. A Hasse diagram is a graph where each
possible itemset is represented as a node, and an arrow is drawn from an itemset
X to another itemset Y if and only if X ⊆ Y and |X | + 1 = |Y |. In Figure 1, high
utility itemsets are depicted using light gray nodes, while low utility itemsets are
represented using white nodes. The utility value of each itemset is also indicated.
An important observation that can be made from that figure is that the utility of an
itemset can be greater, higher or equal, to the utility of any of its supersets/subsets.
For example, the utility of the itemset {b, c} is 28, while the utility of its supersets
{b, c, d} and {a, b, c, d, e} are 34 and 25, respectively. Formally, it is thus said that
the utility measure is neither monotone nor anti-monotone.

Property 1 (The utility measure is neither monotone nor anti-monotone). Let there
be two itemsets X and Y such that X ⊂ Y . The relationship between the utilities of
X and Y is either u(X) < u(Y), u(X) > u(Y), or u(X) = u(Y) [83].

Because of this property, the high utility itemsets appear scattered in the search
space, as it can be observed in Fig. 1. This is the main reason why the problem of
high utility itemset mining is more difficult than the problem of frequent itemset
mining [2]. In frequent itemset mining, the support measure has the nice property of
being monotone [2], that is, the support of an itemset is always greater than or equal
to the frequency of any of its supsersets.

Property 2 (The support measure is monotone). Let there be two itemsets X and Y
such that X ⊂ Y . It follows that sup(X) ≥ sup(Y) [2].

For example, in the database of Table 1, the support of {b, c} is 3, while the
support of its supersets {b, c, d} and {a, b, c, d, e} are 2 and 1, respectively. The
monotonicity of the support measure makes it easy to find frequent patterns as it

A Survey of High Utility Itemset Mining 9

guarantees that all supersets of an infrequent itemset are also infrequent [2]. Thus, a
frequent itemset mining algorithm can discard all supersets of an infrequent itemset
from the search space. For example, if an algorithm finds that the itemset {a, d} is
infrequent, it can directly eliminate all supersets of {a, d} from further exploration,
thus greatly reducing the search space. The search space for the example database of
Table 1 is illustrated in Fig. 2. The anti-monotonicity of the support can be clearly
observed in this picture as a line is drawn that clearly separates frequent itemsets
from infrequent itemsets. Property 2 is also called the downward-closure property,
anti-monotonicity-property orApriori-property [2]. Although it holds for the support
measure, it does not hold for the utility measure used in high utility itemset mining.
As a result, in Fig. 1, it is not posssible to draw a clear line to separate low utility
itemsets from high utility itemsets.

Fig. 1: The search space of high utility itemset mining for the running example and
minutil = 25

Due to the large search space in high utility itemset mining, it is thus important to
design fast algorithms that can avoid considering all possible itemsets in the search
space and that process each itemset in the search space as efficiently as possible, while
still finding all high utility itemsets. Moreover, because the utility measure is not
monotone nor anti-monotone, efficient strategies for reducing the search space used
in frequent itemset mining cannot be directly used to solve the problem of high utility
itemset mining. The next section explains the key ideas used by the state-of-the-art
high utility itemset mining algorithms to solve the problem efficiently.

3 Algorithms

Several high utility itemset mining algorithms have been proposed such as UMin-
ing [82], Two-Phase [59], IHUP [5], UP-Growth [79], HUP-Growth [52], MU-

10 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

Fig. 2: The search space of frequent itemset mining for the database of Table 1 and
minsup = 3

Growth [87], HUI-Miner [58], FHM [31], ULB-Miner [17], HUI-Miner* [71] and
EFIM [94]. All of these algorithms have the same input and the same output. The
differences between these algorithms lies in the data structures and strategies that
are employed for searching high utility itemsets. More specifically, algorithms differ
in (1) whether they use a depth-first or breadth-first search, (2) the type of database
representation that they use internally or externally, (3) how they generate or deter-
mine the next itemsets to be explored in the search space, and (4) how they compute
the utility of itemsets to determine if they satisfy the minimum utility constraint.
These design choices influence the performance of these algorithms in terms of
execution time, memory usage and scalability, and also how easily these algorithms
can be implemented and extended for other data mining tasks. Generally, all high
utility itemset mining algorithms are inspired by classical frequent itemset mining
algorithms, although they also introduce novel ideas to cope with the fact that the
utility measure is neither monotone nor anti-monotone.

Early algorithms for the problem of high utility itemset mining were incomplete
algorithms that could not find he complete set of high utility itemsets due to the use
of heuristic strategies to reduce the search space. For example, this is the case of
the UMining and UMining_H algorithms [82]. In the rest of this section, complete
algorithms are reviewed, which guarantees to find all high utility itemsets. It is also
interesting to note that the term high utility itemset mining has been first used in
2003 [11], although the problem definition used by most researchers nowadays, and
used in this chapter, has been proposed in 2005 [83].

A Survey of High Utility Itemset Mining 11

3.1 Two Phase Algorithms

The first complete algorithms to find high utility itemsets perform two phases, and
are thus said to be two phase algorithms. This includes algorithms such as Two-
Phase [59], IHUP [5], UP-Growth [79], HUP-Growth [52], and MU-Growth [87].
The breakthrough idea that has inspired all these algorithms was introduced in
Two-Phase [59]. It is that it is possible to define a monotone measure that is an
upper-bound on the utility measure, and to use that measure to safely reduce the
search space without missing any high utility itemsets. The measure proposed in
the Two-Phase algorithm is the TWU (Transaction Weighted Utilization) measure,
which is defined as follows:

Definition 7 (The TWU measure). The transaction utility (TU) of a transaction Tc

is the sum of the utilities of all the items in Tc . i.e. TU(Tc) =
∑

x∈Tc u(x,Tc). The
transaction-weighted utilization (TWU) of an itemset X is defined as the sum of the
transaction utilities of transactions containing X , i.e. TWU(X) =

∑
Tc ∈g(X) TU(Tc).

For instance, the transaction utilities ofT0,T1,T2,T3 andT4 are respectively 25, 20,
8, 22 and 9. The TWU of single items a, b, c, d, e are respectively 55, 54, 84, 53 and
76. The TWU of the itemset {c, d} is TWU({c, d}) = TU(T0) + TU(T1) + TU(T2) =
25 + 20 + 8 = 53. The TWU measure is said to be an upper-bound on the utility
measure that is monotone. This idea is formalized as the next property.

Property 3 (The TWU is a monotone upper-bound on the utility measure). Let there
be an itemset X . The TWU of X is no less than its utility (TWU(X) ≥ u(X)).
Moreover, the TWU of X is no less than the utility of its supersets (TWU(X) ≥
u(Y)∀Y ⊃ X). The proof is provided in [59]. Intuitively, since the TWU of X is the
sum of the utility of transactions where X appears, its TWUmust be greater or equal
to the utility of X and any of its supersets.

The TWU measure is interesting because it can be used to reduce the search
space. For this purpose, the following property was proposed.

Property 4 (Pruning the search space using the TWU).For any itemset X , ifTWU(X)
< minutil, then X is a low-utility itemset as well as all its supersets. This directly
follows from Property 3.

For example, the utility of the itemset {a, b, c, d} is 20, and TWU({a, b, c, d}) =
25. Thus, by the Property 4, it is known that any supersets of {a, b, c, d} cannot have
a TWU and a utility greater than 25. As a result, if the user sets the minutil threshold
to a value greater than 25, all supsersets of {a, b, c, d} can be eliminated from the
search space as it is known by Property 4 that their utilities cannot be greater than
25.

Algorithms such as IHUP [5], PB [47], Two-Phase [59], UP-Growth [79], HUP-
Growth [52] and MU-Growth [87] utilize Property 4 as main property to prune the
search space. They operate in two phases:

12 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

1. In the first phase, these algorithms calculate the TWU of itemsets in the search
space. For an itemset X , if TWU(X) < X , then X and its supersets cannot be
high utility itemsets. Thus, they can be eliminated from the search space and their
TWU do not need to be calculated. Otherwise, X and its supersets may be high
utility itemsets. Thus, X is kept in memory as a candidate high utility itemset and
its supersets may be explored.

2. In the second phase, the exact utility of each candidate high utility itemset X
found in phase 1 is calculated by scanning the database. If u(X) ≥ minutil, then
X is output since it is a high utility itemset.

This two phase process ensures that only low utility itemsets are pruned from
the search space. Thus, two phase algorithms can find all high utility itemsets
while reducing the search space to improve their performance. A representative two
phase algorithm is Two-Phase [59]. It is described next, and then its limitations are
discussed.

3.1.1 The Two-Phase Algorithm

The Two-Phase algorithm generalizes the Apriori algorithm, which was proposed for
frequent itemset mining [2]. Two-Phase explores the search space of itemsets using
a breadth-first search. A breadth-first search algorithm first considers single items
(1-itemsets). In the running example, those are {a}, {b}, {c}, {d} and {e}. Then,
Two-Phase generates 2-itemsets such as {a, b}, {a, c}, {a, d}, and then 3-itemsets,
and so on, until it generates the largest itemset {a, b, c, d, e} containing all items.
Two-Phase [59] takes a quantitative transaction database and the minutil threshold
as input. Two-Phase uses a standard database representation, as shown in Tables
3, also called a horizontal database. The pseudocode of Two-Phase is given in
Algorithm 1. In phase 1, Two-Phase scans the database to calculate the TWU of
each 1-itemset (line 1). Then, Two-Phase uses this information to identify the set of
all candidate high-utility items, denoted as P1 (line 2). An itemset X is said to be
a candidate high utility itemset if TWU(X) ≥ minutil. Then, Two-Phase performs
a breadth-first search to find larger candidate high utility itemsets (line 4 to 10).
During the search, Two-Phase uses the candidate high utility itemsets of a given
length k − 1 (denoted as Pk−1) to generate itemsets of length k (denoted as Pk).
This is done by combining pairs of candidate high utility itemsets of length k that
share all but one item (line 5). For example, if the candidate high utility 1-itemsets
are {a}, {b}, {c} and {e}, Two-Phase combine pairs of these itemsets to obtain the
following 2-itemsets: {a, b}, {a, c}, {a, e}, {b, c}, {b, e}, and {c, e}. After generating
itemsets of length k, Two-Phase checks if the (k − 1)-subsets of each itemset are
candidate high utility itemsets. If an itemset X has a (k − 1)-subset that is not a
candidate high utility itemset, X cannot be a high utility itemset (it would violate
Property 4) and it is thus removed from the set of k-itemsets. Then, Two-Phase scans
the database to calculate the TWU of all remaining itemsets in Pk (line 7). Each
itemset having a TWU not less than minutil is added to the set Pk of candidate high
utility k-itemsets (line 8). This process is repeated until no candidate high utility

A Survey of High Utility Itemset Mining 13

itemsets can be generated. Then, the second phase is performed (line 12 to 13).
Two-Phase scans the database to calculate the exact utility of each candidate high
utility itemsets. The set of all candidate high utility itemsets that have a utility not
less than minutil are the high utility itemsets. They are returned to the user (line 13).

Algorithm 1: The Two-Phase algorithm
input : D: a horizontal transaction database, minutil: a user-specified threshold
output : the set of high utility itemsets

1 Scan the database to calculate the TWU of all items in I ; // PHASE 1
2 P1 = {i |i ∈ I ∧ sup({i }) ≥ minsup} ; // P1 : candidate high utility

1-itemsets
3 k = 2;
4 while Pk , ∅ do
5 Pk = itemsetGeneration (Pk−1) ; // Pk : k-itemsets
6 Remove each candidate X ∈ Pk that contains a (k − 1)-itemset that is not in Pk−1;
7 Scan the database to calculate the TWU of each candidate X ∈ Pk ;
8 Pk = {X |X ∈ Pk ∧TWU(X) ≥ minutil } ; // Pk : candidate high

utility k-itemsets
9 k = k + 1;

10 end
11 P =

⋃
k=1. . .k Pk ; // P : all candidate high utility itemsets

12 Scan the database to calculate the utility of each itemset in P ; // PHASE 2
13 return each itemset X ∈ P such that u(X) ≥ minutil;

Two-Phase is an important algorithm, since it is one of the first complete high
utility itemset mining algorithm, and it has introduced the TWU upper-bound, used
by most high utility itemset mining algorithms thereafter. However, Two-Phase suf-
fers from important limitations with respect to performance. The first one is that
because Two-Phase generates itemsets by combining itemsets without looking at
the database, it can generate some patterns that do not even appear in the database.
Thus, Two-Phase can spend a large amount of time processing itemsets that do not
exist in the database. The second limitation is that Two-Phase repeatedly scans the
database to calculate the TWU and utilities of itemsets, which is very costly. The
third limitation is that using a breadth-first search can be quite costly in terms of
memory as it requires at any moment to keep in the worst case all k-itemsets and
(k − 1)-itemsets in memory (for k > 1). Moreover, Two-Phase must keep all can-
didate high utility itemsets in memory before performing the second phase. But a
huge amount of candidates can be generated by Two-Phase to find just a few high
utility itemsets [79]. The reason is that the TWU is a loose upper-bound on the
utility of itemsets. In subsequent studies, tighter upper-bounds have been designed,
and techniques to decrease these upper-bounds. In terms of complexity, Two-Phase
is based on Apriori. A very detailed complexity analysis of the Apriori algorithm
has been done by Hegland [40]. Briefly, the time complexity of Apriori is O(m2n),
where m is the number of distinct items and n is the number of transactions. In
terms of complexity, the main difference between Apriori and Two-Phase is that the

14 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

latter performs a second phase where the exact utility of each pattern is calculated by
scanning the database. Various optimizations can be used to reduce the cost of the
second phase such as storing itemsets in a hash-tree to avoid comparing each itemset
with each transaction [2]. However, the second phase remains very costly [79, 90].

3.1.2 Pattern-growth Two Phase Algorithms

To address some of the drawbacks of the Two-Phase algorithm, several pattern-
growth algorithms have been proposed such as IHUP [5], UP-Growth [79], HUP-
Growth [52], PB [47] andMU-Growth [87]. The concept of pattern-growth algorithm
was first used in frequent itemset mining algorithms such as FP-Growth [39], H-Mine
[69] and LCM [81]. The main idea of pattern-growth algorithms is to scan a database
to find itemsets, and thus avoid generating itemsets that do not appear in the database.
Furthermore, to reduce the cost of scanning the database, pattern-growth algorithms
have introduced compact database representations and the concept of projected
database to reduce the size of databases as an algorithm explore larger itemsets.

All pattern-growth algorithms discussed in this chapter utilize a depth-first search
rather than a breadth-first search to explore the search space of itemsets. The ad-
vantage of using the former instead of the latter is that less itemsets need to be
kept in memory during the search. A depth-first search algorithm starts from each
1-itemset and then recursively try to append items to the current itemset to generate
larger itemsets. For example, in the running example, a typical depth-first search al-
gorithm would explore itemsets in that order: {a}, {a, b}, {a, b, c}, {a, b, c, d}, {a, b,
c, d, e}, {a, b, c, e}, {a, b, d}, {a, b, d, e}, {a, b, e}, {a, c}, {a, c, d}, {a, c, d, e}, {a, c,
e}, {a, d}, {a, d, e}, {a, e}, {b}, {b, c}, {b, c, d}, {b, c, d, e}, {b, c, e}, {b, d}, {b, d,
e}, {b, e}, {c}, {c, d}, {c, d, e}, {c, e}, {d}, {d, e}, {e}.

The pseudocode of a typical two phase pattern-growth algorithm for high utility
itemset mining is shown in Algorithm 2. It takes as input a quantitative transaction
database D and the minutil threshold. Without loss of generality, assume that there
exists a total order on items ≺ such as the lexicographical order (a ≺ b ≺ c ≺ d ≺ e).
The pattern-growth algorithm first creates a set P to store candidate high utility
itemsets (line 1). Then, the algorithm scans the database D to calculate transaction
utilities, denoted as TUs (line 2). The algorithm then explores the search space
using a depth-first search by recursively appending items according to the ≺ order
to candidate high utility itemsets, to obtain larger candidate high utility itemsets.
This process is done by a call to the RecursiveGrowth procedure, described in
Algorithm 3. At the beginning, the RecursiveGrowth procedure considers that the
current itemset X is the empty set. The procedure scans the database D to find the
set Z of all items in D that are candidate high utility itemsets (lines 1 and 2). Then,
for each such item z, the itemset X ∪ {z} is stored in the set of candidate high
utility itemsets P (line 4). Then, the pattern-growth procedure is called to perform
a depth-first search to find larger frequent itemsets that are extensions of X ∪ {z} in
the same way (line 6). However, it can be observed that not all items in D can be
appended to X ∪ {z} to generate larger itemsets. In fact, the itemset X ∪ {z} may not

A Survey of High Utility Itemset Mining 15

even appear in all transactions of the database D. For this reason, a pattern-growth
algorithm will create the projected database of the itemset X ∪ {z} (line 5) and will
use this database to perform the depth-first search (line 6). This will allow reducing
the cost of scanning the database. After recursively performing the depth-first search
for all items, the set of all candidate high utility itemsets P has been generated.

Then, Algorithm 2 performs a second phase in the same way as the previously
described Two-Phase algorithm. The database is scanned to calculate the exact utility
of each candidate high utility itemsets (line 4). Those having a utility not less than
the minutil threshold are returned to the user (line 5).

Now, let’s illustrate these steps in more details with an example. Consider the
database of Tables 3 and 4 and assume that minutil = 25. In phase 1, the algorithm
scans the database and finds that 1-itemsets {a}, {b}, {c} and {e}, have TWU values
of 55, 54, 84, 53, and 76, respectively. These itemsets are thus candidate high utility
itemsets. The algorithm first considers the item a to try to find larger candidate
itemsets startingwith the prefix {a}. The algorithm then builds the projected database
of {a} as shown in Table 8. The projected database of an item i is defined as the set
of transactions where i appears, but where the item i and items preceding i according
to the ≺ order have been removed. Then, to find candidate itemsets starting with {a}
containing one more item, the algorithm scans the projected database of {a} and
count the TWU of all items appearing in that database. For example, the TWU of
items in the projected database of {a} are: {b} : 25, {c} : 55 and {e} : 47. This
means that the TWU of {a, b} is 25, that the TWU of {a, c} is 55, and that the TWU
of {a, e} is 47. Since these three itemsets have a TWU no less than minutil, these
itemsets are candidate high utility itemsets and are next used to try to generate larger
itemsets by performing the depth-first search starting from each itemset. The itemset
{a, c} is first considered. The algorithm builds the projected database of {a, c} from
the projected database of {a}. The projected database of {a, c} is shown in Table
9. Then, the algorithm scans the projected database of {a, c} to find items having
a TWU no less than minutil in that database. This process will continue until all
candidate high utility itemsets have been found by the depth-first search. Then, in
phase 2, the database is scanned to calculate the exact utilities of all candidates
found in phase 1. Then, itemsets having a utility less than minutil are eliminated.
The remaining itemsets are output as the high utility itemsets. The result is shown
in Table 5.

Amajor advantage of pattern-growth algorithms is that they only explore itemsets
that actually appear at least once in the input database, contrarily to Apriori-based
algorithms, which may generate patterns that do not appear in the database. Besides,
the concept of projected database is also useful to reduce the cost of database scans,
since projected databases are smaller than the original database. A common question
about the concept of projected database is: is it costly to create all these copies of
the original database? The answer is no if an optimization called pseudo-projection
is used, which consists of implementing a projected database as a set of pointers on
the original database rather than as a copy [69, 81]. For example, Fig. 3 shows the
pseudo-projected database of {a, c}, which is equivalent to the projected database of
Table 4, excepts that it is implemented using three pointers on the original database,

16 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

to avoid creating a copy of the original database. Note that many other optimizations
can also be integrated in pattern-growth algorithms. For example, the IHUP [5], UP-
Growth [79], HUP-Growth [52], and MU-Growth [87] algorithms utilize prefix-tree
structures for representing projected-databases and reduce memory usage. These
structures extends the FP-tree structure used in frequent itemset mining by the
FPGrowth algorithm [39]. The main differences between these algorithms lies in the
use of various strategies to reduce the TWU upper-bounds on the utility. Among two
phase algorithms, UP-Growth is one of the fastest. It was shown to be up to 1,000
times faster than Two-phase and IHUP.More recent two phase algorithms such as PB
andMU-Growth have introduced various optimizations and different design but only
provide a small speed improvement over Two-Phase or UP-Growth (MU-Growth is
reported to be only up to 15 times faster than UP-Growth).

Although two phase algorithms have been well-studied and introduced many key
ideas, they remain inefficient. As explained, two phase algorithm mines high utility
itemsets in two phases. In phase 1, a set of candidates is found. Then, in phase 2,
the utility of these candidates is calculated by scanning the database. Then, low-
utility itemsets are filtered and the high utility itemsets are returned to the user.
This approach is inefficient because the set of candidate itemsets found in phase 1
can be very large and performing the second phase to evaluate these candidates is
very costly [79, 90]. In the worst case, all candidate itemsets are compared to all
transactions of the database during the second phase. Thus, the performance of two
phase algorithms is highly influenced by the number of candidates generated to find
the actual high utility itemsets. To reduce the number of candidates, various strategies
have been design to decrease the TWU upper-bound, and thus prune more candidates
[5, 52, 79, 87]. But to address the fundamental problem of two phase algorithms,
which is to generate candidates, one-phase algorithms have been designed, which
are described next.

Algorithm 2: A two phase pattern-growth algorithm
input : D: a quantitative transaction database, minutil: the minimum utility threshold
output : the set of high utility itemsets

1 P = ∅ ; // P: all candidate high utility itemsets
2 Scan the database to calculate TUs, the transaction utilities of transactions in D;
3 RecursiveGrowth (TUs, D, ∅, minutil, P); // PHASE 1
4 Scan the database to calculate the utility of each itemset in P; // PHASE 2
5 return each itemset X ∈ P such that u(X) ≥ minutil;

3.2 One Phase Algorithms

The second major breakthrough in high utility itemset mining has been the design of
algorithms that do not generate candidates. These one phase algorithms immediately

A Survey of High Utility Itemset Mining 17

Algorithm 3: The RecursiveGrowth procedure
input : TUs: the transaction utilities in the original database, D: a quantitative

transaction database, X: the current itemset, minutil: the minimum utility
threshold, P: a set to store candidate high utility itemsets

output : the set of high utility itemsets
1 Scan the database D to calculate the TWU of each item in I using TUs;
2 W = {i |i ∈ I ∧TWU({i }) ≥ minutil }; // W: candidate high utility

1-itemsets in D
3 foreach item z ∈W do
4 Add X ∪ {z } to P;
5 D′ = Projection(D, z) ; // Create projected database of X ∪ {z }
6 RecursiveGrowth (TUs, D′, {z },minutil, P); // recursive call to

extend X ∪ {z }

7 end

Table 9: The projected database of
{a, c}

TID Transaction
T0 (b, 5), (c, 1), (d, 3), (e, 1)
T2 (c, 1), (d, 1)
T3 (c, 6), (e, 2)

TID Transaction
T0 (d, 3), (e, 1)
T2 (d, 1)
T3 (e, 2)

Original database
Pseudo-projected database
 (3 pointers)

Fig. 3: The pseudo-projected database of {a, c}

calculate the utility of each pattern considered in the search space. Thus, an itemset
can be immediately identified as a low utility or high utility itemset, and candidates
do not need to be stored in memory. The concept of one phase algorithm was first
published in HUI-Miner [58, 71], and then in the d2HUP [60] algorithm. Then,
improved and more efficient one phase algorithms have been designed such as
FHM [31], mHUIMiner [70], ULB-Miner [17], HUI-Miner* [71] and EFIM [94].
Besides the novelty of discovering high utility itemsets in one phase, one phase
algorithms have also introduced novel upper-bounds on the utility of itemsets that
are based on the exact utility of each itemset, and can thus prune a larger part of
the search space compared to the TWU measure. These upper-bounds include the
remaining utility [58, 60], and newer measures such as the local-utility and sub-tree
utility [94]. The next subsections gives an overview of one phase algorithms.

18 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

3.2.1 The FHM Algorithm

One of the most popular type of high utility itemset mining algorithms are those
based on the utility-list structure. This structure was introduced in the HUI-Miner
algorithm [58] by generalizing the tid-list structure [91] used in frequent item-
set mining. Then, faster utility-list based algorithms have been proposed such as
FHM [31], mHUIMiner [70] and ULB-Miner [17], and extensions have been pro-
posed for several variations of the high utility itemset mining problem. The reason
for the popularity of utility-list based algorithms is that they are fast and easy to
implement. This subsection describes the FHM algorithm [31] as a representative
utility-list based algorithm, which was shown to be up to seven times faster than
HUI-Miner, and as been used and extended by many researchers.

FHM is a one-phase algorithm that performs a depth-first search to explore the
search space of itemsets. During the search, the FHM algorithm creates a utility-
list for each visited itemset in the search space. The utility-list of an itemset stores
information about the utility of the itemset in transactions where it appears, and
information about the utilities of remaining items in these transactions. Utility-lists
allows to quickly calculate the utility of an itemset and upper-bounds on the utility
of its super-sets, without scanning the database. Moreover, utility-lists of k-itemsets
k > 1) can be quickly created by joining utility-lists of shorter patterns. The utility-
list structure is defined as follows.

Definition 8 (Utility-list). Let there be an itemset X and a quantitative database D.
Without loss of generality, assume that a total order � is defined on the set of items I
appearing in that database. The utility-list ul(X) of X in a quantitative database D
is a set of tuples such that there is a tuple (tid, iutil, rutil) for each transaction Ttid
containing X . The iutil element of a tuple is the utility of X in Ttid . i.e., u(X,Ttid).
The rutil element of a tuple is defined as

∑
i∈Tt id∧i�x∀x∈X u(i,Ttid).

For example, assume that � is the alphabetical order. The utility-lists of {a}, {d}
and {a, d} are shown in Fig. 4. Consider the utility-list of {a}. It contains three rows
(tuples) corresponding to transactions T0, T2 and T3 since {a} appears in these three
transactions. The second column of the utility list (iutil values) of {a} indicates that
the utility of {a} in T0, T2 and T3 are 5, 5, and 10, respectively. The third column of
the utility list of {a} indicates that the rutil values of {a} for transactions T0, T2 and
T3 are 20, 3, and 10, respectively.

The utility-list of {a}
tid iutil rutil
T0 5 20
T2 5 3
T3 10 12

The utility-list of {d}
tid iutil rutil
T0 6 3
T1 6 3
T2 2 0

The utility-list of {a, d}
tid iutil rutil
T0 11 3
T2 7 0

Fig. 4: The utility-lists of {a}, {d} and {a, d}

A Survey of High Utility Itemset Mining 19

The FHM algorithm scans the database once to create the utility-lists of 1-
itemsets (single items). Then, the utility-lists of larger itemsets are constructed by
joining the utility-lists of smaller itemsets. The join operation for single items is
performed as follows. Consider two items x, y such that x � y, and their utility-
lists ul({x}) and ul({y}). The utility-list of {x, y} is obtained by creating a tuple
(ex.tid, ex.iutil + ey.iutil, ey.rutil) for each pairs of tuples ex ∈ ul({x}) and ey ∈
ul({y}) such that ex.tid = ey.tid. The join operation for two itemsets P ∪ {x} and
P ∪ {y} such that x � y is performed as follows. Let ul(P), ul({x}) and ul({y})
be the utility-lists of P, {x} and {y}. The utility-list of P ∪ {x, y} is obtained by
creating a tuple (ex.tid, ex.iutil + ey.iutil − ep.iutil, ey.rutil) for each set of tuples
ex ∈ ul({x}), ey ∈ ul({y}), ep ∈ ul(P) such that ex.tid = ey.tid = ep.tid. For
example, the utility-list of {a, d} can be obtained by joining the utility-lists of {a}
and {d} (depicted in Fig. 4), without scanning the database.

The utility-list structure of an itemset is very useful, as it allows to directly obtain
the utility of an itemset without scanning the database.

Property 5 (Calculating the utility of an itemset using its utility-list). Let there be an
itemset X . The sum of the iutil values in its utility-list ul(X) is equal to the utility of
X [58]. In other words, u(X) =

∑
e∈ul(X) e.iutil.

For example, the utility of the itemset {a, d} is equal to the sum of the values
in the iutil column of its utility-list (depicted in Fig. 4). Hence, by looking at the
utility-list of {a, d}, it is found that its utility is u({a, d}) = 11 + 7 = 18.

The utility-list of an itemset is also used to prune the search space based on the
following definition and property.

Definition 9 (Remaining utility upper-bound). Let X be an itemset. Let the ex-
tensions of X be the itemsets that can be obtained by appending an item y to X
such that y � i, ∀i ∈ X . The remaining utility upper-bound of X is the sum of the
iutil and rutil values in its utility-list ul(X). Formally, this upper-bound is defined
as reu(X) =

∑
e∈ul(X) (e.iutil + e.rutil). The value reu(X) is an upper-bound on the

utility of X and all its extensions [58]. In other words, the relationship u(Y) ≤ reu(X)
holds for any itemset Y that is an extension of X .

For example, consider calculating the remaining utility upper-bound of the itemset
{a, d} using its utility-list (depicted in Fig. 4). The upper-bound is the sum of the
values in the iutil and rutil columns of its utility-list, that is reu({a, d}) = 11+7 = 18.
It is thus known that the itemset {a, d} and all its extensions such as {a, d, e} cannot
have a utility greater than 18. If we assume that minutil = 25, as in the running
example, these itemsets can thus be pruned from the search space, as they will be
low-utility itemsets. This is formalized by the following property.

Property 6 (Pruning search space using a utility-list). Let X be an itemset. If the
sum of iutil and rutil values in ul(X) is less than minutil (i.e. reu(X) < minutil),
X and its extensions are low utility itemsets [58].

20 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

The main procedure of FHM (Algorithm 4) takes a quantitative transaction
database and a minutil threshold as input. FHM first scans the database to cal-
culate the TWU of each item. Then, the algorithm identifies the set I∗ of all items
having a TWU no less than minutil (other items are ignored since they cannot be
part of a high-utility itemset by Property 4). The TWU values of items are then used
to establish a total order � on items, which is the order of ascending TWU values
(as suggested in [58]). A database scan is then performed. During this database scan,
items in transactions are reordered according to the total order �, the utility-list
of each item i ∈ I∗ is built and a structure named EUCS (Estimated Utility Co-
Occurrence Structure) is built [31]. This latter structure is defined as a set of triples
of the form (a, b, c) ∈ I∗ × I∗ × R. A triple (a,b,c) indicates that TWU({a, b}) = c.
The EUCS can be implemented as a triangular matrix that stores these triples for all
pairs of items. For example, the EUCS for the running example is shown in Fig. 5.
The EUCS is very useful as it stores the TWU of all pairs of items, an information
that will be later used for pruning the search space. For instance, the top-left cell
indicates that TWU({a, b}) = 25. Building the EUCS is very fast (it is performed
with a single database scan) and occupies a small amount of memory, bounded by
|I∗ | × |I∗ |. The reader is referred to the paper about FHM [31] for more details
about the construction of this structure and implementation optimizations. After the
construction of the EUCS, the depth-first search exploration of itemsets starts by
calling the recursive procedure FHMSearch with the empty itemset ∅, the set of
single items I∗, minutil and the EUCS structure.

TWU

Item a b c d e f

b 30

c 65 61

d 38 50 58

e 57 61 88 50

f 30 30 30 30 30

g 27 11 38 0 38 0

===== CONTENT OF ESCS =====

Item:1 -- 3 (TWU 65) 5 (TWU 57)

Item:2 -- 1 (TWU 30) 3 (TWU 61) 5 (TWU 61)

Item:3 --

Item:4 -- 1 (TWU 38) 2 (TWU 50) 3 (TWU 58) 5 (TWU 50)

Item:5 -- 3 (TWU 88)

Item:6 -- 1 (TWU 30) 2 (TWU 30) 3 (TWU 30) 4 (TWU 30) 5 (TWU 30)

Item:7 -- 1 (TWU 27) 2 (TWU 11) 3 (TWU 38) 5 (TWU 38)

Support/BOND

Item a b c d e f

b 1

c 3 3

d 2 2 3

e 2 3 4 2

f 1 1 1 1 1

g 1 1 2 0 2 0

===== CONTENT OF ESCS =====

Item:1 -- 3 (Support 3) 5 (Support 2)

Item:2 -- 1 (Support 1) 3 (Support 3) 5 (Support 3)

Item:3 --

Item:4 -- 1 (Support 2) 2 (Support 2) 3 (Support 3) 5 (Support 2)

Item:5 -- 3 (Support 4)

Item:6 -- 1 (Support 1) 2 (Support 1) 3 (Support 1) 4 (Support 1) 5

(Support 1)

Item:7 -- 1 (Support 1) 2 (Support 1) 3 (Support 2) 5 (Support 2)

Fig. 5: The Estimated-Utility Cooccurrence Structure

Algorithm 4: The FHM algorithm
input : D: a transaction database, minutil: a user-specified threshold
output : the set of high-utility itemsets

1 Scan D to calculate the TWU of single items;
2 I∗ ← each item i such that TWU(i) ≥ minutil;
3 Let � be the total order of TWU ascending values on I∗;
4 Scan D to built the utility-list of each item i ∈ I∗ and build the EUCS;
5 Output each item i ∈ I∗ such that SUM({i }.utilitylist .iutils) ≥ minutil;
6 FHMSearch (∅, I∗, minutil, EUCS);

A Survey of High Utility Itemset Mining 21

Algorithm 5: The FHMSearch procedure
input : P: an itemset, ExtensionsOfP: a set of extensions of P, minutil: a user-specified

threshold, EUCS: the EUCS structure
output : the set of high-utility itemsets

1 foreach itemset Px ∈ ExtensionsOfP do
2 if SUM(Px.utilitylist .iutils)+SUM(Px.utilitylist .rutils) ≥ minutil then
3 ExtensionsOfPx← ∅;
4 foreach itemset Py ∈ ExtensionsOfP such that y � x do
5 if ∃(x, y, c) ∈ EUCS such that c ≥ minutil then
6 Pxy ← Px ∪ Py;
7 Pxy.utilitylist ← Construct (P, Px, Py);
8 ExtensionsOfPx← ExtensionsOfPx ∪ Pxy;
9 if SUM(Pxy.utilitylist .iutils) ≥ minutil then output Px;

10 end
11 end
12 FHMSearch (Px, ExtensionsOfPx, minutil);
13 end
14 end

Algorithm 6: The Construct procedure
input : P: an itemset, Px: the extension of P with an item x, Py: the extension of P

with an item y
output : the utility-list of Pxy

1 UtilityListOf Pxy ← ∅;
2 foreach tuple ex ∈ Px.utilitylist do
3 if ∃ey ∈ Py.utilitylist and ex.tid = exy.tid then
4 if P.utilitylist , ∅ then
5 Search element e ∈ P.utilitylist such that e.tid = ex.tid.;
6 exy ← (ex.tid, ex.iutil + ey.iutil − e.iutil, ey.rutil);
7 end
8 else exy ← (ex.tid, ex.iutil + ey.iutil, ey.rutil);
9 UtilityListOf Pxy ←UtilityListOf Pxy ∪ {exy };

10 end
11 end
12 return UtilityListPxy;

The FHMSearch procedure (Algorithm 5) takes as input (1) an itemset P, (2)
extensions of P having the form Pz meaning that Pz was previously obtained by
appending an item z to P, (3) minutil and (4) the EUCS. The search procedure
operates as follows. For each extension Px of P, if the sum of the iutil values of the
utility-list of Px is no less than minutil, then Px is a high-utility itemset and it is
output (cf. Property 4). Then, if the sum of iutil and rutil values in the utility-list of
Px are no less than minutil, it means that extensions of Px should be explored. This
is performed by merging Px with all extensions Py of P such that y � x to form
extensions of the form Pxy containing |Px | + 1 items. The utility-list of Pxy is then
constructed by calling the Construct procedure to join the utility-lists of P, Px and

22 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

Py. Then, a recursive call to the Search procedure with Pxy is done to calculate
its utility and explore its extension(s). Since the FHMSearch procedure starts from
single items, it recursively explores the search space of itemsets by appending single
items and it only prunes the search space based on Property 6. It can be proven that
this procedure is correct and complete to discover all high-utility itemsets.

The utility-list structure used by the FHM algorithm is said to be a vertical
database representation. A vertical database representation indicates the list of
transactionswhere each itemset appears. This is different froma traditional horizontal
database, where each entry is a transaction indicating the items that it contains.

A benefit of utility-list based algorithms is that they are easy to implement, and
efficient. It was shown that utility-list based algorithms can be more than two order
of magnitude faster than two-phase algorithms [31, 58, 94]. However, utility-list
based algorithms have important drawbacks. First, these algorithms may explore
some itemsets that never appear in the database since itemsets are generated by
combining itemsets, without reading the database. Hence, these algorithms may
waste a lot of time constructing the utility-lists of itemsets that do not exist. Second,
these algorithms sometimes consume a lot of memory, since a utility-list must be
built for each visited itemset in the search space. The utility-list of an itemset can be
quite large. In the worst case, it contains a tuple for each transaction of the database.
The join operation can also be especially costly as two or three utility-lists must be
compared to construct the utility-list of each k-itemset (k > 1).

To reduce the memory requirement of utility-list based algorithm, the ULB-
Miner [17] algorithm was recently proposed by extending HUI-Miner [58] and
FHM [31]. ULB-Miner utilizes a buffer to reuse the memory for storing utility-lists.
This strategy was shown to improve both the runtime and memory usage. Another
improvement of HUI-Miner is HUI-Miner* [71], which relies on an improved utlity-
list* structure to speed-up HUI-Miner.

3.2.2 Pattern-growth One-phase Algorithms

Pattern-growth one-phase algorithms address several limitations of utility-list based
algorithms. They explore the search space by reading the database, and thus only
consider itemsets that exist in the database. The d2HUP algorithm [60] is the first such
algorithm. It performs a depth-first search, and represents the database and projected
databases using an hyper-structure, that is similar to the H-Mine algorithm [69] in
frequent pattern mining. Although this algorithm was shown to be faster than several
other algorithms, the process of creating and updating the hyperstructure can be
quite costly.

Recently, the EFIM algorithm was proposed [94], inspired by the LCM algo-
rithm in frequent itemset mining. It is designed to process each itemset in the search
space in linear time and space. EFIM performs a depth-first search using an hori-
zontal database representation to reduce memory usage. Moreover, it introduced two
novel upper-bound called the local-utility and subtree-utility to effectively reduce
the search space. EFIM also introduced a novel array-based utility counting tech-

A Survey of High Utility Itemset Mining 23

nique named Fast Utility Counting to calculate these upper-bounds in linear time
and space using a reusable array structure. Moreover, to reduce the cost of database
scans, EFIM integrates efficient database projection and transaction merging tech-
niques named High-utility Database Projection (HDP) and High-utility Transaction
Merging (HTM), also performed in linear time. It was shown that EFIM is in gen-
eral two to three order of magnitudes faster than the d2HUP, HUI-Miner, FHM and
UPGrowth algorithms, while having an often much lower memory consumption.

3.3 A Comparison of High Utility Itemset Mining Algorithms

This section has provided an overview of some popular high utility itemset mining
algorithms. Table 10 provides a comparison of their characteristics in terms of type
of search (breadth-first search or depth-first search), the number of phases (one or
two), database representation (horizontal or vertical), and the most similar frequent
itemset mining algorithm.

Table 10: Algorithms for high utility itemset mining

Algorithm Search type Nb of phases DB representation Extends
Two-Phase [59] breadth-first Two Horizontal Apriori [2]

PB [47] breadth-first Two Horizontal Apriori [2]
IHUP [5] depth-first Two Horizontal (prefix-tree) FP-Growth [39]

UPGrowth(+) [79] depth-first Two Horizontal (prefix-tree) FP-Growth [39]
HUP-Growth [52] depth-first Two Horizontal (prefix-tree) FP-Growth [39]
MU-Growth [87] depth-first Two Horizontal (prefix-tree) FP-Growth [39]
D2HUP [60] depth-first One Vertical (hyperstructure) H-Mine [69]

HUI-Miner [58] depth-first One Vertical (utility-lists) Eclat [91]
FHM [31] depth-first One Vertical (utility-lists) Eclat [91]

mHUIMiner [70] depth-first One Vertical (utility-lists) Eclat [91]
HUI-Miner* [71] depth-first One Vertical (utility-lists*) Eclat [91]
ULB-Miner [17] depth-first One Vertical (buffered utility-lists) Eclat [91]

EFIM [94] depth-first One Horizontal (with merging) LCM [81]

4 Extensions of the Problem

Even though, high utility itemset mining has numerous applications, it also has some
limitations for some applications. This section presents an overview of extensions of
the high utility itemset mining problem that are designed to address some of these
limitations. Most of the algorithms for these extensions are based on the algorithms
described in the previous section.

24 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

4.1 Concise Representations of High Utility Itemsets

A first limitation of high utility itemset mining algorithms is that they can show a
large number of patterns to the user if the minimum utility threshold is set too low.
In that case, it can be very difficult and time-consuming for humans to analyze the
patterns found. Generally, when a huge number of patterns is found, many of them
can be viewed as redundant. To present a small set of meaningful patterns to the
user, researchers have designed algorithms to extract concise representations of high
utility itemsets. A concise representation is a set of itemsets that summarizes all high
utility itemsets. A benefit of concise representations is that they can be several orders
of magnitude smaller than the set of all high utility itemsets [30, 90]. Besides, mining
concise representations of high utility itemsets can be much faster than discovering
all high utility itemsets (HUIs) [90]. There are four main representations of high
utility itemsets.

• Closed High Utility Itemsets [14, 35, 88, 90]. An itemset is a closed high utility
itemset (CHUI), if it has no supersets appearing in the same transactions (having
the same support), i.e. CHUIs = {X |X ∈ HUIs ∧ @Y ∈ HUIs such that X ⊂
Y ∧ sup(X) = sup(Y)}. In the example of Table 5, out of eleven frequent itemsets,
only seven of them are closed: {a, c}, {a, c, e}, {b, c, d, e}, {b, c, e}, {b, d} {c, e}
and {a, b, c, d, e}. Thus, the number of CHUIs can bemuch less than the number of
HUIs.Moreover, if additional information is stored about CHUIs, a representation
called closed+ high utility itemset is obtained, which is a lossless representation
of all high utility itemset itemsets [88, 90]. Hence, using closed+ itemsets the
information about all high utility itemsets, including their utility, can be recovered
without scanning the database. In the context of analyzing customer transactions,
CHUIs are interesting as they represent the largest sets of items common to groups
of customers, that yield a high profit.

• Maximal itemsets [75, 89]. Maximal high utility itemsets (MHUIs) are the high
utility itemsets that do not have supersets that are high utility, i.e. MHUIs =
{X |X ∈ HUIs∧@X ∈ HUIs such that X ⊂ Y }. In other words, maximal itemsets
are the largest high utility itemsets. The set of maximal itemsets is a subset of the
set of closed itemsets (MHUIs ⊆ CHUIs ⊆ HUIs), and thus can further reduce
the number of itemsets presented to the user. However, maximal itemsets are not
a lossless representation of all HUIs. In other words, MHUIs cannot be used to
recover all high utility itemsets and their utility without scanning the database. In
the example of Table 1, there are only one maximal itemset: {a, b, c, d, e}.

• Generators of high-utility itemsets [30]. An itemset X is a generator of high-
utility itemset (GHUI) if an only if (1) there exists no itemset Y ⊂ X , such
that sup(X) = sup(Y), and (2) there exists an itemset Z such that X ⊆ Z and
u(Z) ≥ minutil [30]. The set of generator of high utility itemsets is always of
equal size as or larger than the set of closed and maximal high utility itemsets.
But the set of generators is interesting according to the Minimum Description
Length principle [8] since it represents the smallest sets of items that are common
to transactions who contain a high utility itemset. For example, in market basket

A Survey of High Utility Itemset Mining 25

analysis, a GHUI is the smallest set of items common to a group of customers
who bought a set of items that generates a high profit.

• Minimal high utility itemsets [29]. An itemset X is a minimal high-utility itemset
(MinHUI) iff u(X) ≥ minutil and there does not exist an itemset Y ⊂ X such
that u(Y) ≥ minutil. This proposed representation is the opposite of maximal
HUIs, i.e. it consists of the smallest sets of items that generate a high profit rather
than the largest. The assumption is that the smallest itemsets are often the most
interesting. For example, for marketing purpose, a retailer may be more interested
in finding the smallest sets of items that generate a high profit, since it is easier
to co-promote a small set of items targeted at many customers rather than a large
set of items targeted at few customers. In the running example, there are five
MinHUIs: {b, c}, {b, d}, {b, e}, {a, c} and {c, e}.

To better illustrate the relationship between the HUIs, CHUIs, MinHUIs and
GHUIs, Fig. 6 presents an illustration of these various types of patterns, for the
running example. In this figure, all equivalence classes containing at least a HUI
are represented. An equivalence class is a set of itemsets supported by the same
set of transactions, ordered by the subset relation. For example, {{a, e}, {a, c, e}}
is the equivalence class of itemsets appearing in transactions T0 and T2. Formally,
the relationship between these various sets of HUIs are the following: MinHUIs ⊆
HUIs ⊆ 2I , MaxHUIs ⊆ CHUIs ⊆ HUIs ⊆ 2I , and GHUIs ⊆ 2I [29]1.

Fig. 6: HUIs and their equivalence classes (represented using Hasse diagrams)

Several algorithms have been proposed to efficiently discover the above concise
representations of high utility itemsets. Table 11 provides an overview of these
algorithms, and their characteristics. In many cases, mining concise representations

1 The notation 2I denotes all itemsets that can be created using items from a set of items I . It is
also called the powerset of I .

26 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

can be much faster than discovering all high utility itemsets since fewer itemsets are
found.

Table 11: Algorithms for mining concise representations of high utility itemsets

Algorithm Patterns Nb of phases DB representation Extends
MinFHM [29] MinHUIs One Vertical (utility-lists) FHM [31]

GHUI-Miner [30] GHUIs One Vertical (utility-lists) FHM [31]
CHUD [14] CHUIs Two Vertical (utility-lists) DCI_Closed [63]

CHUI-Miner [14] CHUIs One Vertical (utility-lists) DCI_Closed [63]
CLS-Miner [14] CHUIs One Vertical (utility-lists) FHM [31]
EFIM-Closed [94] CHUIs One Horizontal (with merging) EFIM [94]

GUIDE [75] MHUIs One Stream UPGrowth [79]
CHUI-Mine [89] MHUIs One Vertical (utility-lists) HUI-Miner[58, 71]

4.2 Top-k High Utility Itemset Mining

Another limitation of traditional high utility itemset mining algorithms is that how
the minutil threshold is set greatly influences the execution time, memory usage,
and number of patterns shown to the user. On one hand, if a user sets the minutil
threshold too low, a huge number of patterns may be found and algorithms may
become slow and consume a huge amount of memory. On the other hand, if a user
sets the minutil threshold too high, few or no patterns may be found. To address
this issue, the problem of top-k high utility itemset miningwas proposed [80], where
the user wants to discover the k itemsets having the highest utility in a quantitative
database. For this problem, the minutil parameter is replaced by a parameter k.
For example, if k = 3 for the running example, the top-k high utility itemsets are
{b, c, d}, {b, c, e}, and {b, c, d, e} with utilities of 34, 37 and 40, respectively.

A top-k high-utility itemset mining algorithm typically works as follows. It ini-
tially sets an internal minutil threshold to 0, and starts to explore the search space.
Then, as soon as k high utility itemsets are found, the internal minutil threshold is
raised to the utility of the pattern having the lowest utility among the current top-k
patterns. Then, the search continues and for each high utility itemset found, the set
of the current top-k pattern is updated as well as the internal minutil threshold.
When the algorithm terminates, the set of the top-k high utility itemsets is returned
to the user. The problem of top-k high utility itemset mining is more difficult than
the problem of high utility itemset mining since the former must start by considering
that minutil = 0. Several high utility itemset mining algorithms have been proposed.
A comparison of the characteristics of the main algorithms is provided in Table 12.

A Survey of High Utility Itemset Mining 27

Table 12: Algorithms for mining the top-k high utility itemsets

Algorithm Search type Nb of phases DB representation Extends
TKU [80] Depth-first Two Horizontal (prefix-tree) UP-Growth [79]
TKO [80] Depth-first One Vertical (utility-lists) HUI-Miner [58, 71]
REPT [72] Depth-first One Horizontal (prefix-tree) MU-Growth [87]
kHMC [18] Depth-first One Vertical (utility-lists) FHM [31]

4.3 High Utility Itemset Mining with the Average Utility Measure

Besides the standard utility measure presented in Definition 4, alternative utility
measures have been studied [83]. One of the most popular alternative measure is the
average utility measure [41]. It is based on the observation that larger itemsets tend
to have a higher utility than smaller itemsets on some datasets (although this is not
always true). To address this issue, the average utility measure divides the utility of
an itemset by its length. Formally:

Definition 10 (Average utility measure). The average utility of an itemset X in a
quantitative database D is denoted as au(X) and defined as au(X) = u(X)/|X |.

Definition 11 (High average utility itemset mining). The problem of high average
utility itemset mining in a quantitative database D is to discover all itemsets having
an average utility no less than a user-specified minimum average utility threshold
minAvgUtil [41].

For example, if minAvgUtil = 13 for the database of the running example, eight
high average utility itemsets are found, depicted in Table 13.

Table 13: The high average utility itemsets for minAvgUtil = 13

Itemset Average utility Itemset Average utility
{a} 15 {b, c } 14
{b} 22 {b, d} 15
{e} 15 {b, e} 15.5
{a, c } 14 {c, e} 13.5

Several algorithms have been proposed for high average utility itemset mining.
A comparison of the main algorithms is provided in Table 14. The most efficient
algorithm is to our knowledge dHAUIM [78]. For high utility average itemsetmining,
many upper-bounds on the average utility have been designed.

Amain difference between dHAUIMand previous algorithms is the representation
of average utility and its upper bounds designed using a novel vertical form instead
of the traditional horizontal form.

To explain in more details these two different representations, it is first observed
that to reduce calculation time, the utility of each item j in each transaction can be

28 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

Table 14: Algorithms for mining the high average utility itemsets

Algorithm Search type Nb of phases DB representation Extends
TPAU [41] Breadth-first Two Horizontal (prefix-tree) Two-Phase [59]
PBAU [45] Depth-first Two Vertical (index table) Two-Phase [59]

HAUI-tree [62] Depth-first Two Horizontal (prefix-tree) FP-Growth [39]
HAUI-Miner [53] Depth-first One Horizontal (prefix-tree) FHM [31]
EHAUPM [55] Depth-first One Vertical (utility-lists) FHM [31]
MHAI [85] Depth-first One Vertical (utility-lists)

dHAUIM [78] Depth-first One Vertical (utility-lists)

precalculated by multiplying the internal utility by the external utility. The result is
an integrated utility matrix Q. For instance, the matrix Q obtained by transforming
the database of the running example is shown in Table 15. In this matrix, each row
represents a transaction and each column represents an item. The matrix entry at
the ith row and j th column is denoted as qi j and defined as qi j = u(i,Tj). For an
integratedmatrix of size n bym, having n transactions andm items, letV = {1, . . . , n}
and W = {1, . . . ,m} be the set of indices for the columns and rows, respectively.

Table 15: The integrated utility matrix for the running example

Transactions Items
a b c d e

T1 5 10 1 6 3
T2 0 8 3 6 3
T3 5 0 1 2 0
T4 10 0 6 0 6
T5 0 4 2 0 3

The utility or average-utility of an itemset is traditionally calculated using utility
values by considering each matrix line (transaction). Thus, the utility is said to
be represented in horizontal form. Most upper-bounds on the average-utility are
also computed in horizontal form. In fact, most upper-bounds are calculated using
the remaining maximum utility remu in each line (transaction). For example, some
popular upper-bounds on the average-utility, named auub [46], aub and lub [55] are
defined as follows:

auub(X) =
∑

Ti ∈g(X) max{qi j, 1 ≤ j ≤ m}
aub(X) =

∑
Ti ∈g(X) max{qi j, j ≥ minInd(X)},

lub(X) = au(X) + remu(X).

In these definitions, remu(X) =
∑

Ti ∈g(X) remu(X,Ti) and remu(X,T i)=max{qi j ,
j > maxInd(X)} is called the remaining maximum utility of X in each Ti ∈ g(X),
and maxInd(X) = max{k |k th item in X} and minInd(X) = min{k |k th item in X}
are the maximum and minimum indices of items of X in the integrated matrix (or
the indices of its last and first items), respectively.

A Survey of High Utility Itemset Mining 29

By considering a vertical form, we can represent the utility of an itemset X as
u(X) =

∑
j∈X vj(X), where vj(X) =

∑
Ti ∈g(X) qi, j is the utility of item j in X and

is computed based on the j th column of Q. An interesting observation based on
this vertical perspective is that, for any matrix Q and two non-empty index subsets
V ′ ⊆ V and W ′ ⊆ W , we always have the following inequality:

max{
∑
i∈V ′

qi j, j ∈ W ′} ≤
∑
i∈V ′

max{qi j, j ∈ W ′}

In other words, intuitively, the maximum of the sums by column is no greater than
the sum of the maximums by line. This observation [78] is very useful, as it allows
to easily design many new upper-bounds using the vertical form that are tighter
than previous ones. In this context, for any two upper-bounds on the average utility,
ub1 and ub2, ub1 is said to be tighter than ub2, which is denoted as ub1 � ub2, if
ub1(X) ≤ ub2(X), for any itemset X; and ub1 is said to be strictly tighter than ub2 if
ub1 � ub2 and there exists an itemset Y such that ub1(Y) < ub2(Y).

Based on the above obervation, three tighter new upper-bounds [78] were pro-
posed inspired by the auub, aub and lub upper-bounds. They are defined and denoted
as follows:

aub1(X) = max{vj(X) | j ≥ 1},
aub (X) = max{vj(X) | j ≥ minInd(X)} and

laub (X) = au (X) + max{vj (X) | j > maxInd(X)}

That is, au � aub1 � auub(X), au � aub � aub and au � laub � lub.
Moreover, aub � auub and aub � aub1, i.e. aub and aub are improved UBs of
auub and aub1, respectively.

For example, for X = {a, c}, g (X) = {T1,T3,T4}, maxInd(X)= 3. Let there be
a function umax(Ti) = max{qi j, j ∈ J}. Then, umax(T1) = max{5, 10, 1, 6, 3}= 10,
remu(X,T1) = max{6, 3} = 6 and v1(ac) = q11 + q31 + q41 = 5 + 5 + 10 = 20. Then, we
obtain au(X) = (20 + 8)/2 = 14, auub(X) =

∑
Ti ∈g(X) umax(Ti) = 10 + 5 + 10 = 25

and aub1 = max{20, 10, 8, 8, 9} = 20. Moreover, lub(X) = 14 + (6 + 2 + 6) = 28,
laub(X) = 14+max{8, 9} = 23. Besides, since minInd(ac)= 1, aub(X)= auub(X)=
25, aub(X) = aub1(X) = 20, it follows that au(X) = 14 < aub(X) = aub1(X) =
20 < laub(X) = 23 < aub(X) = auub(X) = 25 < lub(X) = 28, so the new aub,
laub and aub1 upper-bounds are strictly tighter than the previous aub, lub and auub
upper-bounds, respectively.

For the itemset {ac}, the aub and aub upper-bounds are not less than auub
and aub1; laub and lub are larger than aub1 and auub, respectively. However, for
another itemset Y = {c, d}, g(Y) = {T1,T2,T3}, we have au(Y) = (5 + 14)/2 = 9.5,
auub(Y) = 10 + 8 + 5 = 23 and aub1(Y) = max{10, 18, 5, 14, 6} = 18, lub(Y) =
9.5 + (3 + 3 + 0) = 15.5, laub(Y) = 9.5 + 6 = 15.5, and aub(Y) = 6 + 6 + 2 = 14,
aub(Y) = max{vj(cd)| j ≥ 3} = max{5, 14, 6} = 14. In this case, we have au(Y) <
aub(Y) = aub(Y) < lub(Y) = laub(Y) < aub1(Y) < auub(Y). In other words, aub

30 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

and aub are upper-bounds that are strictly tighter than aub1 and auub. Moreover,
laub and aub1 as well as lub and auub are incomparable. The proposal of the new
aub, laub, aub1 upper-bounds and an improved upper-bound of aub, named and
defined as iaub(X) = max{vj(X) | j ∈ X or j > maxInd(X)}, is one of the reasons
for the excellent performance of dH AUIM .

An in-depth comparison of upper-bounds for the average utility measure and their
pruning effects as well as the vertical utility-list structure using diffset technique are
presented in more details in [78].

4.4 High Utility Itemset Mining with Negative Utilities

A limitation of traditional high utility itemset mining algorithms is that they assume
that all utility values are positive. However, in real-life applications, databases often
contain negative utility values. For example, consider a quantitative transaction
database containing customer transactions at a retail store. In such database, it
is common to find items having negative unit profits (negative external utilities).
The reason is that selected items are often sold at a loss in retail stores to attract
customers. It was shown that if negative unit profit values appears in a database,
traditional high utility itemset mining algorithms can find an incomplete set of high
utility itemsets [13]. The reason is that upper-bounds such as the TWU are no longer
upper-bounds on the utility of items when negative utility values are considered.
Thus, high-utility itemsets may be incorrectly pruned. To address this problem,
algorithms have been proposed with novel upper-bounds. The first algorithm for
mining high utility itemsets with negative utility values is HUINIV-Mine [13], which
is a two-phase algorithm, extending Two-Phase [59]. Then, the FHN [48] algorithms
was proposed. It is a one-phase utility-list based algorithm that extends the FHM
algorithm, and was shown to be more than two orders of magnitude faster than
HUINIV-Mine [13].

4.5 High Utility Itemset Mining with Discount Strategies

Another extension of high utility itemset mining that aims at being more realistic
for analyzing customer transactions is high utility itemset mining with discount
strategies [7]. This extension considers that items may be sold with three types of
discount strategies: (1) an item can be soldwith a discount set between 0% and 100%,
(2) if a customer buys n units of an item, he receives m free units of this item, and (3)
if a customer buys n units of an item, he receives a p% discount on each additional
unit purchased. An extended quantitative transaction database is considered where
a discount strategy table let the user indicate which discount strategy is applied for
each item, if any.Moreover, the unit profit table used in traditional high utility itemset
mining is replaced by a table indicating the cost and pricetag of each item. This

A Survey of High Utility Itemset Mining 31

allows calculating the utility of each item(set) by taking into account the discount
strategies. A three-phase algorithm was first proposed to mine high utility itemsets
while considering discount strategies [7]. Then, three faster algorithms named HUI-
DTP, HUI-DMiner and HUI-DEMiner were proposed [51], which extend the Two-
Phase [59], HUI-Miner [58] and FHM [31] algorithms, respectively.

4.6 Mining High Utility Itemset with a Maximum Length
Constraint

Another extension of high utility itemset mining is to discover high utility item-
sets that do not contain more than a user-specified maximum number of items
maxLength [23]. The motivation for this extension is that traditional high utility
itemset mining algorithms may find itemsets containing many items. But those item-
sets are often rare, and thus may be less interesting than smaller itemsets for users.
Thus, it is often desirable to set a constraint on the maximum number of items that
high utility itemsets can contain. A naive approach to do this is to first discover all
high utility itemsets using a standard high utility itemset mining algorithm, and then
to apply the constraint as a post-processing step. Although this approach provides the
correct result, it is inefficient, as it does not take advantage of the length constraint
to reduce the search space. Hence, it is desirable to push the constraints as deep
as possible in the mining process to improve the performance of the mining task.
In frequent pattern mining, length constraints have been previously used such as
the maximum length constraint [68]. The key idea of algorithms using a maximum
length constraint is that since itemsets are generated by recursively appending items
to itemsets, no item should be appended to an itemset containing the maximum
number of items. Although this approach can prune the search space using length
constraints, there is a need to find novel ways of reducing the search space using
length constraints, to further improve the performance of algorithms. To address this
issue, the FHM+ [23] algorithm was proposed by extending the FHM algorithm. It
proposed a novel concept named Length Upper-bound Reduction (LUR), to reduce
the upper-bounds on the utility of itemsets using length constraints, and thus further
reduce the search space. It was shown that the proposed algorithm can be many times
faster than the FHM algorithm and greatly reduce the number of patterns presented
to the user.

4.7 Mining High Utility Itemsets that are Correlated

Another limitation of traditional high utility itemset mining algorithms is that they
often find itemsets that have a high profit but contain items that are weakly correlated.
Those itemsets aremisleading or useless for takingmarketing decisions. For example,
consider the transaction database of a retail store. Current algorithms may find that

32 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

buying a 50 inch plasma television and a pen is a high-utility itemset, because these
two items have globally generated a high profit when sold together. But it would be
a mistake to use this pattern to promote plasma television to people who buy pens
because if one looks closely these two items are rarely sold together. The reason why
this pattern may be a high utility itemset despite that there is a very low correlation
between pens and plasma televisions, is that plasma televisions are very expensive,
and thus almost any items combined with a plasma television may be a HUI. This
limitation of traditional high utility itemset mining algorithms is important. In an
experimental study, it will be shown that often less than 1% of the patterns found
by traditional high utility itemset mining algorithms contains items that are strongly
correlated [22].

To address this issue, various measures have been used to measure how correlated
the items are in an itemset such as the bond [22], all-confidence [67] and affinity [4,
50] measures. The problem of mining correlated high utility itemsets with the bond
measure is defined as follows.

Definition 12 (bond measure). Let there be an itemset X . The disjunctive support
of the itemset X in a database D is denoted as dissup(X) and defined as |{Tc ∈

D |X ∩Tc , ∅}|. The bond of itemset X is defined as bond(X) = sup(X)/dissup(X).
The bond measure takes a value in the [0,1] interval and is monotonic [9].

Definition 13 (Correlated high utility itemset mining with the bond measure).
For a quantitative transaction database and user-specified minbond and minutil
thresholds, the problem of mining correlated high utility itemsets with the bond
measure is to output each itemset X such that bond(X) ≥ minbond and u(X) ≥
minutil.

For instance, if minutil = 25 and minbond = 0.6 the set of correlated high utility
itemsets is shown in Table 16. Consider the high utility itemset {a, b, c, d, e}. It is
considered to not be correlated since its bond is 0.2.

Table 16: The correlated high utility itemsets for minutil = 25 and minbond = 0.6

Itemset Average utility Bond
{a, c } 28 0.6
{b, c } 28 0.6
{c, e} 27 0.8
{b, c, e} 37 0.6

To efficiently discover correlated high-utility itemsets with the bond measure,
the FCHMbond algorithm [22] was proposed by extending the FHM algorithm.
Experimental results have shown that FCHM can be much more efficient than the
FHM algorithm by pruning huge amount of weakly correlated high utility itemset.
An alternative measure of correlation named all-confidence [67] was integrated in
the FCHMallconf idence algorithm [32]. The all-confidence is defined as follows.

A Survey of High Utility Itemset Mining 33

Definition 14 (All-confidence). The all-confidence of an itemset X is

all-con f idence(X) =
support(X)

argmax{support(Y)|∀Y ⊂ X ∧ Y , ∅)}

The all-confidence of an itemset is a value in the [0, 1] interval, where a high value
indicates that items are highly correlated. For example, the all-confidence of itemset
{a, d} is calculated as all-con f idence({a, d}) = support({a,d})

argmax {support({a}),support({d})} =
2
3 = 0.67.

4.8 Periodic High Utility Itemset Mining

An inherent limitation of traditional high utility itemset mining algorithms is that
they are inappropriate to discover recurring customer purchase behavior, although
such behavior is common in real-life situations [24]. For example, in a retail store,
some customers may buy some set of products on approximately a daily or weekly
basis. Detecting these purchase patterns is useful to better understand the behavior
of customers and thus adapt marketing strategies, for example by offering specific
promotions to cross-promote products such as reward or points to customers who
are buying a set of products periodically. To address this limitation of previous work,
the task of periodic high-utility itemset mining was proposed [24]. The goal is to
efficiently discover all groups of items that are bought together periodically and
generate a high profit, in a customer transaction database. The problem of periodic
high utility itemset mining is defined as follows.

Definition 15 (Periods of an itemset). Let there be a database D = {T1,T2, ...,Tn}

containing n transactions, and an itemset X . The set of transactions containing X
is denoted as g(X) = {Tg1,Tg2 ...,Tgk }, where 1 ≤ g1 < g2 < ... < gk ≤ n. Two
transactions Tx ⊃ X and Ty ⊃ X are said to be consecutive with respect to X if there
does not exist a transaction Tw ∈ g(X) such that x < w < y. The period of two
consecutive transactions Tx and Ty in g(X) is defined as pe(Tx,Ty) = (y − x), that
is the number of transactions between Tx and Ty . The periods of an itemset X is a
list of periods defined as ps(X) = {g1 − g0, g2 − g1, g3 − g2, ...gk − gk−1, gk+1 − gk},
where g0 and gk + 1 are constants defined as g0 = 0 and gk + 1 = n. Thus,
ps(X) =

⋃
1≤z≤k+1 (gz − gz−1).

For example, consider the quantitative transaction database of Tables 17 and 18.
Consider the itemset {a, c}, The list of transactions containing {a, c} is g({a, c}) =
{T1,T3,T5,T6}. Thus, the periods of this itemset are ps({a, c}) = {1, 2, 2, 1, 1}.

Definition 16 (Maximum periodicity measure). The maximum periodicity of an
itemset X is defined as maxper(X) = max(ps(X)) [77].

Definition 17 (Minimum periodicity measure). The minimum periodicity of an
itemset X is defined as maxper(X) = max(ps(X)) [24].

34 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

Definition 18 (Average periodicitymeasure).The average periodicity of an itemset
X is defined as avgper(X) =

∑
g∈ps(X)/|ps(X)| [24].

For instance, the periods of itemsets {a, c} and {e} are respectively ps({a, c}) =
{1, 2, 2, 1, 1} and ps({e}) = {2, 1, 1, 2, 1, 0}. The average periodicities of these item-
sets are respectively avgper({a, c}) = 1.4 and avgper({e}) = 1.16.

Definition 19 (Periodic high utility itemset mining). Let there be a quantitative
transaction database and some user-specified thresholds minutil, minAvg, maxAvg,
minPer and maxPer , provided by the user. An itemset X is a periodic high-utility
itemset if and only if minAvg ≤ avgper(X) ≤ maxAvg, minper(X) ≥ minPer ,
maxper(X)≤ maxPer , and u(X) ≥ minutil. The goal of periodic high utility itemset
mining is to discover all periodic high utility itemsets.

For example, consider the quantitative databases of Tables 17 and 18. If minutil =
20, minPer = 1, maxPer = 3, minAvg = 1, and maxAvg = 2, the complete set of
periodic high utility itemsets is shown in Table 19.

Table 18: External utility values

TID Transaction
T1 (a, 1), (c, 1),
T2 (e, 1)
T3 (a, 1), (b, 5), (c, 1), (d, 3), (e, 1)
T4 (b, 4), (c, 3), (d, 3), (e, 1)
T5 (a, 1), (c, 1), (d, 1)
T6 (a, 2), (c, 6), (e, 2)
T7 (b, 2), (c, 2), (e, 1)

Item a b c d e

Unit profit 5 2 1 2 3

Table 19: The set of periodic high utility itemsets

Itemset u(X) |g(X) | minper(X) maxper(X) avgper(X)
{b} 22 3 1 3 1.75
{b, e} 31 3 1 3 1.75
{b, c, e} 37 3 1 3 1.75
{b, c } 28 3 1 3 1.75
{a} 25 4 1 2 1.4
{a, c } 34 4 1 2 1.4
{c, e} 27 4 1 3 1.4

To efficiently discover the periodic high utility itemsets, an algorithm named
PHM [24] was proposed by extending the FHM algorithm. An experimental evalu-
ation has show that the PHM algorithm is efficient, and can filter a huge number of
non periodic patterns to reveal only the desired itemsets.

A Survey of High Utility Itemset Mining 35

4.9 On-shelf High Utility Itemset Mining

Another limitation of traditional high utility itemset mining algorithms for market
basket analysis is that they consider that all items have the same shelf time (are on sale
for the same time period). However, in real-life some items are only sold during some
short time period (e.g. the summer). Algorithms ignoring the shelf time of items
will have a bias toward items having more shelf time since they have more chance
to generate a high profit [43, 44]. To address this limitation the problem of high
utility itemset mining has been redefined as the problem mining high on-shelf utility
itemsets [44]. High on-shelf utility itemset mining generalizes the problem of high
utility itemset mining by considering the time time periods during which each item
was on sale. Moreover, each transactions is associated to a time period. Formally, let
PE be a set of positive integers representing time periods. Each transaction TC ∈ D
is associated to a time period pt(Tc) ∈ PE , representing the time period during
which the transaction occurred.

For example, consider the transaction database shown in Tables 20 and 21. This
database contains five transactions (T1,T2...T5) and three time periods (1, 2, 3). Trans-
action T2 occurred in time period 1, and contains items a, c, e and g, which respec-
tively appear in T2 with an internal utility of 2, 6, 2 and 5. Table 21 indicates that the
external utilities of these items are -5, 1, 3 and 1, respectively. The concept of time
period is defined as follows.

Table 20: A Transaction Database with Time Period Information

TID Transactions Period
T1 (a, 1)(c, 1)(d, 1) 1
T2 (a, 2)(c, 6)(e, 2)(g, 5) 1
T3 (a, 1)(b, 2)(c, 1)(d, 6), (e, 1), (f , 5) 2
T4 (b, 4)(c, 3)(d, 3)(e, 1) 2
T5 (b, 2)(c, 2)(e, 1)(g, 2) 3

Table 21: External Utility Values (Unit Profit)

Item a b c d e f g
Profit -5 2 1 2 3 1 1

Definition 20 (time period). The time periods (shelf time) of an itemset X ⊆ I, is the
set of time periods where X was sold, defined as pi(X) = {pt(Tc)|Tc ∈ D∧ X ⊆ Tc}.

Definition 21 (Utility in a time period).The utility of an itemset X ⊆ I in a time pe-
riod h ∈ pi(X) is denoted asu(X, h) and defined asu(X, h)=

∑
Tc ∈D∧h=pt(Tc) u(X,Tc).

The utility of an itemset X ⊆ I in a database D is defined as u(X) =
∑

h∈pi(X) u(X, h).

36 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

For instance, the utility of item e in T3 is u(e,T2) = 3 × 2 = 6. The utility of the
itemset {c, e} in T2 is u({c, e},T2) = u(c,T2)+u(e,T2) = 1×6+3×2 = 12. The time
periods of itemset {c, e} are pi({c, e}) = {1, 2, 3}. The utility of {c, e} in periods 1,
2 and 3 are respectively u({c, e}, 1) = 12, u({c, e}, 2) = 4 and u({c, e}, 3) = 11. The
utility of {c, e} in the database is u({c, e}) = 12 + 4 +11 = 27.

Definition 22 (Relative utility measure). The transaction utility (TU) of a transac-
tionTc is the sum of the utility of the items fromTc inTc . i.e.TU(Tc) =

∑
i∈Tc u(i,Tc).

Given an itemset X , the total utility of the time periods of X is defined as to(X) =∑
h∈pi(X)∧Tc ∈D∧h=pt(Tc) TU(Tc). The relative utility of an itemset X ⊆ I in a database

D is defined as ru(X) = u(X)/to(X), if to(X) , 0, and is defined as 0 otherwise.
The relative utility of an itemset X represents how large the profit/loss generated by
X is compared to the total profit/loss generated during the time periods where X was
sold. The relative utility measure is useful for retailers as it is an indicator of the
relative selling performance (profit/loss) of an itemset during time periods where it
was on the shelves. It can thus be used to compare the selling performance of various
itemsets in terms of their relative contribution to the overall profit of a retail store,
to determine which itemsets are the most profitable.

For example, the transaction utility of transactions T1, T2, ... T5 are TU(T1) = −2,
TU(T2) = 7, TU(T3) = 20, TU(T4) = 20 and TU(T5) = 11. The total utility of the
time periods of {c, e} is to({c, e}) = 58. The relative utility of {c, e} is ru({c, e} =
u({c, e})/to({c, e}) = 27/58 = 0.46.

Definition 23 (Problem of high on-shelf utility itemset mining).An itemset X is a
high on-shelf utility itemset if its relative utility ru(X) is no less than a user-specified
minimum utility threshold minutil given by the user (0 ≥ minutil ≥ 1). Otherwise,
X is a low on-shelf utility itemset. The problem of high on-shelf utility itemset mining
is to discover all high on-shelf high utility itemsets in a database [43, 44].

For example, consider the databases of Tables 20 and 21. If minutil = 0.43, 21
high on-shelf utility itemsets are found. They are {a, b, c, d, e, f }:0.44, {b, d, f }:0.47,
{b, d, e, f }:0.53, {b, c, d, e, f }:0.55, {b, c, d, e}:0.49, {d, e, f }:0.44, {c, d, e, f }:0.47,
{b, g}:0.54, {b, e, f }:0.81, {b,c, e, g}:1.0, {b, c, g}:0.72, {e, g}:0.51, {c, e, g} :0.77,
{c, g}:0.48, {b, d}:0.67, {b, d, e}:0.8, {b, c, d, e}:0.89, {b, c, d}:0.75, {c, d, e}:0.43,
{b, e}:0.45 and {b, c, e}:0.55, where the relative utility of each itemset is indicated
after the colon.

The three-phase TS-HOUN algorithm [43] was proposed to mine high utility
itemsets while considering negative and positive utility values. Then, a faster one-
phase algorithm named FOSHU [34] was proposed by extending FHM. Thereafter,
a top-k on-shelf high utility itemset mining algorithm named KOSHU [15] was
proposed by extending FOSHU.

Recently, other works have also considered the time dimension in high utility
itemset mining but without using the concept of time periods. Lin et al. proposed an
algorithm that find all itemsets that have a high utility in recent times, called recent
high-utility itemsets, by considering a decay function, which gives more weight to

A Survey of High Utility Itemset Mining 37

recent transactions [49]. In another work, the concept of local high utility itemsets
was proposed to find itemsets that have a high utility in non predefined time periods
such as a high sale of notebooks and pen in the first week of the back-to-school
season [33].

4.10 High Utility Itemset Mining in Dynamic Databases

Another limitations of traditional high utility itemset mining algorithms is to assume
that databases are static. Thus, traditional algorithms cannot update their results
when a database is updated. Hence, to obtain updated results, one needs to apply
these algorithms again from scratch, which is inefficient. To address this limitation,
algorithms have been designed for discovering high-utility itemsets in databases that
are incrementally updated when new transactions are inserted [5, 26, 73, 86]. These
algorithms reuse results from their previous executions to speed up the discovery of
high utility itemsets when a database is updated. Algorithms have also been designed
for mining high utility itemsets in an infinite streams of transactions [19, 75].

4.11 Other Extensions

Several other extensions of the problem of high utility itemset mining have been
studied. For example, the concept of privacy preservation has been studied in the
context of high utility itemset mining to prevent the disclosure of sensitive high
utility itemsets [54]. Such algorithms modify a database to ensure that sensitive
itemsets cannot be found for a given minimum utility threshold. A challenge it to
make as fewmodifications to the original database as possible to hide itemsets. It can
thus be viewed as an optimization problem that can be solved using evoluationary
or swarm intelligence algorithms [54]

Evoluationary and swarm intelligence algorithms have also been used to find
approximate solutions to the problem of high utility itemset mining and varia-
tions [57, 76, 92]. An advantage of such algorithms is to quickly find a solution.
However, a drawback is that the algorithms cannot guarantee finding all desired
patterns.

Another popular variations of high utility itemset mining is to mine high utility
itemsets using multiple minimum support [74] or utility thresholds [36, 42]. The
motivation is that in traditional high utility itemset mining a single threshold is used
to evaluate all items. But in real-life not all items are equally popular or can generate
as much profit. Thus, the rare item problem occurs, which is that few patterns
are found containing less frequent or profitable items with other more frequent or
profitable items. By letting the user set a different threshold for each item, this
problem can be alleviated. To avoid setting all thresholds by hands, some studies
utilize a function to automatically set the threshold of each item [42].

38 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

The problem of high utility itemset mining has also been generalized to mine high
utility patterns in sequences of quantitative transactions. A quantitative sequence
databases is a database where each entry is a sequence of quantitative transactions.
For example, a quantitative sequence database is depicted in Table 22 with a corrre-
sponding external utility table in Table 23. In this example, each sequence represents
the transactions made by a customer. For instance, sequence s1 means that a cus-
tomer bought 1 unit of item a and 2 units of items b, followed by buying 2 units of
item c, followed by buying 3 units of item f . Two main problems are defined for
such database which are to discover high utility sequential patterns [3, 6, 12, 84] and
high utility sequential rules [93]. A high utility sequential pattern is a subsequence
of itemsets that appear in quantitative sequence of transactions and has a high utility.
A high utility sequential rule is a rule of the form X → Y where X andY are disjoint
itemsets, and meaning that if X appears, it is often followed by Y and has a high
utility.

Table 23: External Utility Values

SID Sequences
s1 〈{(a, 1)(b, 2)}(c, 2)(f , 3)(g, 2)(e, 1)〉
s2 〈{(a, 1)(d, 3)}(c, 4), (b, 2), {(e, 1)(g, 2)}〉
s3 〈(a, 1)(b, 2)(f , 3)(e, 1)〉
s4 〈{(a, 3)(b, 2)(c, 1)}{(f , 1)(g, 1)}〉

Item a b c d e f g
Profit 1 2 5 4 1 3 1

5 Research Opportunities

Even though the problem of high utility itemset mining has been studied for more
than a decade, and numerous papers have been published on this topic, there are
numerous research opportunities. We have identified four types of opportunities:

• Novel applications. The first research opportunities are to apply existing pattern
mining algorithms in new ways in terms of application domains. Since pattern
mining algorithms are quite general, they can be applied in amultitude of domains.
In particular, the use of patternminingmethods in emerging research areas such as
social network analysis, the Internet of Things, sensor networks provides several
novel possibilities in terms of applications.

• Enhancing the performance of pattern mining algorithms. Since pattern mining
can be quite time-consuming, especially on dense databases, large databases,
or databases containing many long transactions, much research is carried on
developing more efficient algorithms. This is an important problem especially for
new extensions of the high utility itemset mining problem such as on-shelf high
utility itemsetmining or periodic high-utility itemsetmining,which have been less

A Survey of High Utility Itemset Mining 39

explored. Many opportunities also lies in distributed, GPU, multi-core or parallel
algorithm development to increase speed and scalability of the algorithms.

• Extending pattern mining to consider more complex data. Another research op-
portunity is to develop high utility pattern mining algorithms that can be applied
on complex types of data. As mentioned in this paper, various extensions have
been proposed. But it still remains a problem to handle more complex types of
data such as spatial data.

• Extending pattern mining to discover more complex and meaningful types of
patterns. Related to the above opportunity, another important issue to discover
more complex types of patterns. Also, another research opportunity is to work
on the evaluation of patterns using for example novel measures, because it is also
key to ensure that the most interesting or useful patterns are found.

6 Open-Source Implementations

Implementations of high utility pattern mining algorithms are offered in the
SPMF data mining library (http://www.philippe-fournier-viger.
com/spmf/) [21, 25]. It offers more than 130 algorithms for mining patterns
such as high utility patterns, itemsets, sequential patterns, sequential rules, peri-
odic patterns, and association rules. It is a multi-platform library developed in
Java and released under the GPL3 license. It is designed to be easily integrated
in other Java software programs, and can be run as a standalone software us-
ing its command-line or graphical user interface. Standard datasets for bench-
marking high utility itemset and pattern mining algorithms can be found on the
SPMFwebsite athttp://www.philippe-fournier-viger.com/spmf/
index.php?link=datasets.php.

7 Conclusion

High-utility itemset mining is an active field of research having numerous applica-
tions. This chapter has presented the problem of high-utility itemset mining, dis-
cussed the main techniques for exploring the search space of itemsets, employed by
high-utility itemset mining algorithms. Then, the paper has discussed extensions of
the basic high-utility itemset mining algorithm to overcome some of its limitations,
for example, to handle dynamic databases, and the use of various constraints. Lastly,
the paper has discussed research opportunities and open-source software.

Acknowledgements This work is supported by the Youth 1000 Talent funding from the National
Science Fundation of China and Harbin Institute of Technology.

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

40 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

References

1. Aggarwal, C.C.: Data mining: the textbook. Springer, Heidelberg (2015)
2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th int. conf.

very large data bases, pp. 487–499. Morgan Kaufmann (1994)
3. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S.: A novel approach for mining high-utility sequential

patterns in sequence databases. ETRI journal 32(5), 676–686 (2010)
4. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Choi, H.J.: A framework for mining interesting high

utility patterns with a strong frequency affinity. Information Sciences. 181(21), 4878–4894
(2011)

5. Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K.: Efficient Tree Structures for High-utility
Pattern Mining in Incremental Databases. IEEE Trans. Knowl. Data Eng. 21(12), 1708–1721
(2009)

6. Alkan, O.K., Karagoz, P.: Crom and huspext: Improving efficiency of high utility sequential
pattern extraction. IEEE Trans. Knowl. Data Eng. 27(10), 2645–2657 (2015)

7. Bansal, R., Dawar, S. and Goyal, V.: An efficient algorithm for mining high-utility itemsets with
discount notion. In: Proc. Intern. Conf. on Big Data Analytics, 84–98. Springer (2015)

8. Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in coding and
modeling. IEEE Transactions on Information Theory. 44(6), 2743–2760 (1998)

9. Bouasker, S., Ben Yahia, S.: Key correlation mining by simultaneous monotone and anti-
monotone constraints checking. In: Proc. 30th Symp. on Applied Computing, pp. 851-856.
ACM (2015)

10. Brauckhoff, D., Dimitropoulos, X., Wagner, A., Salamatian, K.: Anomaly extraction in back-
bone networks using association rules. IEEE/ACM Transactions on Networking, 20(6), 1788–
1799 (2012)

11. Chan, R., Yang, Q., Shen, Y.: Mining High Utility Itemsets. In: Proc. of 3rd IEEE Int’l Conf.
on Data Mining, pp. 19–26. IEEE (2003)

12. Chi, T.T., Fournier-Viger, P.: A Survey of High Utility Sequential Patten Mining. In: Fournier-
Viger et al. (eds). High-Utility Pattern Mining: Theory, Algorithms and Applications, to appear.
Springer (2018)

13. Chu, C., Tseng, V.S. Liang, T.: An Efficient Algorithm for Mining High Utility Itemsets
with Negative Item Values in large databases. Applied Mathematics and Computation 215(2),
767–778 (2009)

14. Dam, T.-L., Li, K., Fournier-Viger, P., Duong, H.: CLS-Miner: Efficient and Ef-
fective Closed High utility Itemset Mining. Frontiers of Computer Science, doi:
https://doi.org/10.1007/s11704-016-6245-4. Springer (2018)

15. Dam, T.-L., Li, K., Fournier-Viger, P., Duong, H.: An efficient algorithm for mining top-k
on-shelf high utility itemsets. Knowledge and Information Systems 52(2), 621–655 (2017)

16. Duan, Y., Fu, X., Luo, B., Wang, Z., Shi, J., Du, X.: Detective: Automatically identify and
analyze malware processes in forensic scenarios via DLLs. In: Proc. 2015 IEEE International
Conf. on Communications, pp. 5691–5696. IEEE (2015)

17. Duong, Q.H., Fournier-Viger, P., Ramampiaro, H., Norvag, K.Dam, T.-L.:Efficient HighUtility
Itemset Mining using Buffered Utility-Lists. Applied Intelligence 48(7), 1859–1877 (2017)

18. Duong, Q.-H., Liao, B., Fournier-Viger, P., Dam, T.-L.: An efficient algorithm for mining the
top-k high utility itemsets, using novel threshold raising and pruning strategies. Knowledge-
Based Systems 104, 106–122 (2016)

19. Duong, H., Ramampiaro, H., Norvag, K., Fournier-Viger, P., Dam, T.-L.: High Utility Drift
Detection in Quantitative Data Streams. Knowledge-Based Systems 157(1), 34–51 (2018)

20. Fernando, B., Elisa F., Tinne T.: Effective use of frequent itemset mining for image classifica-
tion. In: Proc. 12th European Conf. on Computer Vision, pp. 214–227. Springer (2012)

21. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A.,Wu, C.W., Tseng, V.S.: SPMF: a Java
Open-Source Pattern Mining Library, Journal of Machine Learning Research, 15,3389–3393
(2014)

A Survey of High Utility Itemset Mining 41

22. Fournier-Viger, P., Lin, J.C.-W., Dinh, T., Le, H.B.: Mining Correlated High-Utility Itemsets
using the Bond Measure. In: Proc. Intern. Conf. Hybrid Artificial Intelligence Systems. pp. 53–
65. Springer (2016)

23. Fournier-Viger, P., Lin, J.C.-W., Duong, Q.-H., Dam, T.-L.: FHM+: Faster High-Utility Item-
set Mining using Length Upper-Bound Reduction. In: Proc. 29th Intern. Conf. on Industrial,
Engineering and Other Applications of Applied Intelligent Systems, pp. 115–127. Springer
(2016)

24. Fournier-Viger, P., Lin, J.C.-W., Duong, Q.H., Dam, T.L.: PHM: Mining Periodic High-Utility
Itemsets. In: Proc. 16th Industrial Conf. on Data Mining, pp. 64–79. Springer (2016)

25. Fournier-Viger, P., Lin, J.C.-W., Gomariz, A., Soltani, A., Deng, Z., Lam, H.T.: The SPMF
Open-Source Data Mining Library Version 2. In: Proc. 19th European Conf. on Principles of
Data Mining and Knowledge Discovery, pp. 36–40. Springer (2016)

26. Fournier-Viger, P., Lin, J.C.-W., Gueniche, T., Barhate, P.: Efficient Incremental High Utility
Itemset Mining. In: Proc. 5th ASE International Conf. on Big Data. ASE (2015)

27. Fournier-Viger, P., Lin, J.C.-W., Kiran, R. U., Koh, Y. S., Thomas, R.: A Survey of Sequential
Pattern Mining. Data Science and Pattern Recognition 1(1), 54–77 (2017)

28. Fournier-Viger, P., Lin, J.C.-W., Vo, B, Chi, T.T., Zhang, J., Le, H. B.: A Survey of Itemset
Mining.WIREs DataMining and Knowledge Discovery, e1207 doi: 10.1002/widm.1207 (2017)

29. Fournier-Viger, P., Lin, C.W., Wu, C.-W., Tseng, V.S., Faghihi, U.: Mining Minimal High-
Utility Itemsets. Proc. 27th International Conf. on Database and Expert Systems Applications,
pp. 88-101. Springer (2016)

30. Fournier-Viger, P., Wu, C.W., Tseng, V.S.: Novel Concise Representations of High Utility
Itemsets using Generator Patterns. In: Proc. 10th Intern. Conf. on Advanced Data Mining and
Applications, pp. 30–43. Springer (2014)

31. Fournier-Viger, P., Wu, C.W., Zida, S., Tseng, V.S.: FHM: Faster high-utility itemset mining
using estimated utility co-occurrence pruning. In: Proc. 21st Inter. Symp. Methodologies for
Intelligent Systems, pp. 83–92. Springer (2014)

32. Fournier-Viger, P., Zhang, Y., Lin, J. C.-W., Dinh, T., Le, B.: Mining Correlated High-Utility
Itemsets Using Various Correlation Measures. Logic Journal of the IGPL, Oxford Academic, to
appear (2018)

33. Fournier-Viger, P., Zhang, Y., Lin, J.C.-W., Fujita, H., Koh, Y.-S.: Mining Local High Utility
Itemsets . In: Proc. 29th International Conf. on Database and Expert Systems Applications
(DEXA 2018), to appear. Springer (2018)

34. Fournier-Viger, P., Zida, S.: FOSHU: Faster On-Shelf High Utility Itemset Mining– with or
without negative unit profit. In: Proc. 30th Symposium on Applied Computing, pp. 857–864.
ACM (2015)

35. Fournier-Viger, P., Zida, S. Lin, C.W.,Wu, C.-W., Tseng, V. S.: EFIM-Closed: Fast andMemory
Efficient Discovery of Closed High-Utility Itemsets. In: Proc. 12th Intern. Conf. on Machine
Learning and Data Mining, pp. 199–213. Springer (2016)

36. Gan, W., Lin, J.C.-W., Fournier-Viger, P., Chao, H.C.: More efficient algorithms for mining
high-utility itemsets withmultiple minimum utility thresholds. In: Proc. 26th International Conf.
on Database and Expert Systems Applications, pp. 71–87. Springer (2016)

37. Glatz, E., Mavromatidis, S., Ager, B., Dimitropoulos, X.: Visualizing big network traffic data
using frequent pattern mining and hypergraphs. Computing 96(1),27–38 (2014)

38. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier, Amsterdam
(2011)

39. Han, J., Pei, J., Ying, Y., Mao, R.: Mining frequent patterns without candidate generation: a
frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1),53–87 (2004)

40. Hegland, M.: The apriori algorithm–a tutorial. Mathematics and computation in imaging
science and information processing. 11, 209–62 (2005)

41. Hong, T.P., Lee, C.H., Wang, S.L.: Mining High Average-Utility Itemsets. In: Proc. of IEEE
Int’l Conf. on Systems, Man, and Cybernetics, pp. 2526-2530. IEEE (2009)

42. Krishnamoorthy, S.: Efficient mining of high utility itemsets with multiple minimum utility
thresholds. Engineering Applications of Artificial Intelligence 69, 112–126 (2018)

42 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

43. Lan, G.-C., Hong, T.-P., Huang, J.-P., Tseng, V.S.: On-shelf utility mining with negative item
values. Expert Systems with Applications 41, 3450–3459 (2014)

44. Lan, G.-C., Hong, T.-P. Tseng, V.S.: Discovery of high utility itemsets from on-shelf time
periods of products. Expert Systems with Applications 38, 5851–5857 (2011)

45. Lan, G.-C., Hong, T.P., Tseng, V.S.: A Projection-based Approach for Discovering High
Average-utility Itemsets. Journal of Information Science and Engineering textbf28(1), 193–209
(2012)

46. Lan, G.-C., Hong, T.-P., Tseng, V.S.: Efficiently mining high average-utility itemsets with an
improved upper-bound strategy. International Journal of Information Technology and Decision
Making 11(5), 1009–1030 (2012)

47. Lan, G.-C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing approach formining
high utility itemsets. Knowl. and Inform. Syst. 38(1), 85–107 (2014)

48. Lin, J.C.-W., Fournier-Viger, P., Gan,W.: FHN:An Efficient Algorithm forMiningHigh-Utility
Itemsets with Negative Unit Profits. Knowledge-Based Systems 111(1), 283–298 (2016)

49. Lin, J.C.-W., Gan, W., Fournier-Viger, P., Chen, H.-C.: Mining Recent High-Utility Patterns
from Temporal Databases with Time-Sensitive Constraint. mÈ Proc. 18th Intern. Conf. on Data
Warehousing and Knowledge Discovery, pp. 3-16. Springer (2016)

50. Lin, J.C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P. Chao, H.-C.: FDHUP: Fast Algorithm
for Mining Discriminative High Utility Patterns. Knowledge and Information Systems 51(3),
873–909 (2016)

51. Lin, J.C.-W., Gan, W., Fournier-Viger, P., Hong, T.P., Tseng, V.S.: Fast Algorithms for Mining
High-Utility Itemsets with Various Discount Strategies. Advanced Engineering Informatics
30(2), 109–126 (2016)

52. Lin, J.C.-W., Hong, T.P., Lu, W.H.: An effective tree structure for mining high utility itemsets.
Expert Systems with Applications 38(6), 7419–24 (2011)

53. Lin, J.C.-W., Li, T., Fournier-Viger, P., Hong, T.-P., Voznak, M., Zhan, J.: An Efficient Al-
gorithm to Mine High Average-Utility Itemsets. Advanced Engineering Informatics, 30(2),
233–243 (2016)

54. Lin, J.C.-W., Liu, Q., Fournier-Viger, P., Hong, T.-P., Voznak, M., Zhan, J.: A Sanitization
Approach For Hiding Sensitive Itemsets Based On Particle Swarm Optimization. Engineering
Applications of Artificial Intelligence 53:1–18 (2016)

55. Lin, J.C.-W., Ren, S., Fournier-Viger, P., Hong, T.-P.: EHAUPM: Efficient HighAverage-Utility
Pattern Mining with Tighter Upper-Bounds. IEEE Access 5, 12927–12940. IEEE (2017)

56. Lin, Y.C.,Wu, C.W., Tseng, V.S.: Mining high utility itemsets in big data. In: Proc. Pacific-Asia
Conf. on Knowledge Discovery and Data Mining, pp. 649–661. Springer (2015)

57. Lin., J.C.-W., Yang, L., Fournier-Viger, Frnda, J., Sevcik, L., Voznak, M.: An Evolutionary
Algorithm to Mine High-Utility Itemsets. Advances in Electrical and Electronic Engineering
13(5), 392-398 (2015)

58. Liu, M., Qu,. J.: Mining high utility itemsets without candidate generation. In: Proc. 21st ACM
Intern. Conf. Information and knowledge management, pp. 55–64. ACM (2012)

59. Liu, Y., Liao, W.K. and Choudhary, A.N.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Proc. 9th Pacific-Asia Conf. on Knowledge Discovery and Data Mining,
pp. 689–695. Springer (2005)

60. Liu, J., Wang, K., Fung, B.: Direct discovery of high utility itemsets without candidate gener-
ation, In: Proc. 12th IEEE Intern. Conf. Data Mining, pp. 984–989. IEEE (2012)

61. Liu, Y., Zhao, Y., Chen, L., Pei, J., Han, J.: Mining frequent trajectory patterns for activity
monitoring using radio frequency tag arrays. IEEE Transactions on Parallel and Distributed
Systems 23(11),2138–2149 (2012)

62. Lu, T., Vo, B., Nguyen, H.T., Hong, T.P.: A NewMethod forMining High Average Utility Item-
sets, In: Proc. 13th Intern. Conf. on Computer Information Systems and Industrial Management
Applications, pp. 33–42. Springer (2014)

63. Lucchese, C., Orlando, S., Perego, R.: Fast and Memory Efficient Mining of Frequent Closed
Itemsets. IEEE Trans. Knowl. Data Eng. 18(1),21–36 (2006)

64. Mukherjee, A., Liu, B., Glance, N.: Spotting fake reviewer groups in consumer reviews. In:
Proc. 21st international conference on World Wide Web, pp. 191–200. ACM (2012)

A Survey of High Utility Itemset Mining 43

65. Mwamikazi, E., Fournier-Viger, P., Moghrabi, C., Baudouin, R.: A Dynamic Questionnaire
to Further Reduce Questions in Learning Style Assessment. In: Proc. 10th Int. Conf. Artificial
Intelligence Applications and Innovations, pp. 224–235. Springer (2014)

66. Naulaerts, S., Meysman, P., Bittremieux, W., Vu, T.N., Berghe, W.V., Goethals, B, Laukens,
K.: A primer to frequent itemset mining for bioinformatics. Briefings in bioinformatics 16(2),
216–231 (2015)

67. Omiecinski, E.R.: Alternative interest measures for mining associations in databases. IEEE
Trans. Knowl. Data Eng. 15(1), 57–69 (2003)

68. Pei, J., Han, J.: Constrained frequent pattern mining: a pattern-growth view. ACM SIGKDD
Explorations Newsletter 4(1), 31–39 (2012)

69. Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., Yang, D.: H-mine: Hyper-structure mining of
frequent patterns in large databases. In: Proc. 2001 IEEE Intern. Conf. Data Mining, pp. 441–
448. IEEE (2001)

70. Peng, A.X., Koh, Y.S., Riddle, P.: mHUIMiner: A Fast High Utility Itemset Mining Algorithm
for Sparse Datasets. In: Pacific-Asia Conf. on Knowledge Discovery and Data Mining, pp. 196–
207 (2017)

71. Qu, J.-F., Liu, M., Fournier-Viger, P.: Efficient algorithms for high utility itemset mining
without candidate generation . In: Fournier-Viger et al. (eds). High-Utility Pattern Mining:
Theory, Algorithms and Applications, to appear. Springer (2018)

72. Ryang, H., Yun, U.: Top-k high utility patternminingwith effective threshold raising Strategies.
Knowl.-Based Syst. 76, 109–126 (2015)

73. Ryang, H., Yun, U.: High utility pattern mining over data streams with sliding window tech-
nique. Expert Systems with Applications 57, 214–231 (2016)

74. Ryang, H., Yun, U., Ryu, K.: Discovering high utility itemsetswithmultipleminimum supports.
Intell. Data Anal., 18(6), 1027–1047 (2014)

75. Shie, B.-E., Yu, P.S., Tseng, V.S.: Efficient algorithms for mining maximal high utility itemsets
from data streams with different models. Expert Syst. Appl. 39(17), 12947–12960 (2012)

76. Song, W., Huang, C.: Discovering High Utility Itemsets Based on the Artificial Bee Colony
Algorithm. In: Proc. the 22nd Pacific-Asia Conf. Knowledge Discovery and Data Mining, pp.
3–14. Springer (2018)

77. Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y. K.: Discovering periodic-frequent patterns
in transactional databases. In: Proc. 13th Pacific-Asia Conf. on Knowledge Discovery and Data
Mining, pp. 242–253. Springer (2009)

78. Truong, T., Duong, H., Le, B., Fournier-Viger, P.: Efficient Vertical Mining of High
Average-Utility Itemsets based on Novel Upper-Bounds . IEEE Trans. Knowl. Data Eng.
DOI:10.1109/TKDE.2018.2833478 (2018)

79. Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu., P. S.: Efficient algorithms for mining high utility
itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786 (2013)

80. Tseng, V., Wu, C., Fournier-Viger, P., Yu, P.S.: Efficient Algorithms for Mining Top-K High
Utility Itemsets. IEEE Trans. Knowl. Data Eng. 28(1), 54–67 (2016)

81. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: Efficient mining algorithms for fre-
quent/closed/maximal itemsets. In: Proc. ICDM’04 Workshop on Frequent Itemset Mining
Implementations. CEUR (2004)

82. Yao, H., Hamilton, H. J.: Mining itemset utilities from transaction databases. Data and Knowl-
edge Engineering 59(3), 603–626 (2006)

83. Yao, H., Hamilton, H.J., Geng, L.: AUnified Framework for Utility-basedMeasures forMining
Itemsets. In: Proc. of ACM SIGKDDWorkshop on Utility-Based Data Mining, pp. 28-37. ACM
(2006)

84. Yin, J., Zheng, Z. and Cao, L.: USpan: an efficient algorithm for mining high utility sequential
patterns. Proc. of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 660–668. ACM (2012)

85. Yun, U., D. Kim.: Mining of high average-utility itemsets using novel list structure and pruning
strategy. Future Generation Computer Systems 68, 346-360 (2016)

86. Yun, U., Ryang, H.:Incremental high utility pattern mining with static and dynamic databases.
Applied Intelligence 42(2), 323–352 (2015)

44 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou

87. Yun, U., Ryang, H., Ryu, K.H.: High utility itemset mining with techniques for reducing
overestimated utilities and pruning candidates. Expert Syst. Appl. 41(8),3861–3878 (2014)

88. Wu, C.W., Fournier-Viger, P., Gu, J.-Y., Tseng, V.S.: Mining Closed+ High Utility Itemsets
without Candidate Generation. in: Proc. 2015 Conf. on Technologies and Applications of
Artificial Intelligence, pp. 187–194. IEEE (2015)

89. Wu, C.-W., Fournier-Viger, P., Gu, J.-Y., Tseng, V.-S.: Efficient algorithms for high utility
itemset mining without candidate generation . In: Fournier-Viger et al. (eds). High-Utility
Pattern Mining: Theory, Algorithms and Applications, to appear. Springer (2018)

90. Wu, C.-W., Fournier-Viger, P., Yu., P.S., Tseng, V.S.: EfficientMining of a Concise and Lossless
Representation of High Utility Itemsets. Proc. 11th IEEE Intern. Conf. on DataMining, pp. 824–
833. IEEE (2011)

91. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Trans. Knowl. Data Eng. 12(3),
372–390 (2000)

92. Zhang, L., Fu, G., Cheng, F., Qiu, J., Su, Y.: A multi-objective evolutionary approach for
mining frequent and high utility itemsets. Applied Soft Computing 62, 974–986 (2018)

93. Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.-W., Tseng, V.S.: Efficient Mining of High
Utility Sequential Rules. In: Proc. 11th Intern. Conf. on Machine Learning and Data Mining,
pp. 157–171. Springer (2015)

94. Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.W., Tseng, V.S.: EFIM: A Highly Efficient
Algorithm for High-Utility Itemset Mining. In: Proc. 14th Mexican Intern. Conf. Artificial
Intelligence, pp. 530–546. Springer (2015)

	A Survey of High Utility Itemset Mining
	Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger Nkambou
	Introduction
	Problem Definition
	Frequent Itemset Mining
	High Utility Itemset Mining
	Key Properties of the Problem of High Utility Itemset Mining
	Algorithms
	Two Phase Algorithms
	One Phase Algorithms
	A Comparison of High Utility Itemset Mining Algorithms
	Extensions of the Problem
	Concise Representations of High Utility Itemsets
	Top-k High Utility Itemset Mining
	High Utility Itemset Mining with the Average Utility Measure
	High Utility Itemset Mining with Negative Utilities
	High Utility Itemset Mining with Discount Strategies
	Mining High Utility Itemset with a Maximum Length Constraint
	Mining High Utility Itemsets that are Correlated
	Periodic High Utility Itemset Mining
	On-shelf High Utility Itemset Mining
	High Utility Itemset Mining in Dynamic Databases
	Other Extensions
	Research Opportunities
	Open-Source Implementations
	Conclusion
	References
	A Comparative Study of Top-k High Utility Itemset Mining Methods
	Srikumar Krishnamoorthy
	Introduction
	Preliminaries and Problem Statement
	Approaches to Top-K High Utility Itemset Mining
	Two-phase Methods
	One-phase Methods
	Performance Analysis of State-of-the-art Top-K HUI Mining Methods
	Experimental Design
	Experimental Results
	Top-K High Utility Pattern Mining Variants
	Open Issues and Future Research Opportunities
	Conclusions
	References
	A Survey of High Utility Pattern Mining Algorithms for Big Data
	Morteza Zihayat and Mehdi Kargar and Jaroslaw Szlichta
	Introduction
	High Utility Pattern Mining: Overview
	Overview of Pattern Mining Methodologies
	Overview of Big Data Paradigms
	Parallel Processing
	Distributed Platforms
	Data Stream Mining
	 Scalable and Parallel High Utility Itemset Mining
	Scalable Serial Processing
	Distributed and Parallel Processing
	High Utility Sequential Pattern Mining
	Serial Processing
	Distributed and Parallel Processing
	Conclusions and Future Directions
	References
	A Survey of High Utility Sequential Pattern Mining
	Tin Truong Chi and Philippe Fournier-Viger
	Introduction
	Problem Definition and Algorithm
	Definition of the high utility sequential pattern mining problem
	Upper bounds on umax and their key properties
	Algorithms
	Extensions of the Problem
	Mining high utility-probability sequential patterns in uncertain databases
	High-Utility Sequential Pattern Mining with Multiple Minimum Utility Thresholds
	Top-k high utility sequential pattern mining
	Mining Periodic High Utility Sequential Patterns
	Related problems
	Research Opportunities
	Conclusion
	References
	Efficient Algorithms for High Utility Itemset Mining without Candidate Generation
	Jun-Feng Qu and Mengchi Liu and Philippe Fournier-Viger
	Introduction
	Background
	Preliminaries
	Related Work
	Mining High Utility Itemsets
	Utility-List Structure
	The Proposed Method: HUI-Miner
	An Improved Method: HUI-Miner*
	Experimental evaluation
	Experimental Setup
	Running Time
	Memory Consumption
	Orders of Processing Items
	Scalability
	Discussions
	Comparison with Previous Algorithms
	HUI-Miner vs. HUI-Miner*
	The Ascending TWU Order
	Conclusion
	References
	High Utility Association Rule Mining
	Loan T.T. Nguyen, Thang Mai, Bay Vo
	Introduction
	Basic Concept
	High Utility Itemset Mining
	Lattice-based Approaches for Mining Association Rules
	Basic Definitions
	Problem Definition
	High Utility Association Rule Mining Using Closed HUI and Generators
	HGB-HAR algorithm
	Evaluation
	High Utility Association Rule Mining Using Lattice
	LARM algorithm
	Evaluation
	References
	Mining High-utility Irregular Itemsets
	Supachai Laoviboon and Komate Amphawan
	Introduction
	Problem Definitions
	Utility of an Item/Itemset
	Regularity of an Item/Itemset
	Proposed Method: HUIIM and EHUIIM algorithms
	The New-modified Utility List structure
	HUIIM Algorithm
	EHUIIM Algorithm : Applying the New Efficient Pruning Technique to HUIIM
	Example of EHUIIM
	Experimental Results
	Run Time
	Memory Usage
	Number of Discovered Itemsets
	Complexity Analysis
	Conclusion
	References
	A Survey of Privacy Preserving Utility Mining
	Duy-Tai Dinh , Van-Nam Huynh, Bac Le, Philippe Fournier-Viger, Ut Huynh, Quang-Minh Nguyen
	Introduction
	Privacy Preserving Utility-Mining
	Privacy Preserving Utility-Mining Algorithms
	Privacy Preserving Utility-Mining by Data Types
	Privacy Preserving Utility-Mining by Technique Types
	Metrics for Quantifying Privacy Preserving Utility-Mining Algorithms
	Hiding Failure (HF)
	Missing Cost (MC)
	Artificial Cost (AC)
	Database Modification Ratio (DMR)
	Data integrity (DI) and Utility integrity (UI)
	Database Structure Similarity (DSS) and Itemsets Utility Similarity (IUS)
	Challenges and Research Opportunities
	Summary
	References
	Extracting Potentially High Profit Product Feature Groups by Using High Utility Pattern Mining and Aspect based Sentiment Analysis
	Seyfullah Demir, Oznur Alkan, Firat Cekinel, Pinar Karagoz
	Introduction
	Background
	Basics of Aspect-based Sentiment Analysis
	An Overview on High Utility Itemset Mining
	Related Work
	Aspect Based Sentiment Analysis
	High Utility Pattern Mining
	eWOM and Sentiment Analysis
	Extracting Potentially High Profit Feature Groups
	Aspect Based Sentiment Analysis
	Triples-to-Transactions Transformation
	High Utility Pattern Mining
	Further Issues: Determining Utility Values and Use Cases
	Experiments and Results
	Experiment 1: Analyzing the Accumulated Utility Performances
	Experiment 2: Support vs. Utility Analysis
	Experiment 3: Support vs. Utility for Top Aspect Groups
	Conclusion and Future Work
	References
	Metaheuristics for Frequent and High-Utility Itemset Mining
	Youcef Djenouri, Philippe Fournier-Viger, Asma Belhadi, Jerry Chun-Wei Lin
	Introduction
	FIM Problem Description
	Classical FIM Algorithms
	Metaheuristics for FIM
	Evolutionary-based Approaches
	Swarm Intelligence-based Approaches
	HUIM Problem Description
	Classical HUIM Algorithms
	Metaheuristics for HUIM
	Genetic Algorithm for HUIM
	Particle Swarm Optimization for HUIM
	Ant Colony Optimization for HUIM

	Conclusion
	References
	Mining Compact High Utility Itemsets without Candidate Generation
	Cheng-Wei Wu, Philippe Fournier-Viger, Jia-Yuan Gu, Vincent S. Tseng
	Introduction
	Background
	Related Work
	The Proposed Methods
	Construction of EU-List
	The CHUI-Mine(Closed) Algorithm
	The CHUI-Mine(Maximal) Algorithm
	Recovering High Utility Itemsets from Maximal High Utility Itemsets
	Experimental Evaluation
	Experiments on Dense Datasets
	Experiments on Sparse Datasets
	Memory Usage Evaluation
	Recovery of All High Utility Itemsets
	Summary
	Conclusion
	References
	Visualization and Visual Analytic Techniques for Patterns
	Wolfgang Jentner and Daniel A. Keim
	Introduction
	Methodology
	Visualizations and Visual Analytics Techniques
	Itemsets
	Association Rules
	Sequential Patterns
	Comparison
	Frequent Itemsets
	Association Rules
	Sequential Patterns
	Discussion and Opportunities for Research
	Conclusions
	References

