TKE: Mining Top-K Frequent Episodes

Philippe Fournier-Viger¹, Yanjun Yang¹, Peng Yang¹, Jerry Chun-Wei Lin², and Unil Yun³

Harbin Institute of Technology (Shenzhen), China
 Western Norway University of Applied Sciences (HVL), Norway
 Sejong University, Republic of Korea

Outline

- Introduction
- Definition
- □ TKE
- Experiment
- Conclusion

INTRODUCTION

Introduction

□ What is *Frequent Episode Mining (FEM)*?

- It is a popular data mining task for analyzing a sequence of events. It consists of identifying all episodes (subsequences of events) that appear at least *minsup* times.
- However, a major problem of traditional episode mining algorithms is that setting the *minsup* parameter is not intuitive.

A Major Problem of Frequent Episode Mining

- Selecting an appropriate *minsup* value to find just enough episodes is difficult
 - If *minsup* is set too low
 - Algorithms can have long execution times and find too many episodes.
 - If minsup is set too high
 - Algorithms may find few patterns, and hence miss important information.

□ The problem is redefined as **top-k frequent episode mining**.

Mining Top-K Frequent Episodes

□ An algorithm named **TKE** (Top-**K** Episode mining)

- To find the *k* most frequent episodes
- Use a internal *minsup* threshold that is initially set to 1
- Apply a concept of dynamic search, which increases the threshold as quick as possible to reduce the search space

Problem Definition

winlen = 2

 $occSet(\langle \{a\}, \{a, b\} \rangle) = \{[t_2, t_3], [t_6, t_7]\}$

the head frequency support, $sup(\langle \{a\}, \{a, b\} \rangle) = 2$

Frequent Episode

□ If an episode α having a support that is no less than a user-specified minimum support threshold *minsup*, we call the episode **frequent episode**.

 $sup(\alpha) \ge minsup \rightarrow \alpha$ is a frequent episode

Top-K Frequent Episode Mining

winlen = 2, K = 3

frequent episodes: $\langle \{a\}, \{a\} \rangle, \langle \{a\} \rangle, \text{and } \langle \{b\} \rangle$

their support value: 3, 5, 3

THE TKE ALGORITHM

Step 1: Finding the Top-k Events

- \square First set internal *minsup* = 1
- □ An optimization: Single Episode Increase (SEI)
 - Set internal *minsup* to the support of the k-th most frequent event.
 - Remove all events having a support less than *minsup*
- □ Create a *location list* for each frequent event

□ Top-k events

\[
\[
\] \{\{a\}, \{\{b\}, and \{\{c\}, with support values of 5, 3, 2, respectively, and minsup = 2
\]

Location List

- \square winlen = 2, k = 3, internal minsup = 2
- □ $locList(a) = \{0, 2, 3, 5, 6\}, locList(b) = \{4, 7, 9\}, locList(c) = \{1, 8\}$
- \square sup(e) = |locList(e)|

Step 2: Finding the Top-k Parallel Episodes

Combine frequent events found in Step 1

- Do parallel extension
- Location lists of new parallel episodes are generated
- Set internal *minsup* to the support of the k-th most frequent episode.
- Top-k parallel episodes
 - <{a}>, <{b}>, <{c}>, and <{a, b}>, with support values of 5, 3, 2, 2, respectively, and *minsup* = 2

Step 3: Re-encoding the Input Sequence Using Parallel Episodes

A unique identifier is given to each top-k parallel episode

□ For instance,

S' =

The IDs #1, #2, #3, and #4 are assigned to the top-k parallel episodes ({a}), ({b}), ({c}), and ({a, b}), respectively

$\begin{pmatrix} (\{\#1,\#3\},t_1), (\{\#1\},t_2), (\{\#1,\#2,\#4\},t_3), (\{\#1\},t_6), \\ (\{\#1,\#2,\#4\},t_7), (\{\#3\},t_8), (\{\#2\},t_9) \end{pmatrix}$

Step 4: Finding the Top-k Composite episodes

Combine top-k parallel episodes

- Do serial extension
- Bound list
 - $boundList(\langle \{a\}, \{a\} \rangle) = \{[t_1, t_2], [t_2, t_3], [t_6, t_7]\}$
 - $\sup(\langle \{a\}, \{a\} \rangle) = |t_1, t_2, t_6| = 3$
- Top-k composite episodes
 - <{a}, <{b}, , and <{a}, {a}, with support values of 5, 4, and 3, respectively,

Implementation Details

- □ Adopt priority queues as data structure
- Dynamic search optimization
 - Maintain a priority queue of episodes to generate candidate episodes
 - Always extend the episode that has the highest support
 - The internal *minsup* threshold may be raised more quickly

EXPERIMENT

Experiment

Dataset

Dataset	# Timestamps	# Events	Average event set size
e-commerce	14,975	3,468	11.71
retail	88,162	16,470	10.30
kosarak	990,002	41,270	8.10

- E-commerce and retail are sparse customer transaction datasets
- □ E-commerce has real timestamps

Influence of k and Optimizations on TKE's Performance

Performance Comparison with EMMA Set with an Optimal *minsup* Threshold

k	minsup	#patterns	TKE runtime (s)	EMMA runtime (s)	TKE memory (MB)	EMMA memory (MB)
1	0.6075	1	3	3	644	239
200	0.3619	159	124	9	1066	788
400	0.3293	210	279	10	1321	2184
600	0.3055	511	473	24	2934	2077
800	0.2862	625	666	29	3038	2496
1000	0.2794	684	891	31	3702	1485

- □ The runtime and memory of TKE are more than that of EMMA
- **Top-k** frequent episode mining is more difficult
- Setting *minsup* accurately is a very narrow range of options

CONCLUSION

Conclusion

- Redefined the task of frequent episode mining as top-k frequent episode mining
- A efficient algorithm named TKE for frequent episode mining was proposed
 - Internal minsup
 - Dynamic search
- A performance evaluation on real-life data has shown that TKE is efficient

Source code and datasets available in the SPMF open-source data mining library http://www.philippe-fournier-viger.com/spmf/