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INTRODUCTION




Introduction

What Is Frequent Episode Mining (FEM)?

= Itis a popular data mining task for analyzing a sequence of
events. It consists of identifying all episodes
(subsequences of events) that appear at least minsup times.

However, a major problem of traditional episode
mining algorithms is that setting the minsup
parameter Is not intuitive.



A Major Problem of Frequent Episode
Mining

Selecting an appropriate minsup value to find just
enough episodes is difficult

= If minsup is set too low

o Algorithms can have long execution times and find too many
episodes.

= If minsup is set too high

o Algorithms may find few patterns, and hence miss important
Information.

The problem is redefined as top-k frequent episode
mining.



Mining Top-K Frequent Episodes

An algorithm named TKE (Top-K Episode mining)
= To find the k most frequent episodes
= Use a internal minsup threshold that is initially set to 1

= Apply a concept of dynamic search, which increases the
threshold as quick as possible to reduce the search space



Problem Definition
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Events: ac a a,b a ab c b d
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winlen = 2

occSet({{a}, {a,b})) = {[t2, t3], [te, t7]}

the head frequency support,sup({({a},{a, b})) = 2



Frequent Episode

If an episode a having a support that is no less than a
user-specified minimum support threshold minsup,
we call the episode frequent episode.

sup(a) = minsup — a is a frequent episode



Top-K Frequent Episode Mining
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winlen = 2,K = 3
frequent episodes: ({a},{a}), ({a}), and ({b})

their support value: 3,5,3
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THE TKE ALGORITHM



Step 1: Finding the Top-k Events

First set internal minsup = 1

An optimization: Single Episode Increase (SEI)

= Set internal minsup to the support of the k-th most frequent
event.

= Remove all events having a support less than minsup
Create a location list for each frequent event

Top-k events

m ({a}), ({b}), and {{c}), with support values of 5, 3, 2,
respectively, and minsup = 2
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Location List

01 2 34 5 67 8 9
Events: ac a ab a ab c b d

-—0—0—0—0—0—0—00—00—

Timestamps: ¢, t, t t, ts ts t; I lg Lo U

winlen = 2,k = 3, internal minsup = 2

locList(a) = {0, 2,3,5,6},locList(b) = {4,7,9}, locList(c) =
{1,8}

sup(e) = |locList(e)|
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Step 2: Finding the Top-k Parallel Episodes

Combine frequent events found in Step 1
= Do parallel extension
= Location lists of new parallel episodes are generated

= Set internal minsup to the support of the k-th most frequent
episode.

Top-k parallel episodes

m ({a}), ({b}), ({c}), and ({a, b}), with support values of 5, 3,
2, 2, respectively, and minsup = 2
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Step 3: Re-encoding the Input Sequence
Using Parallel Episodes

A unique identifier is given to each top-k parallel
episode

For instance,

= The IDs #1, #2, #3, and #4 are assigned to the top-k parallel
episodes ({a}), ({b}), ({c}), and {{a, b}), respectively
m S =

({#11 #3}1 t1); ({#1}) tZ)) ({#11 #21 #4}1 tg), ({#1}1 t6);
({#11 #2, #4}1 t7), ({#3}1 t8); ({#2}' t9)
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Step 4: Finding the Top-k Composite
episodes

Combine top-k parallel episodes
= Do serial extension

Bound list
= boundList({{a},{a})) = {l[t1, t2], [t2, t3], [te, t7]}
= sup({{a}, {a})) = [t1,t3, te| = 3

Top-k composite episodes

® ({a}), ({b}),,and ({a}, {a}), with support values of 5, 4,
and 3, respectively,
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Implementation Detalls

Adopt priority queues as data structure

Dynamic search optimization

= Maintain a priority queue of episodes to generate candidate
episodes

= Always extend the episode that has the highest support
= The internal minsup threshold may be raised more quickly
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EXPERIMENT




Experiment

Dataset
Dataset # Timestamps | # Events Avesr:tgsei Zeg/ent
e-commerce 14,975 3,468 11.71
retail 88,162 16,470 10.30
kosarak 990,002 41,270 8.10

E-commerce and retail are sparse customer
transaction datasets

E-commerce has real timestamps
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Influence of k an

Performance
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Performance Comparison with EMMA Set

with an Optimal minsup Threshold

k minsup | Fpatterns | TKE EMMA TKE memory EMMA
runtime (s) | runtime (s) | (MB) memory (MB)

1]0.6075 1 3 3 644 239
200 | 0.3619 | 159 124 9 1066 788
400 | 0.3293 | 210 279 10 1321 2184
600 | 0.3055 | 511 473 24 2934 2077
800 | 0.2862 | 625 666 29 3038 2496
1000 | 0.2794 | 684 891 31 3702 1485

The runtime and memory of T

of EMMA
Top-k frequent episode mining is more difficult
Setting minsup accurately 1s a very narrow range of

options

KE are more than that
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CONCLUSION




Conclusion

Redefined the task of frequent episode mining as
top-k frequent episode mining
A efficient algorithm named TKE for frequent
episode mining was proposed

= Internal minsup

= Dynamic search
A performance evaluation on real-life data has shown
that TKE is efficient

Source code and datasets available in the
SPMF open-source data mining library
http://www.philippe-fournier-viger.com/spmf/
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