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Abstract
In the field of behavioral analysis, Repetitive Negative Sequential Patterns
(RNSPs) provide crucial information for uncovering the significance of events.
However, due to the uncertainty of datasets, users often find it challenging to
set appropriate support thresholds, resulting in decreased mining efficiency. To
address this issue, we propose an efficient Top-K Repetitive Negative Sequential
Pattern mining algorithm (TK-RNSP). This algorithm leverages Top-K tech-
niques to eliminate the difficulty of setting support thresholds, ensuring efficient
completion of Top-K RNSP mining tasks even when the support is infinitesimally
close to or equal to zero. TK-RNSP conducts pattern mining under self-adaptive
gap conditions, generating candidate patterns through sequence extensions and
itemset extensions. We demonstrate that within the framework defined in this
paper, RNSP mining satisfies the anti-monotonicity property. Based on this
observation, a pruning strategy based on the anti-monotonicity is integrated in
TK-RNSP to quickly raise the minimum support threshold. Moreover, to further
enhance the efficiency, TK-RNSP also relies on a novel technique using bitmaps
for pattern information storage and support calculation. This method combines
bitwise operations with depth-first search and backtracking strategies to achieve
efficient pattern search and support calculation. Experimental results indicate
that TK-RNSP exhibits excellent efficiency and stability in Top-K RNSP mining
tasks, demonstrating its substantial potential as a data analysis tool.

Keywords: Sequential pattern mining, Negative sequential pattern, Top-K repetitive
negative sequential pattern, Nonoverlapping, Self-adaptive gap

1 Introduction
Behavioral analysis is pervasive in people’s daily lives [1], with one of its significant
tasks being to understand and interpret the complexity and impact of non-occurring
behaviors (NOBs) [2]. In recent years, increasing attention has been paid to Negative
Sequential Pattern (NSP) mining, as it facilitates the understanding of NOBs [3].
NSPs are frequent sequences that contain both non-occurring and occurring behaviors
(also called negative and positive behaviors in behavior and sequence analysis) [4]. A
NOB is for instance, a vehicle not yielding to pedestrians at a crosswalk or a patient
not taking a prescribed medication during treatment.
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Mining and analyzing NSPs play an indispensable role in various real-world appli-
cations such as plan optimization, short video recommendation, biological genomic
research, and criminal investigation [5–7]. For instance, in short video recommenda-
tion sequences, a positive sequential pattern (PSP) s = ⟨abcX⟩ may indicate that
after watching some videos a, b, and c, a user is likely to purchase a product X. Con-
versely, a NSP s = ⟨a¬bcY ⟩ indicates that after watching video a and skipping video
b, and then watching video c, a user is likely to purchase a product Y . As illustrated
by this example, identifying NSPs allows uncovering important behavior patterns that
cannot be revealed by PSPs alone.

Despite the growing interest in Negative Sequential Pattern (NSP) mining in recent
years, there are still relatively few algorithms; notable among them are e-NSP [4],
F-NSP [8], NegINSP [9], and sc-NSP [10]. However, these algorithms are limited as
they exclusively focus on the presence of NSPs in sequences but overlook the essen-
tial feature of pattern repetitions. Recent research on NSP mining has highlighted
that Repetitive Sequential Patterns (RSPs) are crucial for uncovering comprehensive
and valuable patterns and rules within data, thereby enhancing decision-making [11].
For example, consider the sequence s = ⟨ab¬c ab¬c ab¬c Y ⟩, representing a suspect’s
behavior: repeated actions a (loitering) and b (observing), followed by the absence of
action c (purchase), may be a strong indicator of criminal activity Y (theft). Thus,
analyzing the repeated occurrences of the pattern p = ⟨ab¬c⟩ within the sequence s
is vital for addressing retail theft cases.

Although intensive efforts have been made to develop Repetitive PSP (RPSP)
mining algorithms [12–24], Repetitive NSPs (RNSPs) cannot be discovered by these
algorithms, and thus the information carried by these patterns is missed. The e-
RNSP algorithm is the first to effectively address the RNSP mining problem [11].
ONP-Miner, by applying strict one-off pattern matching conditions, provides valuable
pattern recognition support for the field of bioinformatics [25]. The SN-RNSP algo-
rithm employs relatively loose constraints and utilizes bitmap structures, significantly
improving mining accuracy and efficiency [26]. But all these methods are based on
setting a minimum threshold (such as the minimum support ms). However, due to
limited domain expertise, users often find it very difficult to set a suitable minimum
threshold to obtain an expected number of patterns. A too small value of ms may
generate thousands of patterns, while a too large value may yield no results. Adjusting
ms is thus often done by trial and error and very time-consuming.

A similar problem of threshold adjustment is found in PSP mining and RPSP min-
ing and was solved by proposing algorithms for top-k PSP and RPSP mining, where
k is the expected number of PSPs or RPSPs to be output [27–31]. Top-k algorithms
can identify the most valuable k patterns by performing dynamic improvement, start-
ing from a small initial support threshold and increasing it through the search. Up to
now, only the top-k NSP+ algorithm has provided a preliminary solution to address
the threshold setting problem in NSP mining [32]. It effectively mines the first k most
useful NSPs by introducing weighted support interest measures and pruning strate-
gies. But NSP+ does not consider the recurring characteristics of NSPs and is hence
unable to perform the task of top-k RNSP mining. This is because mining top-k
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RNSPs is much more difficult than mining the top-k NSPs, particularly due to the
following two intrinsic complexities:

1. Pruning techniques limitations. While Top-k RNSP mining would avoid the
need for users to set a support threshold, ensuring the accuracy of mining results
requires starting with a low minimum support threshold (close to or equal to zero)
and gradually increasing it. Consequently, pruning techniques that can quickly
raise the threshold to reduce the search space are essential. However, the existing
frequency-oriented RNSP mining framework does not provide an anti-monotonicity
property and thus cannot leverage the search space pruning strategies used for
PSPs. More importantly, current RNSP pruning techniques are often inefficient
and may result in the loss of truly top-k patterns, making them unsuitable for Top-
k RNSP mining. Therefore, developing efficient and reliable pruning methods for
RNSPs is a critical challenge in achieving Top-k RNSP mining.

2. Heavy computational burden. To ensure the complete results of Top-k RNSP
mining, it is necessary to conduct mining in a large candidate space, which incurs
great computational costs. Therefore, it is necessary to develop high efficiency
methods for pattern search and support calculation. But most RNSP methods
derive negative sequential candidates (NSCs) by converting PSPs that meet certain
conditions, resulting in a two-stage mining process that cannot directly and rapidly
perform pattern search and calculations for RNSPs. Although existing methods
add negative constraints to limit the number of NSCs, a large number of invalid
intermediate patterns are still generated. Additionally, some NSCs may not be gen-
erated during the conversion process, which clearly cannot meet the requirements
for efficient and complete Top-k RNSP mining. Therefore, how to efficiently and
quickly perform pattern search and support calculations for RNSPs in a very large
candidate space is a key challenge.

To overcome the above challenges, we propose an efficient Top-K RNSP mining
algorithm named TK-RNSP. The main contributions of this paper are:

First, we formally define the Top-k RNSP mining task and provide a new definition
for RNSP occurrence. In this definition, RNSP mining satisfies an anti-monotonicity
property, and a detailed theoretical proof is given. This allows us to approximately
transform the Top-k RNSP problem into that of Top-k RPSP mining and perform
efficient and accurate pruning to ensure the accuracy of the mining results.

We propose a bitmap-based Depth-First Backtracking Search (DFBS) strategy
that enables efficient pattern generation, as well as the search and support calcula-
tion for both RPSPs and RNSPs. By leveraging the DFBS strategy, the algorithm
incrementally explores candidate patterns and generates corresponding bitmap rep-
resentations for support calculation, while the bitmap mechanism ensures efficient
support calculation for both RPSPs and RNSPS.

In addition, we propose a one-stage efficient Top-k RNSP mining algorithm,
called TK-RNSP. This algorithm mines patterns under relatively loose constraints
such as self-adaptive gap constraints, and relies on the pattern generation method
of NegPSPan to ensure a relatively complete candidate space; it adopts an anti-
monotonicity-based pruning method to quickly narrow the search space, allowing the
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threshold to be quickly raised and uses the DFBS strategy to search for RPSPs and
RNSPs, calculating pattern support through bit operations, thereby improving the
algorithm’s computational efficiency.

Finally, through extensive experiments on eight datasets, the correctness of the
pruning strategy and the effectiveness of the RNSP pattern search strategy are veri-
fied, and the excellent mining performance of TK-RNSP is demonstrated. The results
show that TK-RNSP has good adaptability and efficiency in various data environ-
ments (including synthetic and real datasets, and datasets containing itemsets and
single items). In particular, in the test of completing the Top-k RNSP task, the
accuracy and efficiency of TK-RNSP significantly surpassed E-RNSP and SN-RNSP.

The structure of the paper is as follows: Section 2 reviews related work, Section 3
defines relevant concepts, Section 4 details the algorithm design and implementation,
Section 5 validates the algorithm’s performance through experiments, and Section 6
concludes the paper.

2 Related work
Current research has extensively explored PSPs, including RPSPs, high-utility PSPs,
PSPs in data streams, Top-K PSPs, and interdisciplinary studies involving these pat-
tern types. Concurrently, research on NSPs is progressing, primarily focusing on the
efficiency of NSP mining. NSP research provides a novel perspective for PSP analy-
sis, serving as a significant complement and further refining the analysis of sequential
data. We provide an overview of the development of NSP mining, the exploration of
RPSPs and RNSPs, and the state and progress of research on Top-K PSP and NSP
mining.

2.1 Research on negative sequential pattern mining
In the domain of NSP mining, the landscape is rich with algorithms such as E-NSP [4],
F-NSP [8], SC-NSP [10], NegI-NSP [9], and E-RNSP [11], which are designed to
enhance mining efficiency and provide additional features. In particular, F-NSP [8]
utilizes bitmap structures for quick NSP support calculations, while SC-NSP [10],
NegI-NSP [9], and Zheng’s genetic approach [33] ease F-NSP’s constraints or innovate
on pattern generation. Qiu et al.’s msNSPFI [34] can extract insights from infrequent
sequences, and the MLMS-NSP [35] algorithm stands out for its ability to handle
uniform support thresholds with its multilevel scheme. The HUNSPM algorithm [36]
explored high-utility NSP mining but did not address the processing of repetitive
occurrences.

Different researchers have used various constraints, as summarized in Table 1.
For instance, Cao et al. [4] and Zheng et al. [37] adopted the first four constraints;
Guyet et al. [38] used the second, fourth, and fifth constraints and proposed the
NegPSpan algorithm; Wang et al. [39] in their VM-NSP algorithm relaxed the negative
element constraint and adjusted other constraints. Xu et al. in E-msNSP [40] shifted
to multiple minimum support constraints, Wu et al. in ONP-Miner [25] applied the
second, fourth, and fifth constraints along with various gap constraints, Gong et al. in
e-NSPFI [41] relaxed the format constraint, Qiu et al. in NegI-NSP [9] loosened the
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Table 1: Comparison of Constraints Used in Different Algorithms
Algorithm Constraints

Negative Element Frequency Format Minimum Support Gaps
Cao et al. [4] Yes Yes Yes Yes No

Zheng et al. [37] Yes Yes Yes Yes No
Guyet et al. [38] No Yes No Yes Yes
Wang et al. [39] Loose Yes Yes Yes No

Xu et al. [40] Yes Yes Yes Multiple No
Wu et al. [25] No Yes No Yes Yes

Gong et al. [41] Yes Yes Loose Yes No
Qiu et al. [9] Loose Yes Loose Yes No
Qiu et al. [32] Yes Yes Yes No No

Our Algorithm Yes Yes Yes No No

negative element constraint and format constraint, while Top-K NSP [32] removed
the minimum support constraint.

In NSP mining, key factors for algorithm efficiency include generating and storing
NSCs, pruning strategies, and support calculations. The diverse negative contain-
ment definitions and constraints lead to various methods. The NegGSP algorithm by
Zheng et al. [37] and the PNSP algorithm by Hsueh et al. [42] extended the GSP
[43] algorithm. Guyet et al.’s [38] NegPSpan, akin to PrefixSpan [44] is adapted for
the maxgap and maxspan constraints. F-NSP [4] efficiently computes support by
redefining negative containment as positive, avoiding database rescans. F-NSP [8] uses
bitmap structures for faster support calculations, while SC-NSP [10] improves space
efficiency with enhanced PrefixSpan and bitmap structures. VM-NSP [39] uses a ver-
tical mining framework to efficiently find NSP sets, and its bitmap-based BM-NSP
approach improves mining efficiency under relaxed constraints. These methods illus-
trate the diversity and complexity of NSP mining algorithms and suggest ways to
enhance efficiency.

2.2 Research on repetitive positive and negative sequential
pattern mining

In the domain of RPSP mining, the nonoverlapping condition serves as a balanced
gap constraint, facilitating the extraction of a suitable number of patterns that com-
ply with the anti-monotonicity property. Various algorithms have been developed to
enhance efficiency and address the limitations of previous approaches. Notably, Wu et
al. [12] introduced the NOSEP algorithm, which utilizes the Net-tree and NETGAP
algorithms for effective pattern support calculations and pruning. Further advance-
ments were made by Wu et al. [13] with NWP-Miner, Shi et al. [14] with NetNPG,
and Wu et al. [15] with NetNCSP, incorporating strategies for nonoverlapping pattern
matching and closed sequential pattern mining. Additionally, Li et al. [16] designed
the MCoR-Miner algorithm for discovering nonoverlapping sequential rules, automat-
ing support and confidence threshold calculations with depth-first and backtracking
strategies. Wu et al.’s [17] NTP-Miner targeted nonoverlapping tri-directional sequen-
tial patterns, introducing interest levels to minimize redundancy. To address the
challenge of setting gap constraints without prior knowledge, Wang et al. [18] reduced
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candidate patterns through pattern joining and an incomplete Net-tree structure.The
NTP-Miner algorithm [20] leverages a single-root Net-tree alongside depth-first and
backtracking strategies for efficient support calculation and employs a pattern joining
strategy to curtail the generation of candidate patterns. In the field of time series data
analysis, the COP-Miner [21] and RNP-Miner [22] algorithms introduced by Wu et
al. have expanded the methodologies for analyzing time series data. Additionally, Wu
et al.’s work [23, 24] on high utility factors has broadened the scope of sequential
pattern mining, offering enhanced flexibility for users.

In the realm of NSP mining, although research is somewhat limited, algorithms
such as the E-RNSP [11], ONP-Miner [25] and SN-RNSP [26] have provided new
insights into this area. The E-RNSP algorithm optimizes the calculation of support
by transforming repetitive negative containment checks into positive containment
checks. The ONP-Miner algorithm, which mines patterns under one-off conditions, can
unearth more interesting patterns. Additionally, the SN-RNSP algorithm leverages a
bitmap structure and a bitmap-based mining method for rapid mining of RNSPs.

2.3 Research on Top-K positive and negative sequential
pattern mining

Top-K algorithms, which mine the K patterns with the highest support/utility with-
out setting a support threshold, have primarily been explored in PSP mining. For
instance, Huang et al. [45] introduced the SARA and SARS algorithms for min-
ing TIED patterns, characterized by time intervals and durations, while Lei et al.
[30] developed a two-step sampling algorithm for mining approximate Top-K PSPs.
Davashi et al. [46] proposed the ITUFP algorithm, an efficient method for interactive
mining of Top-K frequent patterns in uncertain data. Wang et al. [47] investigated the
problem of Top-K high-utility PSP mining and proposed the HUS-Span and TKHUS-
Span algorithms. Zhang et al. [27] proposed the TKUS algorithm,which employs
projection and local search mechanisms to reduce the search space. Kieu et al. [48]
proposed a suite of algorithms for mining top-k co-occurrence items with sequential
patterns, including the Naive Approach Mining (NAM), Vertical Approach Mining
(VAM), and Vertical with Index Approach Mining (VIAM). For RPSPs, Wu et al. [28]
introduced the SCP-Miner algorithm, which effectively mines the K patterns with the
greatest contrast. Huang et al. [49] proposed the TMKU algorithm, which effectively
integrates target patterns and Top-k pattern mining to achieve efficient mining of tar-
get high-utility itemsets. Nguyen et al. [50] introduced the ETARM algorithm, which
incorporates two new pruning properties, effectively addressing the computational
overhead issues in Top-k association rule mining. Qiu et al.’s Top-K NSP algorithm
[32] represents one of the earliest and only works in NSP mining, utilizing optimization
strategies such as weighted support and pruning. However, as our research focuses on
RNSP mining, we did not perform direct experimental comparisons with their work,
which is centered on NSPs. Additionally, the Top-K NSP algorithm is still in its early
stages, leaving room for improvements in accuracy and efficiency.

Inspired by two previous studies, namely SN-RNSP [26] and Top-K NSP [32],
this paper proposes a novel Top-K RNSP mining scheme. Although SN-RNSP [26]
demonstrates certain efficiency advantages in mining RNSPs, it relies on a preset
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fixed support threshold, which limits its flexibility in different data environments. On
the other hand, Top-K NSP [32] selects Top-K PSP patterns and transforms them
into Top-K NSP patterns, but its design is not capable of handling the Top-K RNSP
mining task, and the algorithm is still in its early stages, requiring improvements in
accuracy and efficiency.

In this paper, we address the limitations of fixed support threshold by incorpo-
rating Top-K techniques and propose a solution that does not require preset support
values. Moreover, we innovatively employ a DFBS method for pattern search, and
efficiently calculate support through bitmap operations. More importantly, the RNSP
mining framework proposed in this paper satisfies the anti-monotonicity property, and
we utilize this property for pruning, which significantly enhances the efficiency of the
algorithm.

3 Problem statement
Let I = {i1, i2, . . . , iq} be a set of items. An itemset is a subset of I. Without loss of
generality, it is assumed that the items within an itemset are arranged in lexicographic
order. A sequence is an ordered list of multiple itemsets, denoted as s = ⟨e1e2 . . . en⟩,
where ek ⊆ I (1 ≤ k ≤ n). Each ek is also referred to as an element of the sequence.
The number of elements in a sequence s is termed the size of the sequence, denoted
as size(s). If size(s) = n, then the sequence s is called an n-Size sequence. The total
number of items contained in all elements of sequence s is known as the length of the
sequence, denoted as length(s). If length(s) = r, then sequence s is referred to as an
r-length sequence. For example, the sequence s = ⟨(abc)b(cd)⟩ has a size of 3 and a
length of 6.

Table 2: Sequence database
Sequence ID (sid) Sequence

1 ⟨aabc⟩
2 ⟨(abc)(ab)c(bc)⟩
3 ⟨abc⟩

A sequence database DB is a collection of tuples < sid, s >, where s represents a
sequence, and sid denotes the identifier of sequence s, expressed as DB = {s1, ..., sN }.
In the example DB of Table 2, DB = {s1, s2, s3}.
Definition 1 (Subsequence and Supersequence) A sequence s = ⟨e1e2 . . . em⟩ is a
subsequence of a sequence sα = ⟨eα

1 eα
2 . . . eα

n⟩ and sα is a supersequence of s, denoted
by s ⊆ sα, if there exist integers 1 ≤ l1 < l2 < . . . < lm ≤ n such that e1 ⊆ eα

l1
, e2 ⊆

eα
l2

, . . . , em ⊆ eα
lm

.
Example 1 In Table 2, p = ⟨ab⟩ is a subsequence of s2 = ⟨(abc)(ab)c(bc)⟩.
Definition 2 (Occurrence and Pattern Instance) Let there be a sequence s =
⟨e1e2 . . . em⟩ that is a subsequence of a sequence sα = ⟨eα

1 eα
2 . . . eα

n⟩ as per Definition
1. Such a sequence of integers ⟨l1, l2, . . . , lm⟩ is called an occurrence of s in sα. Given
a sequence database DB = {s1, s2, . . . , sN }, if an occurrence of p = ⟨e1, e2, . . . , em⟩
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exists as ⟨l1, l2, . . . , lm⟩ in sj (sj ∈ DB), the tuple (j, ⟨l1, l2, . . . , lm⟩) is referred to as
an instance of p in DB.
Example 2 In Table 2, the pattern p = ⟨ab⟩ has two occurrences in s1: ⟨1, 3⟩ and
⟨2, 3⟩; three occurrences in s2: ⟨1, 2⟩, ⟨1, 4⟩, and ⟨2, 4⟩; and one occurrence in s3:
⟨1, 2⟩. Overall, p = ⟨ab⟩ has six instances: (1, ⟨1, 3⟩), (1, ⟨2, 3⟩), (2, ⟨1, 2⟩), (2, ⟨1, 4⟩),
(2, ⟨2, 4⟩), and (3, ⟨1, 2⟩).
Definition 3 (Self-Adaptive Gap Constraints) A self-adaptive pattern p with size m
can be expressed as p = ⟨e1∗e2∗· · ·∗em⟩, where ∗ represents any number of intervening
elements (including zero). The gap between two elements ei and ei+1 refers to the
number of elements appearing between them in the sequence. ”Self-adaptive” means
that the number of these intervening elements is unrestricted and can vary freely.
Example 3 In Table 2, ⟨1, 2⟩ represents an occurrence of the pattern p = ⟨ab⟩ in s2.
Simultaneously, ⟨1, 2⟩ also signifies an occurrence of p in s3. To distinguish occurrences
in different sequences, the concept of a pattern instance is introduced.
Definition 4 (Nonoverlapping Instance) Two instances of a pattern p = ⟨e1e2 . . . em⟩
in DB, (jα, {lα

1 , lα
2 , . . . , lα

m}) and (jβ , {lβ
1 , lβ

2 , . . . , lβ
m}), are nonoverlapping if jα ̸= jβ

or ∀1 ≤ k ≤ m, lα
k ̸= lβ

k .
Example 4 In Example 2, (2, ⟨1, 2⟩) and (2, ⟨2, 4⟩) are nonoverlapping. However,
(2, ⟨1, 2⟩) and (2, ⟨1, 4⟩) do not meet the nonoverlapping condition because ”a” is used
twice at the same position in s2.
Definition 5 (Occurrence set and Instance set) The set of occurrences of pattern
p within the sequence is referred to as the occurrence set, where each occurrence is
nonoverlapping with any other. The set of instances of pattern p within the database
DB is referred to as the instance set, where each instance is nonoverlapping with any
other. Note that there may exist more than one Instance set of a pattern.
Example 5 For the instances in Example 2, S1 =
{(1, ⟨1, 3⟩), (2, ⟨1, 2⟩), (2, ⟨2, 4⟩), (3, ⟨1, 2⟩)}, S2 = {(1, ⟨1, 3⟩), (2, ⟨1, 4⟩), (3, ⟨1, 2⟩)},
S3 = {(1, ⟨2, 3⟩), (2, ⟨1, 2⟩), (2, ⟨2, 4⟩), (3, ⟨1, 2⟩)}, and S4 =
{(1, ⟨2, 3⟩), (2, ⟨1, 4⟩), (3, ⟨1, 2⟩)} are four instance sets of p = ⟨ab⟩ satisfying that any
two instances are nonoverlapping.
Definition 6 (Support Set and Support) The support of a pattern p in DB is defined
as the maximal instance number of all possible instance sets in which any two instances
are nonoverlapping. The support of p is denoted by sup(p). An instance set containing
sup(p) instances is called a support set of p. Note that there may exist more than one
support set of a pattern. For more detailed explanations on support and support set,
please refer to [26].
Example 6 In Example 5, S1 is a support set of p in DB because it possesses the
maximal instance number. The support of p is 4, i.e., sup(p)=4. In addition, S3 is
also a support set of p in DB.
Corollary 1 From the relationship between the support set and the instance set
described in Definition 6, it is evident that the size of the support set is always greater
than or equal to that of the instance set. For a single sequence, the size of the corre-
sponding support set is equal to the size of the occurrence set with the highest number
of occurrences for the sequence.

8



Example 7 In Example 2, the occurrence set of p = ⟨a, b⟩ in s2 is {⟨1, 2⟩, ⟨2, 4⟩}, and
the support set in s2 is {(2, ⟨1, 2⟩), (2, ⟨2, 4⟩)}. The support of p in s2 is 2.
Definition 7 (Ascending Order of Instance) Given two instances (jα, {lα

1 , . . . , lα
m})

and (jβ , {lβ
1 , . . . , lβ

m}) of pattern p in DB, the instance (jα, {lα
1 , . . . , lα

m}) occurs before
(jβ , {lβ

1 , . . . , lβ
m}) in the ascending order if: (1)jα < jβ or (2)(jα = jβ ∧lα

k < lβ
k for 1 ≤

k ≤ m).
Example 8 In Table 2, the instances of p = ⟨bc⟩ are (1, ⟨3, 4⟩), (2, ⟨1, 3⟩), (2, ⟨1, 4⟩),
(2, ⟨2, 3⟩), (2, ⟨2, 4⟩), (3, ⟨2, 3⟩). Among these, (2, ⟨1, 4⟩) and (2, ⟨2, 3⟩) do not satisfy
the ascending order because they violate the condition (2), 1 < 2 but 4 > 3. The
instances (2, ⟨1, 4⟩) and (3, ⟨2, 3⟩) satisfy the ascending order as they occur in different
sequences, fulfilling condition (1).
Definition 8 (Leftmost Support Set) In a database DB, for a pattern p =
⟨e1e2 . . . em⟩, the leftmost support set S is the set of all support sets that are posi-
tioned farthest to the left. Under the condition of ascending order of instance,
let S = {(j(w), ⟨l(w)

1 , . . . , l
(w)
m ⟩) | 1 ≤ w ≤ sup(p)}. For any other support set

(jα(w), ⟨lα(w)
1 , . . . , l

α(w)
m ⟩), it must satisfy for all 1 ≤ w ≤ sup(p) and 1 ≤ k ≤ m that

l
(w)
k ≤ l

α(w)
k .

Example 9 In Example 6, we know that the two support set of p = ⟨ab⟩
in DB are S1 and S3. The leftmost support set of p = ⟨ab⟩ is S1 =
{(1, ⟨1, 3⟩), (2, ⟨1, 2⟩), (2, ⟨2, 4⟩), (3, ⟨1, 2⟩)}. As can be seen from the Definition 8, the
leftmost support set for a pattern is unique in DB.
Definition 9 (Non inclusion) An element e is not included in another element eα,
denoted by e ̸⊆ eα, if ∀i ∈ e, i ̸∈ eα. Furthermore, e does not belong to a sequence
s = ⟨e1e2 . . . en⟩, denoted by e ̸∈ s, if ∀1 ≤ k ≤ n, e ̸⊆ ek.
Example 10 (df) does not include (cd), i.e., (cd) ̸⊆ (ef), but (cd) ̸⊆ (cf) is false
because c occurs in (cf). Besides, (cd) ̸⊆ ⟨b(e)f⟩, but (cd) ̸⊆ ⟨b(c)f⟩ is false because
(cd) ⊆ (cf) is false.
Definition 10 (Positive Partner) The positive partner of a negative element ¬e is e,
denoted by p(¬e) = e. Especially, the positive partner of a positive element e is itself,
denoted by p(e) = e.

The constraints are defined to ensure rigor and clarity:
Constraint 1 Negative Element Constraint: The smallest component in any NSP
is a single element, which must be uniformly positive or negative, e.g., ⟨a(a¬b)ca⟩
violates this, while ⟨a¬(ab)ca⟩ complies.
Constraint 2 Size Constraint: A negative sequence pattern (NSP) cannot exceed the
size of the data sequence that supports it. In other words, a data sequence cannot
support an NSP that is bigger than the sequence itself.
Constraint 3 Format Constraint: Negative elements cannot consecutively appear
within a sequence.
Constraint 4 Positional Constraint: A pattern ’p’ must not start or end with a
negative element, e.g., < ¬ab > and < b¬a > are not allowed.
Definition 11 (Maximum Positive Subsequence). The maximum positive subse-
quence of a negative sequence ns is an ordered list of all the positive elements in ns,
denoted by MPS(ns).
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Definition 12 (Negative Occurrence) A sequence s = ⟨e1e2 . . . en⟩ contains a neg-
ative sequence ns = ⟨eα

1 eα
2 . . . eα

m⟩, if there exists an occurrence ⟨. . . , lk−1, lk+1, . . .⟩
of MPS(ns), for each negative element eα

k in ns such that ∃⟨alk−1+1 . . . alk+1−1⟩,
p(eα

k ) ̸⊆ ⟨alk−1+1 . . . alk+1−1⟩. Furthermore, such occurrence ⟨. . . , lk−1, lk+1, . . .⟩ is
called an occurrence of ns.
Example 11 Take the DB in Table 2 as an example and consider a negative sequence
ns = ⟨a¬ab⟩. Instances of MPS(ns) = ⟨ab⟩ are (1, ⟨1, 3⟩), (1, ⟨2, 3⟩), (2, ⟨1, 2⟩),
(2, ⟨1, 4⟩), (2, ⟨2, 4⟩), and (3, ⟨1, 2⟩). In s2, ⟨1, 4⟩ has the occurrence of the positive ele-
ment b in the corresponding intervals, so it is not an eligible occurrence. ⟨2, 3⟩ in s1,
⟨1, 2⟩ in s2, and ⟨1, 2⟩ in s3 do not have any elements in the corresponding intervals,
which is also not allowed. Moreover, ⟨1, 3⟩ in s1 and ⟨2, 4⟩ in s2 are two occurrences of
ns, because the elements in the corresponding intervals ⟨1, 3⟩ and ⟨2, 4⟩ do not contain
the positive element b. Furthermore, the support sets of ns are {(1, ⟨1, 3⟩), (2, ⟨2, 4⟩)},
and this set is also the leftmost support set.
Definition 13 (Top-K Repetitive Negative Sequential Pattern) The Top-K RNSP
mining task aims to identify the Top-K sequential patterns with the highest frequency
of repetition within a database, referred to as Top-K RNSPs. Among these patterns,
the support of the K-th pattern having the lowest support, called Min-sup, represents
the minimum threshold required to satisfy the frequency condition.

The output of the task is K patterns. However, there are two special cases, which
may occur. First, if K is set to a very large number and fewer than K patterns meet
the frequency condition, the result will include all patterns that meet the condition,
even if there are fewer than K patterns. Second, if there are more than K patterns
with exactly the same support, then the Top-K patterns will include the K patterns
that were inserted first into the min-heap. When the heap is full, the minimum support
(Min-sup) threshold will be updated to the value of the support of these patterns.
Subsequently, any patterns with support less than or equal to this Min-sup will not be
included in the result set.
Example 12 In the case of Table 2, when performing Top-K RNSP mining with
K = 3, the resulting Top-K patterns are: ⟨ab¬ac⟩ : 1, ⟨a¬ac⟩ : 1, and ⟨aa¬ac⟩ : 3.
However, during the pattern generation process, another pattern ⟨a¬cb⟩ : 1 is also
generated. However, when filtering this pattern, the minimum support Min-sup = 1,
and since this pattern does not meet the condition of having a support greater than
the minimum support, it does not appear in the final results.

4 TK-RNSP algorithm
TK-RNSP is an innovative method for mining Top-K RNSPs, operating under
nonoverlapping and self-adaptive gap constraints. The various components of the TK-
RNSP algorithm are discussed in the following sections. Section 4.1 describes the
storage structure. Section 4.2 explains the pattern generation strategy. Section 4.3
gives the proof of anti-monotonicity. Section 4.4 introduces the pruning strategy. Then,
Section 4.5 explains how pattern search and support calculation are conducted, while
4.6 presents the DFBS strategy used by the algorithm. Lastly, the overall framework
of the TK-RNSP algorithm is presented in Section 4.7.
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4.1 Storage structure

Table 3: Representation of single-item bitmaps in the database of Table 2
item s1 s2 s3

a 1100 1100 1000
b 0010 1101 0100
c 0001 1011 0001

To enhance computational efficiency, the TK-RNSP algorithm employs the same
bitmap-based storage structure as the SN-RNSP algorithm [26]. In the context of the
TK-RNSP algorithm, the bitmap storage structure is a binary array used for storing
all occurrences of an item or pattern in the database. It indicates whether an item or
pattern appears at a specific element in a specific sequence.

The content of the bitmap structure is as follows: within the bitmap, only the
positions where the last element of a pattern appears are marked as ”1”, while all
other positions remain ”0”. Each item is associated with an independent bitmap, the
size of which is determined by the maximum sequence length (MAX-SIZE) and the
total number of sequences in the database (|DB|), calculated as MAX-SIZE ×|DB|. In
practical applications, if the bitmap extends beyond the original length of a sequence,
the corresponding bitmap positions are filled with ”0” to ensure consistency and
completeness.

To effectively demonstrate the use of this bitmap storage structure, an example
is given next. Example 13 explains how information from a database is transformed
into the bitmap representation.
Example 13 As shown in Table 3, which is a bitmap representation of Table 2, it
is clear that MAX-SIZE=4 and |DB| = 3, thus each item’s bitmap comprises 12 bits.
For the construction of the bitmap for ⟨c⟩, the leftmost support set of ⟨c⟩ consists
of {(1, ⟨4⟩), (2, ⟨1⟩), (2, ⟨3⟩), (2, ⟨4⟩), (3, ⟨3⟩)}. Therefore, in the bitmap section for s1,
the fourth position is set to ”1”; in s2’s bitmap section, the first, third, and fourth
positions are set to ”1”; in s3’s bitmap section, the third position is set to ”1”. Since
s3 only contains three elements, the fourth position in this area is padded with ”0” to
indicate that there is no element at that position.

If a pattern p is found in a sequence s, we only record the position of the last
element of the pattern to identify the leftmost support. Example 14 further elucidates
the specific application of storing patterns.
Example 14 Using the DB described in Table 2, which contains three sequences
with the longest sequence being four elements in length, a 12-bit bitmap is allo-
cated for the pattern p = ⟨aab⟩. The leftmost support set for this pattern includes
{(1, ⟨1, 2, 3⟩), (2, ⟨1, 2, 4⟩)} corresponding to the leftmost occurrences in sequences s1
and s2, respectively. In terms of the bitmap settings: (1) In the bitmap interval corre-
sponding to s1 (the first four bits), the pattern completely appears at the third position,
therefore the third bit is set to ”1”. (2) In the bitmap interval for s2 (the fifth to eighth
bits), the pattern completely appears at the fourth position, thus the eighth bit is set
to ”1”.

11



Consequently, the bitmap representation for the pattern p = ⟨aab⟩ is 0010 0001
0000.

4.2 Pattern generation strategy
This section introduces the pattern generation strategy of TK-RNSP.

Compared to traditional methods, TK-RNSP does not require mining positive
sequential patterns (PSPs) first and then converting them into negative sequential
candidates (NSCs). In this study, we adopted the same pattern generation method
as the NegPSpan algorithm. NegPSpan utilizes a prefix-based extension approach,
combined with both positive and negative sequence extension techniques, to efficiently
mine NSPs [38]. During the itemset extension process, elements within the itemset
must be arranged in lexicographical order, meaning that a new element can only be
added to the itemset if it is greater than the last element in the current itemset.

The specific operations are as follows:
Positive Extension (P-Extension):

• Positive Sequence Extension (P-Sstep): Let there be a patterm P =
⟨p1, p2, . . . , pn⟩, where each pi is an itemset. A positive sequence extension adds a
new itemset pn+1 to the end of the pattern, resulting in P ′ = ⟨p1, p2, . . . , pn, pn+1⟩.

• Positive Itemset Extension (P-Istep): If the penultimate element of the can-
didate pattern is positive, an item x is added to the last itemset pn, forming the
pattern P ′ = ⟨p1, p2, . . . , pn ∪ x⟩.

Negative Extension (N-Extension):
• Negative Sequence Extension (N-Sstep): For a pattern P = ⟨p1, p2, . . . , pn⟩,

a negative sequence extension inserts a new negative itemset p′n between pn−1 and
pn, resulting in P ′ = ⟨p1, p2, . . . , pn−1, p′n, pn⟩.

• Negative Itemset Extension (N-Istep): If the penultimate element of the pat-
tern is negative, an item y is added to the second-to-last negative itemset pn−1,
forming the sequence P ′ = ⟨p1, p2, . . . , pn−1 ∪ y, pn⟩.

As the length of patterns increases in RNSP mining, the computational costs also
rise. Traditional RNSP mining mechanisms fail to maintain anti-monotonicity, which
is fundamental to the pruning strategy. To address this issue, we adopt the concept of
NSP partial order from the NegPSpan algorithm [38]. This definition not only provides
the theoretical foundation for the anti-monotonicity of negative sequential patterns in
this paper but also serves as the key premise for implementing the pruning strategy.
Definition 14 (NSP partial order) Let pα = ⟨aα

1 ¬bα
1 aα

2 ¬bα
2 . . . aα

jα−1¬bα
jα−1aα

jα⟩ and
pβ = ⟨aβ

1 ¬bβ
1 aβ

2 ¬bβ
2 . . . aβ

jβ−1¬bβ
jβ−1aβ

jβ ⟩ be two NSPs such that aα
k ̸= ∅ for all 1 ≤ k ≤

jα and aβ
k ̸= ∅ for all 1 ≤ k ≤ jβ. The partial order pα ◁ pβ iff jα ≤ jβ and: (1)

∀k ∈ [1, jα − 1], aα
k ⊆ aβ

k ∧ bα
k ⊆ bβ

k ;(2) aα
jα ⊆ aβ

jβ .
Example 15 Consider the patterns P1 = ⟨a¬c(ab)⟩, P2 = ⟨a¬(cd)(ab)⟩, and P3 =
⟨a¬(cd)a⟩. Then P1◁P2 and P3◁P2, but P1◁P3 is not true because a at the third position
in P3 does not contain (ab) in the third position in P1. P1 and P3 are subsequences
generated from P2.
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Example 15 clearly demonstrates that the pattern generation strategy we employ
ensures that for any pattern p, the subsequences p′ generated from p satisfy the partial
order condition p′ ◁ p.

4.3 The antimonotonicity of RNSP
In this section, we will demonstrate that the RNSP mining process satisfies the anti-
monotonicity property within the framework defined in this paper.
Theorem 2 (Anti-monotonicity) If pattern p is infrequent, then all its superse-
quences are also infrequent. Conversely, if p is frequent, then all its subsequences are
frequent as well.

Guyet and Quiniou [38] introduced the definition of NSP partial order (Definition
14) and discussed the anti-monotonicity of NSP mining under weak occurrence and
partial order. An NSP p is said to weakly-occur in a sequence s if there is at least one
strict or soft embedding of p in s, and one of these embeddings satisfies the negative
constraint (Definition 9). For more details, please refer to the original work by Guyet
and Quiniou [38]. The generation rules for patterns indicate that the superpattern
p∗ of p is derived from p, and any superpattern p∗ of p satisfies p ◁ p∗. Sun [26] also
provided a method for RPSP mining under nonoverlapping self-adaptive gap condi-
tions that satisfies anti-monotonicity, a foundational concept that significantly informs
the demonstration of anti-monotonicity in RNSP mining within this paper. Based
on these critical theoretical underpinnings, we will further elaborate on how RNSP
mining within the framework of this study satisfies an anti-monotonicity property.
Proof 1 Given an NSP pα = ⟨aα

1 ¬bα
1 aα

2 ¬bα
2 . . . aα

jα−1¬bα
jα−1aα

jα⟩, its supersequence
is pβ = ⟨aβ

1 ¬bβ
1 aβ

2 ¬bβ
2 . . . aβ

jβ−1¬bβ
jβ−1aβ

jβ ⟩. When jα ≤ jβ, each element of pα is
contained in the corresponding element of pβ. Assume Sβ is the support set of pβ

in a sequence s = ⟨e1e2 . . . en⟩, for every occurrence (l1, . . . , ljα , . . . , ljβ ) ∈ Sβ, the
following conditions are satisfied:

1. ∀k ∈ [1, jβ − 1], aβ
k ⊆ elk

and ∃⟨elk+1 . . . elk+1−1⟩, bβ
k ̸⊆ ⟨elk+1 . . . elk+1−1⟩

2. aβ
jβ ⊆ elk

.

In terms of partial order, we can deduce that:

1. ∀k ∈ [1, jα −1], aα
k ⊆ aβ

k ⊆ elk
and ∃⟨elk+1 . . . elk+1−1⟩, bα

k ⊆ bβ
k ̸⊆ ⟨elk+1 . . . elk+1−1⟩

2. aα
jα ⊆ aβ

jα ⊆ eljα .

Hence, for each (l1, . . . , ljα , . . . , ljβ ) ∈ Sβ corresponding to an occurrence
(l1, . . . , ljα), and where (l1, . . . , ljα) is an occurrence of pα, all of them constitute an
occurrence set Sα

occ of pα and every occurrence satisfies the nonoverlapping condition.
By inference, if pβ appears in a sequence, then pα must also appear in that sequence
because every element of pα is a subset of pβ. Therefore, any sequence that supports pβ

also supports pα, indicating that the support of pα is at least equal to or greater than
that of pβ. And the size of the support set of pβ is sup(pα) = |Sα|, because the support
set has the maximal number of occurrences, and any two occurrences are nonoverlap-
ping, |Sα| ≥ |Sα

occ|. Let Sβ be the support set of pβ, then it is known that |Sα
occ| = |Sβ |,

i.e., the size of the occurrence set Sα
occ is equal to the size of the support set Sβ. From
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the relationship between the support set, the instance set and the occurrence set in a
single sequence, it can be obtained that:

sup(pα) = |Sα| ≥ |Sα
occ| = |Sβ | = sup(pβ)

In summary, sup(pα) ≥ sup(pβ), the instances and occurrences of RNSPs satisfy the
anti-monotonicity property. This still holds true in the database.
Example 16 In Table 2, the support for pattern p = ⟨a¬cc⟩ is sup(p) = 3, its sub-
sequence p′ = ⟨ac⟩ has a support of sup(p′) = 4, and the supersequence p∗ = ⟨a¬ccb⟩
has a support of sup(p∗) = 1.

4.4 Pruning strategy
Our TK-RNSP algorithm’s design of the MAXG-MINUP strategy is inspired by
the implementation of the pruning strategy in the TKHUS-SpanBFS [47] algorithm.
The TKHUS-SpanBFS algorithm [47] uses a max heap to store unvisited nodes and
expands them based on the highest utility (PEU), thereby reducing the generation of
unpromising candidate patterns. At the same time, the algorithm employs a min heap
to maintain the top-k patterns with the highest utility and dynamically adjusts the
minimum utility threshold by continuously updating the top of the min heap, ensuring
that only the most optimal patterns are retained. Building on this approach, we intro-
duced the MAXG-MINUP strategy in TK-RNSP, which generates candidates using
patterns with the highest support (MAXG) and maintains the top-k patterns with
the highest support using a min heap. By continuously updating the top of the min
heap, the minimum support is dynamically increased (MINUP), allowing for efficient
pruning and pattern mining.

More importantly, under this strategy, the value of Min-sup is not fixed but dynam-
ically adjusted in line with the continuous updates of the Top-K patterns. We call
the support of the pattern with the smallest support in the final Top-K patterns as
”KMin-sup”. When the algorithm terminates, the Min-sup threshold will have been
elevated to KMin-sup. Such a dynamic updating mechanism can quickly increase the
Min-sup threshold, thereby effectively reducing the search space. Our experimental
results (see Section 5.2) also demonstrate the superiority of this pruning strategy.

To implement the MAXG-MINUP strategy, the TK-RNSP algorithm employs two
data structures: a max heap (SC-Maxheap) and a min heap (TOP-Minheap). The SC-
Maxheap is used to store currently generated but untraversed candidates, ensuring
that the highest support candidates are prioritized during pattern generation. The
size of TOP-Minheap is set to K to maintain the current Top-K NSC and dynamically
raise the Min-sup as the algorithm is running. For eligible newly generated pattern
candidates, the saveSC method is invoked to add the sequence to SC-Maxheap and
update the heap to keep the sequence with the maximum support at the top. The
saveTOPK method is also called to add it to TOP-Minheap. The algorithm 1 displays
the pseudocode of the saveTOPK method; if the TOP-Minheap is full, the top pattern
is removed to make space for a new pattern, and the support of the new top pattern
is set as Min-sup. If the heap is not full, the new pattern is directly added. After
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inserting a new pattern, if the heap is full, then Min-sup is updated to the support of
the top pattern in the current state.

4.5 Pattern search and support calculation
During the pattern generation process of the TK-RNSP algorithm, it simultaneously
calculates the support for both RPSPs and RNSPs. The methods for searching and
calculating the support for RPSPs are introduced in Section 4.5.1, and the methods
for searching and calculating the support for RNSPs are detailed in Section 4.5.2.

4.5.1 Positive sequential pattern search and support calculation
We utilize the bitmap-based method from the SN-RNSP algorithm to calculate the
support of RPSPs. This method offers high space efficiency, fast query speed, and
efficient set operations, making it very effective in handling pattern search and sup-
port calculation, especially when dealing with RSPs. For detailed information on the
method, please refer to [26]. To provide a more intuitive understanding of the pattern
search process, we use a Nettree structure with multiple roots and nodes, allowing the
same node to reappear at different levels to represent the pattern search process [12].
Each node has an ID corresponding to the position of elements in the sequence. The
search tree illustrates the contiguous patterns explored through a depth-first search
strategy, where each path from the root to the leaf node represents an occurrence of
a pattern in the sequence. The notation nh

k denotes a node with ID k at the h-th level
of the search tree.

1 2 4

2 3 6

3 5 6 7

a

b

(_c)

level 1

level 2

level 3

4

Fig. 1: Occurrence of < a(bc) > in the sequence s = ⟨a(ab)(bc)(ab)c(bc)c⟩

Example 17 Given a sequence s = ⟨a(ab)(bc)(ab)c(bc)c⟩, a PSP p = ⟨a(bc)⟩, the
process of searching for p in s under nonoverlapping conditions is illustrated in Figure
1. First, the first level of the search tree is the node a, corresponding to the first
element of pattern p. It can be observed that the element a is contained in e1 = a,
e2 = (ab), and e4 = (ab) of sequence s. Then, nodes n1

1, n1
2, and n1

4 (representing the
first, second, and fourth elements of the first level, respectively) are established, and
the bitmap 1101000000 for ⟨a⟩ is created. Next, by performing a P-Sstep, ⟨b⟩ is added
to ⟨a⟩ to form the pattern ⟨ab⟩. Therefore, the second level nodes for b are created at
positions n2

2, n2
3, n2

4, and n2
6. The occurrences of pattern ⟨ab⟩ are ⟨1, 2⟩, ⟨2, 3⟩, and

⟨4, 6⟩. To obtain the leftmost support, the occurrences of appending element should be
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Fig. 2: The process of generating s = ⟨a(bc)⟩ in the s2 of Table 1

rightmost, with each first unused element chosen to match an event. Since the bitmap
for the pattern records only the position of the last element in each occurrence, the
bitmap for ⟨ab⟩ should be 0110010000. Finally, by using the P-Istep to add item c
to itemset (b), the pattern ⟨a(bc)⟩ is formed. Thus, the third level of the search tree
represents the occurrence positions of node c. In sequence s, item c is contained in
e3 = (bc), e5 = c, e6 = (bc), and e7 = c, resulting in the creation of nodes n3

3, n3
5,

n6
3, and n3

7. Since e3 and e6 contain (bc), c in the third level corresponds to the child
nodes of the second level occurrences, with n3

3 and n3
6 being the child nodes of n2

3 and
n2

6, respectively. As shown in Figure 2, ⟨n1
1, n2

2, n3
3⟩ and ⟨n1

2, n2
3, n3

6⟩ are two leftmost
occurrences, namely ⟨1, 2, 3⟩and ⟨2, 3, 6⟩. The corresponding bitmap should have ”1”
in the third and sixth positions, i.e., 0010010000.

Example 17 uses a Nettree structure to explain the support search process in
PSPs. The following sections detail the support calculation using bitmaps through
the P-Istep and P-Sstep operations. For clarity, ”&” denotes the ”AND” operation,
set(index) and clear(index) represent setting or clearing a bit at a specified position,
respectively. The bitmap of ⟨a⟩ is represented by ”⟨a⟩.bm”.
Example 18 Suppose the DB contains only the sequence s = ⟨a(ab)(bc)(ab)c(bc)c⟩
from Figure 1. Figure 2 demonstrates the entire process of generating P = ⟨a(bc)⟩ in
this sequence through P-Sstep and P-Istep. First, ⟨ab⟩ is generated via P-Sstep, then
⟨a(bc)⟩ is generated via P-Istep. In s, the bitmaps for ⟨a⟩ and ⟨b⟩ are 1101000 and
0111010, respectively.

Step 1: Transform the position ”1” in ⟨a⟩.bm and generate the transformed bitmap
⟨a⟩trans.bm : 0111111, indicating potential positions for element ⟨b⟩ in the sequence
at positions 2, 3, 4, 5, 6, and 7. ⟨a⟩trans.bm&⟨b⟩.bm yields 0111010, where the first
bit set to ”1” has an index (v), i.e., v = 2. Perform set(v = 2) on ⟨ab⟩.bm to obtain
0100000.
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Step 2: To avoid repetition, clear(v = 2) on ⟨b⟩.bm, resulting in 0011010. Repeat
similar steps for other positions in ⟨a⟩.bm, ultimately obtaining ⟨ab⟩.bm = 0110010.
Then, perform P-Istep from ⟨ab⟩ to ⟨a(bc)⟩.

Step 3: First obtain the transformed bitmap ⟨ab⟩trans.bm:0011111
based on ⟨ab⟩.bm., then ⟨b⟩.bm&⟨c⟩.bm yields ⟨(bc)⟩.bm: 0010010. Perform
⟨ab⟩trans.bm&⟨(bc)⟩.bm to get 0010010, and set(v = 3) on ⟨a(bc)⟩.bm to obtain
0010000, corresponding to ⟨1, 2, 3⟩ in Figure 1.

Step 4: Similar to P-Sstep, perform clear(v) on ⟨(bc)⟩.bm. Continue steps 3 and
4 for other bits set to ”1” in ⟨a(bc)⟩.bm, with subsequent iterations omitted. The final
result is ⟨a(bc)⟩.bm = 0010010.

The clear bitmap transformations and generation of candidate sequences Ptemp

and their bitmaps Ptemp.bm can be interpreted as follows: (1) a ”1” is set at the
position index where the last element of the pattern occurrences; (2) a ’1’ represents
one occurrence of the pattern, and the number of ”1” indicates the support of the
pattern.

4.5.2 Negative sequential pattern search and support calculation

2 4 5 7 9 11

2 4 5 7 9 11

2 4 5 7 9

b

b

b 11

a

level 2

level 3

level 4

1 3 8alevel 1

Fig. 3: Occurrence of s = ⟨abb¬ab⟩ in the sequence s = ⟨ab(ad)bbdbabcb¬ab⟩

S=<1 2 (1 4) 2 2 4 2 1 2 3 2>

NSC=<1 2 2 -1 2>

k=2         t=2

<-1>.bm 01011110111

<1 2>.bm 01010000100

e1.bm ：10100001000
e2.bm ：01011010101
e3.bm ：01011010101
e4.bm ：01011110111
e5.bm ：01011010101

W1 = 2  ， W2 = 4

e1.bm ：10100001000
e2.bm ：00011010101
e3.bm ：00001010101
e4.bm ：01011110111
e5.bm ：01011010101

t = 3

W1 = 5，W2 = 6，W3 = 7 

e1.bm ：10100001000
e2.bm ：00011010101
e3.bm ：00000010101
e4.bm ：01011110111
e5.bm ：00000010101

t = 3

NSC.bm

00000010000

<1 2>.bm 01010000100

…

NSC.bm

00000010001

(a) (b) (c) (d) 

Fig. 4: Example of the bitmap calculation process for N-Extension

Next, we introduce the support calculation method for RNSPs. Unlike RPSPs,
the search for RNSPs requires not only a depth-first search but also backtracking. To
facilitate understanding, we use the Nettree structure in Example 19 to illustrate the
support search process.
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Example 19 As shown in Figure 3, the search process for the NSP p = ⟨abb¬ab⟩ in
sequence s under nonoverlapping conditions using a Nettree structure is illustrated.
This NSP p = ⟨abb¬ab⟩ is formed by adding a negative itemset ¬⟨a⟩ behind the last and
second to last positive elements of the positive sequence pattern p = ⟨abbb⟩. Initially,
using the method mentioned in Example 17, the Nettree for the pattern p = ⟨abbb⟩ is
constructed, resulting in the leftmost set ⟨1, 2, 4, 5⟩, ⟨3, 4, 5, 7⟩. However, ⟨1, 2, 4, 5⟩ is
not a valid occurrence because there are no elements between the fourth and fifth posi-
tions in sequence s, thus further searching for the third occurrence ⟨b⟩ finds ⟨1, 2, 4, 7⟩
to be a valid occurrence of p = ⟨abbb⟩ according to the definition in this paper, because
position 7 is the rightmost occurrence that meets Definition 12. Since position 7 is
used in ⟨1, 2, 4, 7⟩, and due to the element ⟨b⟩ at that position, clearly ⟨3, 4, 5, 7⟩ cannot
be an occurrence again. Continuing the search for the third occurrence ⟨b⟩, ⟨3, 4, 5, 9⟩
might be a possible next occurrence for p = ⟨abbb⟩, but the presence of element ⟨a⟩
between positions 5 and 9 clearly does not comply with Definition 12 indicating that
node n5

3 will not have children compliant with Definition 12. Hence, starting from
position 4, searching for the second ⟨b⟩ results in possible occurrences ⟨3, 4, 7, 9⟩ and
⟨3, 4, 9, 11⟩, but since the element ⟨a⟩ appears between positions 7 and 9, ⟨3, 4, 7, 9⟩ is
not a valid occurrence, while ⟨3, 4, 9, 11⟩ is. As illustrated in Figure 3, the root-leaf
paths ⟨n1

1, n2
2, n3

4, n4
7⟩ and ⟨n1

3, n2
4, n3

9, n4
11⟩, correspond to two nonoverlapping occur-

rences ⟨1, 2, 4, 7⟩ and ⟨3, 4, 9, 11⟩, respectively. The corresponding bitmap for the NSP
p = ⟨abb¬ab⟩ is 00000010001.

Based on the above examples, the core of the backtracking mechanism is to ensure
that the appearance of negative elements does not violate specific sequence rules, i.e.,
the positive pattern corresponding to negative elements must not exist within a certain
range of the sequence. When the algorithm detects the need to perform backtracking,
it restores the bitmap state of the last positive element to its state at the start of the
search.

Due to the uncertainty of negative elements’ appearances, a negative element might
appear in a specific segment of a sequence, but this does not necessarily mean that
other negative elements are absent from that segment. In contrast, the appearance of
positive elements is more certain. Thus, to avoid redundant support calculations, it
is necessary to backtrack to the position of a previous definite positive element (the
next position of this positive element is also a positive element). If no such position
exists, return to the starting position of the sequence.

For NSCs generated by N-Sstep and N-Istep, the calRNSC method is used to search
and record their occurrences, returning a bitmap representation of these occurrences
in the sequence, with its pseudocode presented in Algorithm 2. The input consists
of the NSC sequence generated by the N-Sstep and N-Istep, and the bitmap of the
second-to-last element en−1.bm. The output is the bitmap representation of the NSC
sequence e1e2 . . . en, indicating the occurrences of the NSC in the sequence. Below is
a detailed introduction to the calRNSC algorithm:

Step 1: Find the starting element position (L1-9). Given an NSC =
⟨a1¬b1a2¬b2 . . . aj−1¬bj−1aj⟩, where the starting element meets one of the following
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conditions: a represents the position of the corresponding positive element, b repre-
sents the position of the negative element, (1) a1, if ∀k ∈ [1, j − 1], bk ̸= ∅; (2) at, if
∀k ∈ (t, j − 1], bk ̸= ∅ ∧ bt = ∅.

Step 2: From top to bottom in each sequence, search for the occurrence of each
pattern (L10-47).

If the initial condition (1) from Step 1 is satisfied, the rightmost occurrence of b1
is identified (L26), and it is determined whether the positive element corresponding
to b1 appears between a1 and b1 (L27-L40). If a positive element is found, the process
backtracks to the position of a1 and sets the position of a1 to 0 (L38-L39). The reason
for this is that since the current position of b1 is at the rightmost end, the elements
preceding this position must contain a positive element in the sequence.

If no positive element appears between a1 and b1, the process continues to check the
interval between b1 and a2. The rightmost occurrence of a2 is located (L28), and it is
assessed whether the positive element corresponding to b1 appears between the current
positions of b1 and a2 (L29-L36). If a positive element is found, the process backtracks
and sets the corresponding bit in the bitmap of a1 to 0 (because the positive element
corresponding to b1 cannot appear between a1 and a2 (L22-28)). If no positive element
corresponding to b1 appears, the bitmap representation of a1 is updated by clearing
the positions that overlap with a1 (L34-L35) (because the nonoverlapping condition
requires that each item cannot be used at the same position repeatedly (L34)).

The search continues, and to satisfy the nonoverlapping condition, the bitmap of
a2 is updated (by setting the bits before the current position of a2 to 0 (L35)), and
the search for the occurrence of a3 continues (L36).

If the initial condition (2) is satisfied, the rightmost occurrence of element at+1 is
found, and the search process is the same as in condition (1) (L42-45). Additionally, if
backtracking is required, the bitmap of the last positive element needs to be restored
(L15-20).

Step 3: When t equals n, it signifies that the last element position in the current
sequence has been found, and this position is recorded in the NSC bitmap, which is
then returned.

Step 4: For each bit set to ”1” in ⟨e1 . . . ek⟩.bm, repeat Step 2 and Step 3,
ultimately returning the NSC bitmap.

To better understand the workings of Algorithm 1, we will demonstrate its opera-
tional steps and effects in a practical application through a specific Example 20 . This
will help us clearly see the process and results of the algorithm when processing data.
Example 20 Assume there is a database containing the sequence s =
⟨12(14)22421232⟩. The corresponding bitmap is generated using the calRNSC method.
Figure 3 shows how to generate NSC = ⟨122¬12⟩. This process corresponds to the
search for NSC = ⟨abb¬ab⟩ in the sequence s = ⟨ab(ad)bbdbabcb⟩ as depicted in Figure
4.

Step 1: Given the NSC < 1, 2, 2, −1, 2 >, we have n = 5 and k = n−1 = 4. Since
e4 is a negative element, we update k = k − 2 = 4 − 2 = 2, and assign k to t, thus t =
k = 2. It is observed that when performing pattern search on NSC < 1, 2, 2, −1, 2 >,
the starting element position corresponds to the second case, where there exists a
positive element followed by another positive element, and the information is obtained
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as shown in step (a). Step 2: At this point, the loop condition t ≥ k and k ≤ n − 2
is satisfied. Given that ⟨ab⟩.bm = 01010000100, it is known that positions 2, 4, and
9 contain a 1. First, a round of pattern search is conducted for the occurrence at
position 2. Since t = k = 2, the element e2 is located at position 2 in the NSC
⟨122¬12⟩, which is a positive element, and no backtracking is required. First, e2.bm =
01011010101 is obtained, and et.bm is passed to posEleBMSet. If backtracking occurs
in subsequent operations, posEleBMSet can be directly invoked to restore the original
state of et.bm. The index of the first bit set to 1 in e2.bm is recorded as w1 = 2.
The matching continues with et+1, i.e., e3, where the element at position 3 in the
NSC ⟨122¬12⟩ is a positive element. From e3.bm = 01011010101, the index of the
first bit set to 1 after position w1 is found and recorded as w2 = 4. After updating
the bitmaps using et.bm.clear(w1) and et+1.bm.clear(0, w2), the updated bitmaps are
e2.bm = 00011010101 and e3.bm = 00001010101, and t is updated to t = t + 1 = 3.
After updating the bitmap states, the information shown in (b) is obtained. At this
point, t = 3 = k = 3, and since t ̸= n, the loop condition t ≥ k and k ≤ n − 2 is still
satisfied, so the current round of pattern search continues. Since et = e3 and e3 is a
positive element, with e3.bm = 00001010101, w1 = 5 is obtained. et+1 = e4, which
is a negative element. The index of the first bit set to 1 after index w1 in e4.bm is
recorded as w2 = 6. The positive counterpart of e4 is not within the corresponding
interval ⟨Ew1+1...Ew2⟩. e5.bm = 01011010101 is used to determine the position of e5
in the sequence, recorded as w3. The index of the first bit set to 1 after position w2
in e5.bm is recorded as w3 = 7. The positive counterpart of e4 is also not within the
corresponding interval ⟨Ew2 ...Ew3−1⟩. At this point, t + 2 = 5 = n, indicating that the
last element of the NSC has been searched, and one occurrence of this NSC has been
found in the current sequence.

Step 3 : Proceed to set the NSC.bm using Set(v), where v = w3 represents the
position of the last element of the current NSC. The updated NSC.bm is 00000010000,
corresponding to one occurrence at positions 1, 2, 4, 7, and the bitmap is updated as
shown in (c).

Step 4: For the remaining positions with 1 in < ab > .bm = 01010000100, repeat
the operations in steps 2 and 3.

Finally, the result 00000010001 is obtained, corresponding to the two occurrences
of NSC ⟨abb¬ab⟩ in sequence s = ⟨ab(ad)bbdbabcb⟩ at positions {1, 2, 4, 7} and {3,
4, 9, 11}.

Algorithm 1 saveTopk(p, p.bm, Sn, In, NIn)
1: Input: p, p.bm, Sn, In, NIn

2: Output: Updated top-K patterns and updated Min-sup
3: if |TOP-Minheap| = K then
4: TOP-Minheap.remove(TOP-Minheap.root)
5: TOP-Minheap.insert(p, p.bm, Sn, In, NIn)
6: Min-sup = sup(TOP-Minheap.root)
7: else
8: TOP-Minheap.insert(p, p.bm, Sn, In, NIn)
9: if |TOP-Minheap| = K then

10: Min-sup = sup(TOP-Minheap.root)
11: end if
12: end if
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Algorithm 2 CalRNSC(e1e2 . . . en−1en, en−1.bm)
1: Input: NSC e1e2 . . . en−1en and the bitmap of the last negative element en−1.bm
2: Output: The bitmap of e1e2 . . . en−1en

3: k ← n− 1
4: while k > 1 and ek is negative do
5: k ← k − 2
6: end while
7: if k < 1 then
8: k ← 1
9: end if

10: for each sequence E1E2 . . . in DB do
11: for each ”1” in e1 . . . ek.bm do
12: t← k
13: posEleBMSet← ∅
14: while t ≥ k and k ≤ n− 2 do
15: if et is positive then
16: if backtracing then
17: et.bm← posEleBMSet
18: else
19: posEleBMSet← posEleBMSet ∪ et.bm
20: end if
21: w1 ← the index of first ”1” in et.bm
22: else
23: t← t− 1 and backtracing
24: end if
25: if et+1 is negative then
26: w2 ← the index of first ”1” after index w1 in et+1.bm
27: if p(et+1) ̸∈ ⟨Ew1+1 . . . Ew2 ⟩ then
28: w3 ← the index of first ”1” after index w2 in et+2.bm
29: if p(et+1) ̸∈ ⟨Ew2 . . . Ew3−1⟩ then
30: et.bm.clear(w1)
31: et+2.bm.clear(0, w3)
32: t← t + 2
33: else
34: et.bm.clear(0, w2)
35: t← t− 1 and backtracing
36: end if
37: else
38: et.bm.clear(0, w2 − 1)
39: t← t− 1 and backtracing
40: end if
41: else
42: w2 ← the index of first ”1” after index w1 in et+1.bm
43: et.bm.clear(w1)
44: et+1.bm.clear(0, w2)
45: t← t + 1
46: end if
47: end while
48: if t == n then
49: set one value in e1 . . . en.bm where the index of first ”1” in en.bm
50: end if
51: end for
52: end for
53: return e1 . . . en.bm

4.6 Algorithms for DFBS
This subsection introduces a bitmap-based Depth-First Backtracking Search (DFBS)
strategy for pattern generation, pattern search, and support calculation. This
approach handles both positive and negative sequence generation while leveraging a
bitmap conversion mechanism to efficiently calculate RPSPs and RNSPs support. It
is important to note that the basic methods for pattern generation, support pruning,
and pattern search have been previously discussed. The following section will focus
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Algorithm 3 DFBS(p, p.bm, Sn, In, NIn)
1: Input: p, p.bm, Sn,In, NIn

2: Output: Updated Sn, In, NIn,TOP-Minheap,SC-Maxheap,Min-sup,and new candidate patterns
3: Positive sequence extension
4: Calculate support Iplus
5: if Iplus.cardinality() > Min-sup then
6: Add item to Stemp

7: saveSC and saveTopk
8: end if
9: Positive itemset extension

10: Calculate support Iplus
11: if Iplus.cardinality() > Min-sup then
12: Add item to Itemp

13: saveSC and saveTopk
14: end if
15: if p.size() > 1 then
16: if not p.getLastElement().isNeg() then
17: Negative sequence extension
18: Calculate support Iplus
19: if Iplus.cardinality() > Min-sup then
20: Add item to NItemp

21: saveSC and saveTopk
22: end if
23: else
24: Negative itemset extension
25: Calculate support Iplus
26: if Iplus.cardinality() > Min-sup then
27: saveSC and saveTopk
28: end if
29: end if
30: end if

on the detailed implementation of the DFBS strategy, and Algorithm 3 provides the
pseudocode.

By inputting all existing items and their bitmaps from the database, as well as
the current extension pattern P and its bitmap P.bm, the output is the generated
candidate patterns. If frequent, the SC-Maxheap and TOP-Minheap are updated, and
the minimum support Min-sup is adjusted accordingly.

As shown in the pseudocode, the TK-RNSP algorithm first retrieves all existing
items and their support from the database, Sn and In are used to store items that
meet the conditions to be used for positive extensions. Due to the various constraints
in selecting negative elements, such as the requirement for lexicographical order and
the types of elements in the database, the NIn set is used to record items that can
appear in the same element and are used for negative extensions to generate NSPs.
The detailed steps are as follows:

1. For each item in Sn, perform a positive sequence extension (P-Sstep) to generate the
candidate Ptemp. Calculate the support of Ptemp, and if frequent, add the current
item to the Stemp list, to be used as the new Sn in the next iteration. The pattern
is then saved to SC-Maxheap and TOP-Minheap using the saveSC and saveTOPK
methods, respectively, and updated accordingly.

2. For each item in In, depending on the positivity or negativity of the second-to-last
position’s itemset in the current Ptemp, perform either a positive itemset extension
(P-Istep) or a negative itemset extension (N-Istep). If the second-to-last element
of Ptemp is negative, perform an N-Istep, otherwise, perform a P-Istep. Check if

22



the newly generated Ptemp is frequent; if so, add the current item to the Itemp list,
to be used as the new In in subsequent iterations, and save the pattern. Update
SC-Maxheap, TOP-Minheap, and Min-sup accordingly.

3. When the sequence size is two or greater, determine the type of extension based on
the positivity or negativity of the second-to-last element. If the conditions are met,
add the current item to the NItemp list, to be used as the new NIn in subsequent
iterations, and save the pattern. Update SC-Maxheap, TOP-Minheap, and Min-sup
accordingly.

4.7 TK-RNSP - Top-K repetitive negative sequential pattern
mining algorithm

Sequence database

Data storage

Original database

Bitmap representation

`P-Sstep P-Istep

N-Sstep N-Istep

Pattern search and support calculation

PSP search and support calculation

NSP search and support calculation

The process of generating s=⟨a(bc)⟩ in 
the s2 of Table1

Bitmap Calculation Process for NSP 

Pattern Generation

Heap update

Store the current Top-k RNSPs

Current expansion pattern

Store PSPs and NSCs

Min-sup
Raise

Extract
Heap-top pattern

SC-Maxheap

TOP-Minheap

Output

Fig. 5: The TK-RNSP algorithm’s flowchart

The algorithm begins with processing the data from the database. It first extracts
all the individual items present in the database and constructs a bitmap for each. Next,
it generates candidate patterns through Positive Extension (including P-Sstep) and
Negative Extension (including N-Sstep and N-Istep). For each generated candidate
pattern, the algorithm performs pattern searching and calculates its support. If the
support meets the minimum threshold (Min-sup), the pattern is stored in two heaps:
the SC-Maxheap, a max-heap for storing PSPs and NSCs, and the TOP-Minheap, a
min-heap for storing the current top-k RNSPs.

The heaps are then updated: the top pattern from the TOP-Minheap is used to
raise the Min-sup threshold, and the top pattern from the SC-Maxheap is used to
continue generating new patterns. This process repeats until the SC-Maxheap is empty
or the top pattern’s support in the SC-Maxheap falls below the Min-sup threshold.
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At this point, the algorithm terminates, and the patterns in the TOP-Minheap are
output as the final Top-k RNSPs.

Algorithm 4 TK − RNSP (DB, K)
1: construct TOP-Minheap whose size is K
2: construct SC-Maxheap
3: set Min-sup = 0
4: Add all items to Sn

5: for each i in S1 do
6: SC.insert(<< i >, i.bm, Sn, items from Sn that are greater than i, ∅ >)
7: end for
8: while |SC-Maxheap| > 0 do
9: if |TOP-Minheap| = K and sup(SC-Maxheap.root) ≤ Min-sup then

10: break
11: end if
12: Pattern Generation and Pruning (TOP-Minheap, SC-Maxheap)
13: end while
14: return Top-K RNSP

Figure 5 and Algorithm 4 present the overall framework of the TK-RNSP
algorithm, with the specific steps described as follows:

Step 1: First, create a min-heap of size K, TOP-Minheap, to hold the current Top-
K RNSPs, and a max-heap, SC-Maxheap, to store currently generated but unexplored
candidate sequences. Next, traverse the database to obtain all single items and place
them as individual elements into SC-Maxheap.

Step 2: From SC-Maxheap, select the pattern with the highest support as the
Current Extension Sequence (CES). Generate patterns and calculate support for this
sequence, ensuring that each extension is based on the most promising candidate
pattern currently available.

Step 3: For each generated pattern, if it meets the current Min-sup, it is added to
SCMax-heap and TOP-Minheap and updated to ensure that TOP-Minheap always
holds the Top-K patterns and dynamically updates Min-sup.

Step 4: Repeat Steps 2 and 3 until the capacity of TOP-Minheap is satisfied,
and either the support of the top element in SCMax-heap is less than Min-sup, or
SCMax-heap is empty.

Step 5: Output the Top-K RNSPs stored in TOP-Minheap.
Next, we will demonstrate the steps of the TK-RNSP algorithm for mining Top-K

RNSPs through a specific example.
Example 21 Figure 6 shows a specific example of mining the Top-K RNSPs using
the TK-RNSP algorithm. In this case, the database contains only a single sequence
s = ⟨2(14)22421232⟩, and mining for the K=3 RNSPs is conducted under an initial
minimum support threshold, Min-sup=0. A detailed analysis of the mining process
follows:

First, all single items and their occurrences are extracted from the database, and
these 1-Size sequences are stored in SC-Maxheap.

Subsequently, the candidate with the highest support is selected for the first round
of pattern generation, as shown in (a), where no new NSC is generated.

During the pattern generation process, as shown in (b), the algorithm continues to
extract the current highest support candidate ⟨22⟩ for candidate generation, at which
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Fig. 6: Example demonstration of TK-RNSP algorithm

point an NSC is produced, and TOP-Minheap reaches full capacity for the first time,
with the current Min-sup updated to 2.

Continuing pattern generation, as shown in (c), for the candidates generated from
CES = ⟨222⟩, none are able to enter the current TOP-Minheap.

Subsequently, as shown in (d), the algorithm continues to extract the sequence with
the highest support from SC-Maxheap for each round of pattern expansion. Pattern
generation will cease when the candidate with the highest support in SC-Maxheap is
less than or equal to the current Min-sup.

Finally, the algorithm returns the Top-K NSCs from the current TOP-Minheap as
the generated Top-K RNSPs, as shown in (e). Moreover, from the candidate generation
of each round, it is evident that the support for candidates generated by extending CES
is less than the support of CES itself, confirming the anti-monotonicity characteristic
of RNSP mining.

Based on the above description, the algorithm’s termination and correctness are
analyzed as follows. The termination of the algorithm is guaranteed by the heap
update mechanism involving SC-Maxheap and TOP-Minheap. In each iteration, the
algorithm selects the pattern with the highest support from SC-Maxheap for expan-
sion, and adjusts Min-sup dynamically to prune patterns that do not meet the support
threshold. The algorithm terminates when SC-Maxheap is empty or the support of
the top pattern in SC-Maxheap falls below Min-sup. Thus, the algorithm ensures com-
pletion within a finite number of steps and outputs the current Top-K RNSPs that
meet the criteria.

Additionally, the algorithm ensures the generation of all possible positive and
negative sequential patterns through sequence and itemset extensions. The support
for each pattern is efficiently calculated using bitmaps. The pruning strategy, based
on the anti-monotonicity of RNSP, dynamically adjusts Min-sup to effectively prune
patterns that do not meet the support requirement, ensuring that the remaining
patterns satisfy the support threshold. As a result, the algorithm is able to correctly
output the Top-K RNSPs while ensuring termination.
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5 Experiments
To assess the efficiency of TK-RNSP, the following exploration questions (EQ) were
considered:
• EQ1: Does the MAXG-MINUP strategy effectively reduce the candidate space and

improve algorithm efficiency?
• EQ2: Can the DFBS strategy effectively identify the repeated occurrences of

patterns?
• EQ3: Does the performance of the TK-RNSP algorithm surpass that of other

advanced algorithms in completing the task of mining top-K RNSPs?
• EQ4: How does the value of parameter K affect the time performance of TK-RNSP?
• EQ5: How scalable is the TK-RNSP algorithm when applied to large-scale

databases?

To answer EQ1 and verify the effectiveness of the MAXG-MINUP strategy, we
test two variations of TK-RNSP, named Extension-MINEXTEND and Extension-
FIXEDSUP in Section 5.2. For EQ2, we introduce a variation named TK-NSP to
evaluate the search effectiveness of the DFBS strategy (see Section 5.2). To answer
EQ3, we select the state-of-the-art E-RNSP method, namely SN-RNSP, as the com-
peting algorithm to validate the efficiency of TK-RNSP in mining Top-K RNSPs (see
Section 5.2). For EQ4, we examine the impact of different K value settings on TK-
RNSP from multiple perspectives, and results are presented in Section 5.2. Lastly, for
EQ5, we test the scalability of TK-RNSP using large-scale databases in Section 5.3.

5.1 Datebase and baseline
The experiments were carried out on eight distinct datasets. The selection of these
datasets is based on their widespread use in related research. For instance, the SN-
RNSP algorithm [26] was evaluated using DS1, DS3, DS5, and DS8. These datasets
encompass both generated and real-world data, featuring diverse characteristics and
structures. By using such varied datasets, we can more comprehensively evaluate the
algorithm’s performance across different scenarios.
• Dataset 1 (DS1): C5-T8-S8-I8-DB10K-N100-R0, features an average of 5 elements

per sequence (C), 8 items in each element (T), 8 as the average size of maximal
potentially large sequences (S), 8 items in the maximal potential PSP (I), 10K data
sequences (DB), 100 divergent items (N), and a repetition level of 0 (R).

• Dataset 2 (DS2): C5-T8-S8-I8-DB10K-N100-R1, similar to DS1 but with a
repetition level of 1 (R).

• Dataset 3 (DS3): C6-T8-S8-I8-DB10K-N100-R0, features an average of 6 elements
per sequence (C), similar to DS1 in other parameters but differing in the average
number of elements per sequence.

• Dataset 4 (DS4): C6-T8-S8-I8-DB10K-N100-R1, similar to DS3 but with a
repetition level of 1 (R).

• Dataset 5 (DS5): OnlineRetail II best, comprises transactions from an online
retail company in the UK, selling gifts from January 12, 2009, to September 12,
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2011. It includes 4,383 sequences and 10,157 unique items, with an average of 9.0
items per itemset.

• Dataset 6 (DS6): E-SHOP, emanates from an online store catering to pregnant
women, featuring clickstream data. Its sequences, composed of itemsets, average 9.0
items each.

• Dataset 7 (DS7): MicroblogPCU, sourced from Sina Weibo for identifying spam-
mers within microblogs, consists of 221,579 instances. Constraints on sequence
length are required for DS6 to facilitate the mining task.

• Dataset 8 (DS8): BIKE, encompasses sequences of shared bicycle parking loca-
tions within a city. Each item signifies a bike-sharing station, and each sequence
denotes a bicycle’s location over time. The DS5 dataset includes 21,078 sequences
and 67 unique items, with an average sequence length of 7.27.

Datasets DS1-4 were generated using the IBM data generator, while DS5-8 are
real datasets downloaded from SPMF (www.philippe-fournier-viger.com/spmf/).

To evaluate the performance of RNP-Miner, we selected five competing algorithms:

1. Extension-MINEXTEND (E-M) and Extension-FIXEDSUP (E-F): To
verify the effectiveness of the MAXG-MINUP strategy, we designed E-M and E-
F. E-M aims to validate the effectiveness of the MAXG strategy in reducing the
search space by generating candidates using minimal support patterns, which also
serves to assess the improvement in algorithm efficiency. E-F focuses on validating
the effectiveness of the MINUP strategy in narrowing the space by modifying the
pruning method to use a fixed support threshold instead of dynamically increasing
it, again to evaluate efficiency enhancements.

2. TK-NSP: To assess whether the DFBS strategy can effectively capture repeated
occurrences of patterns, we propose TK-NSP. This algorithm mines NSPs without
considering pattern repetitions, utilizing the pattern generation and pruning meth-
ods of TK-RNSP, but calculating support solely based on the number of sequences
that contain the pattern (i.e., the support calculation does not count the frequency
of the pattern’s occurrences in the database but rather the number of sequences
that include it).

3. SN-RNSP and E-RNSP: For comparative mining capabilities, we employed
two classic state-of-the-art RNSP mining methods: SN-RNSP and E-RNSP. Prior
to modification, these algorithms could not perform Top-K RNSP mining tasks,
as they only output all RNSPs under a fixed threshold. To accomplish the Top-
K RNSP task, we modified both algorithms, resulting in the E-RNSP* and SN-
RNSP* versions, which can output Top-K RNSPs under fixed thresholds, similar
to the original algorithms.

The experiments were conducted on two different machines, all running on Win-
dows 11 (64-bit) and implemented in Java. The experiment in Section 5.2.1 was carried
out on a machine with an Intel(R) Core(TM) i7-6700 CPU at 3.40 GHz, equipped
with 64.0 GB of RAM. All other experiments were performed on a system featuring a
12th Gen Intel(R) Core(TM) i9-12900H 2.50 GHz processor with 16 GB of memory.
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5.2 Mining Performance and Analysis
This section delves into four core questions (EQ1, EQ2, EQ3, EQ4) and addresses
EQ1, EQ2, and EQ3 sequentially across three subsections, while also analyzing the
related content of EQ4 within each subsection. Specifically, Subsection 5.2.1 will
examine the effectiveness of the MAXG-MINUP strategy in reducing the candidate
space and improving algorithm efficiency, validated through the algorithms E-M and
E-F. Subsection 5.2.2 will assess the effectiveness of the DFBS strategy employed by
TK-RNSP in pattern repetitiveness search using TK-NSP. In Subsection 5.2.3, we will
compare TK-RNSP with E-RNSP and SN-RNSP to verify its performance in min-
ing Top-K RNSPs. Furthermore, each subsection will analyze the impact of different
K value settings on the performance of TK-RNSP. The experimental results demon-
strate that TK-RNSP performs exceptionally well across multiple datasets, efficiently
accomplishing Top-K RNSP mining.

Fig. 7: Performance on DS1-DS4
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Fig. 8: Performance on DS6 and DS7

5.2.1 Analysis of the Effectiveness of the MAXG-MINUP Strategy
TK-RNSP outperforms E-M and E-F, indicating that the MAXG-MINUP strat-
egy effectively reduces the number of candidate generated and enhances algorithm
efficiency.

Figures 7 and 8 illustrate the experiments conducted with TK-RNSP, E-M, and
E-F on datasets DS1-4, DS6, and DS7 when K = 500. It is found that Given that
E-M and E-F generated a higher number of patterns and performed multiple support
calculations, resulting in increased execution time, their initial support threshold was
set to Min-sup = 1000 to balance experimental conditions and reduce runtime. In E-M,
Min-sup dynamically increases as the algorithm progresses, whereas in E-F, it remains
constant. The initial threshold for TK-RNSP is set at Min-sup = 0, which is its default
setting, and it dynamically increases during execution. While this configuration may
seem unfair, its purpose is to emphasize the performance comparison of TK-RNSP
and accurately demonstrate its efficiency.

With regards to EQ1, in Figure 7 the same color represents experiments con-
ducted on the same dataset, while specific shapes denote experiments using particular
algorithms. For instance, the green triangle represents TK-RNSP experiments on
the DS4 dataset. The results show that even starting from a lower initial support
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of Min-sup = 0, TK-RNSP still achieves the shortest runtime. For example, on the
DS2 dataset, the runtime of TK-RNSP was 3.271s, compared to 54.958s for E-M and
33.731s for E-F.

In Figure 8, the runtime for TK-RNSP on the DS6 dataset was only 101.649s,
significantly lower than the 20,212.479s for E-F and 3,527.582s for E-M. This means
that the runtime for TK-RNSP was approximately 0.5% of that for E-F and 2.9% of
that for E-M. Furthermore, TK-RNSP generated 3,927 patterns, while E-M and E-F
produced 40,034 and 94,211 patterns, respectively, approximately 10.2 times and 24
times the number generated by TK-RNSP.

The reason for this is that MAXG-MINUP rapidly narrows the search space based
on the anti-monotonicity property. MAXG employs the candidate patterns with the
highest support to generate candidates, which are more likely to satisfy the current
support threshold conditions, while MINUP allows for dynamic increases in support,
continuously narrowing the search space and enhancing algorithm efficiency.

For EQ4, Figure 9 displays the number of candidate patterns generated by the
three algorithms (E-M, E-F, and TK-RNSP) at different K values on datasets DS1
and DS3. At K = 10, E-M generated 27,562 candidates, E-F generated 20,948, while
TK-RNSP only generated 5,040. This is due to the effectiveness of the MAXG-MINUP
pruning strategy, which significantly reduce the generation of invalid candidate
patterns, thus compressing the search space.

As K increases, Figures 10, 11, and 12 show the number of mined patterns and
runtime on DS2, DS4, and DS7, respectively. Overall, the advantages of TK-RNSP
in terms of both pattern count and runtime become increasingly apparent as K
increases. While the runtime and pattern count of all algorithms trend upward across
all datasets, TK-RNSP consistently maintains lower runtimes. For instance, on the
DS2 dataset at K = 1000, TK-RNSP’s runtime was 4.828s, while E-M and E-F took
62.831s and 55.081s, respectively, making TK-RNSP approximately 13 times and 11.4
times faster than E-M and E-F. Simultaneously, TK-RNSP generated 4,841 patterns,
while E-M and E-F produced 23,850 and 18,267 patterns, respectively. This indicates
that TK-RNSP retains a significant advantage even at high K values, demonstrating
its stability.

Figures 10 and 11 further confirm this trend. In Figure 12, when K = 10, TK-
RNSP generated 86,094 patterns, whereas E-M and E-F produced 225 and 555,842
patterns, respectively. The runtime for E-M reached 365.87 times that of TK-RNSP
at 83.249s, totaling 30,457.696s, while E-F’s runtime was 17.83 times longer than that
of TK-RNSP, totaling 1,484.471s.

These observations indicate that the pruning strategy employed by the TK-RNSP
algorithm significantly reduces both the number of patterns and runtime when search-
ing for patterns with varying K values, and the algorithm’s performance remains
stable despite fluctuations in K values.

5.2.2 Evaluation of the Effectiveness of the DFBS Strategy
To evaluate the effectiveness of the DFBS strategy in identifying pattern repetitive-
ness, we compared it with TK-NSP, which focuses solely on the number of sequences
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Fig. 9: Comparative Number of Candi-
date Patterns Generated on DS1 and DS3 Fig. 10: Performance on DS2

Fig. 11: Performance on DS4 Fig. 12: Performance on DS7

containing the patterns. The results indicate that, across various datasets and dif-
ferent K values, TK-RNSP consistently achieves higher pattern support levels. This
demonstrates that the DFBS strategy effectively recognizes the occurrence frequency
of patterns within the database.

Table 4 presents a performance comparison of the TK-RNSP and TK-NSP algo-
rithms in mining Top-K RNSPs across different K values, with a focus on analyzing
the impact of the DFBS strategy on pattern repetitiveness (EQ2) and the effect of
varying K values on algorithm performance (EQ4). The experimental results demon-
strate that TK-RNSP significantly outperforms TK-NSP across multiple datasets,
particularly in terms of the number of generated patterns and support levels.

First, regarding EQ2, the introduction of the BFDS strategy enables TK-RNSP to
effectively identify repeated occurrences of patterns. For instance, in the DS1 dataset
with K = 10, the support range for TK-RNSP is [1685, 1869], while that for TK-
NSP is lower. This reflects TK-RNSP’s capability to generate higher-support patterns
when considering pattern repetitiveness. This is because TK-RNSP takes into account
the repeated occurrences of patterns within sequences, where support refers to the
number of times a pattern appears in the database. In contrast, TK-NSP does not
consider pattern repetitiveness, and support indicates the number of sequences con-
taining the pattern. Moreover, TK-NSP generates more patterns when completing
the top-K mining task; for example, in DS5, when K = 10, TK-RNSP generates only
1,551 patterns, whereas TK-NSP generates 15,712 patterns, meaning TK-RNSP pro-
duces only about 10% of the patterns generated by TK-NSP. This is due to the slower
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increase of the minimum support threshold and its relatively low value when pattern
repetitiveness is not considered, resulting in less effective candidate space reduction.

Secondly, concerning EQ4, the results in Table 4 reflect the influence of different
K value settings on the TK-RNSP algorithm. As K increases, TK-RNSP consistently
outperforms TK-NSP in terms of both the number of generated patterns and the
range of pattern support. For example, as K increases from 10 to 1000, the number
of patterns generated by TK-RNSP in DS1 increases from 2,278 to 5,531, with a
relatively smooth growth trend in both support range and pattern count, indicating
that TK-RNSP maintains good performance stability at higher K values.

5.2.3 Performance Comparison of the TK-RNSP Algorithm
We modified E-RNSP and SN-RNSP to create the E-RNSP* and SN-RNSP* versions
that can output Top-K results based on support size, similar to the original algorithms.
The results indicate that TK-RNSP performs well across different K values.

Table 4 presents a comparative analysis of SN-RNSP*, E-RNSP*, and TK-RNSP
across datasets DS1-3 and DS5, focusing on metrics such as execution time (T ), num-
ber of patterns (N), and support range (R). The support thresholds for SN-RNSP*
and E-RNSP* are consistent within the same datasets, set at 500, 200, 500, and 1000
for DS1-3 and DS5, respectively. In contrast, the initial support threshold for TK-
RNSP is consistently set to 0. This difference highlights TK-RNSP’s advantages in
pattern support.

Regarding EQ3, Table 4 shows that the number of patterns generated (N) by TK-
RNSP is significantly lower across all datasets compared to E-RNSP* and SN-RNSP*.
For instance, in the DS1 dataset at K = 50, TK-RNSP generates 1,352 patterns, while
SN-RNSP and E-RNSP generate 7,550 and 3,953 patterns, respectively. In terms of
runtime (T ), TK-RNSP also consistently outperforms the other algorithms. In DS1
at K = 50, TK-RNSP’s runtime is 2.037s, compared to 5.827s for SN-RNSP* and
53.037s for E-RNSP*. However, in DS5, TK-RNSP’s runtime is longer than that of E-
RNSP*, as E-RNSP* generates very few patterns under the Min-sup=1000 condition.
Additionally, TK-RNSP generally finds patterns with higher support at the same K
value than SN-RNSP* and E-RNSP*, demonstrating stronger pattern repetitiveness
capture. These results validate TK-RNSP’s efficiency in handling Top-K RNSP tasks.

Table 4 also illustrates the impact of K values on the performance of TK-RNSP
(EQ4). As the K value increases, both the number of patterns (N) and the runtime (T )
for TK-RNSP also rise, although the increase is relatively gradual. This indicates that
TK-RNSP maintains good performance and stability even when faced with larger K
values. For instance, in DS3, as the K value increases from 50 to 1000, the number of
patterns generated by TK-RNSP rises from 841 to 5,116. However, this figure remains
significantly lower compared to other algorithms that must first generate all patterns
before performing top-k selection under the same threshold conditions. Additionally,
in DS3, the runtime for TK-RNSP increases from 1.411s to 6.062s , yet it still remains
substantially lower than the execution times of other algorithms.

Finally, Figure 13 presents a performance comparison of three algorithms (E-
RNSP*, SN-RNSP*, and TK-RNSP) under different Min-sup conditions, with a

31



T
ab

le
4:

Pe
rfo

rm
an

ce
C

om
pa

ris
on

of
T

K
-N

SP
an

d
T

K
-R

N
SP

A
cr

os
s

D
S1

,D
S3

,D
S5

,a
nd

D
S6

K
M

et
ho

d
P

at
te

rn
nu

m
be

r
Su

pp
or

t
ra

ng
e

D
S1

D
S3

D
S5

D
S6

D
S1

D
S3

D
S5

D
S6

10
T

K
-N

SP
28

19
28

22
15

71
2

56
47

2
[1

66
5,

16
69

]
[2

48
6,

24
92

]
[2

02
6,

20
26

]
[1

35
52

,1
35

52
]

T
K

-R
N

SP
12

28
71

0
15

51
26

82
4

[2
47

0,
24

77
]

[4
22

3,
42

47
]

[1
38

77
,1

38
77

]
[9

61
63

,9
61

63
]

10
0

T
K

-N
SP

44
06

45
44

16
02

4
56

57
3

[1
64

2,
16

69
]

[2
45

5,
24

92
]

[2
02

6,
20

26
]

[1
35

52
,1

35
52

]
T

K
-R

N
SP

22
78

18
47

18
06

27
03

7
[2

41
6,

24
77

]
[4

13
3,

42
47

]
[1

38
77

,1
38

77
]

[9
61

63
,9

61
63

]

50
0

T
K

-N
SP

79
00

71
37

18
61

2
57

00
8

[1
60

6,
16

69
]

[2
39

5,
24

92
]

[2
02

6,
20

26
]

[1
35

51
,1

35
52

]
T

K
-R

N
SP

53
51

35
56

39
27

27
93

6
[2

33
3,

24
77

]
[3

96
7,

42
47

]
[1

38
77

,1
38

77
]

[9
61

63
,9

61
63

]

10
00

T
K

-N
SP

10
05

8
86

51
21

46
0

57
59

1
[1

56
8,

16
69

]
[2

34
0,

24
92

]
[2

02
6,

20
26

]
[1

35
50

,1
35

52
]

T
K

-R
N

SP
66

94
51

16
64

77
29

03
6

[2
24

7,
24

77
]

[3
80

1,
42

47
]

[1
38

77
,1

38
77

]
[9

61
63

,9
61

63
]

32



particular focus on their runtime across varying K values. Specifically, the for E-
RNSP* is set to 1000, while E-RNSP*’ refers to the same algorithm but with Min-sup
set to 500. Similarly, the Min-sup for S-RNSP* is also set to 1000. For TK-RNSP, the
Min-sup is set to 0, whereas TK-RNSP’ represents the version with the Min-sup set
to 1000.

The figure shows that TK-RNSP (Min-sup=0) exhibits a clear advantage in run-
time at lower K values. Specifically, at K = 10, the runtime is only 65.647s , while
SN-RNSP* is at 428.514s , and E-RNSP* is at 13.977s , demonstrating TK-RNSP’s
ability to complete tasks quickly at lower K values. As K increases, the runtime of
TK-RNSP (Min-sup=0) rises significantly, reaching 856.738s at K = 500. In contrast,
SN-RNSP* has a runtime of 843.830s at K = 500, while E-RNSP* remains relatively
low at 13.736s. This is because SN-RNSP* and E-RNSP* filter Top-K RNSP from
a fixed number of patterns under a fixed threshold. Under Min-sup=1000, the num-
ber of patterns generated by E-RNSP is minimal (as shown in Table 4), resulting in
faster runtime. Moreover, the runtime of TK-RNSP increases rapidly with higher K
values, particularly at K = 500, where there is a significant increase and some vari-
ability. This fluctuation occurs because, as K increases, the relative value of Min-sup
decreases, leading to a significant increase in the number of patterns traversed and
the time required.

It is important to note that while this section aims to evaluate the algorithm’s
ability to rapidly raise the minimum support threshold to find the highest support
Top-K RNSP, the described comparison method may have certain limitations due to
differences in negative inclusion definitions, pattern generation strategies, and pruning
strategies between SN-RNSP and E-RNSP. Additionally, in practical scenarios, we
cannot use SN-RNSP and E-RNSP to set reasonable minimum support thresholds for
Top-K RNSP without prior experience.
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Fig. 13: Algorithm performance testing on DS5
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5.3 Scalability experiments
To address EQ5, this section conducted scalability experiments to evaluate the per-
formance of TK-RNSP on large-scale datasets, analyzing its stability and efficiency
as data volume increases. This part of the experiment includes two datasets: DS1 and
DS8. The sizes of the datasets increased from approximately 2.0 MB and 1.6 MB
to a maximum of 84.8 MB and 40.9 MB, resulting in a 25-fold increase, with K set
to 500 and the initial minimum support threshold set to 0. The test results indicate
that TK-RNSP demonstrates strong performance when handling large-scale datasets,
exhibiting good scalability and stability.

Fig. 14: Performance on DS1 Fig. 15: Performance on DS8

Results are shown in Figure 14 for DS1 in terms of runtime and support as the
dataset size is expanded. In the figure, Max-sup represents the highest support of
patterns in the result set, and Min-sup represents the lowest support. It is observed
that the runtime increased from 3.937s to 83.542s, displaying a linear growth trend.
Max-sup increased from 2,477 to 61,925 , and Min-sup from 2,333 to 58,325 , also
showing a linear growth trend. Figure 15 presents results for DS8. It is found that the
algorithm’s runtime increased from 15.506s to 366.920s as the dataset size increased,
showing a relatively linear growth. Max-sup increased from 1,261 to 31,525 , and
Min-sup from 1,205 to 30,125 , growing linear with data volume.

The experimental results from DS1 and DS8 indicate that the TK-RNSP algorithm
maintains stable runtime performance, effectively handling large datasets without
sudden drops or unstable fluctuations, demonstrating good scalability and stability.

5.4 Summary
1. Compared to two variants using the same pattern generation and NSP search

methods but different pruning strategy, TK-RNSP exhibits significantly higher
operational efficiency across multiple datasets, demonstrating the effectiveness of
its pruning strategy;

2. Compared to the Top-K non-repetitive NSP mining algorithm, TK-NSP that use
the same pattern generation strategy and pruning strategy, TK-RNSP is able to
mine patterns with higher support across multiple datasets;

3. In Top-K frequent pattern mining tasks, TK-RNSP demonstrates superior adapt-
ability, efficiently mining patterns even with a default support threshold of 0. This
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capability renders TK-RNSP highly practical in real-world applications where prior
knowledge is lacking;

4. TK-RNSP demonstrates excellent stability, operating stably on large datasets even
for large K-value settings.

6 Conclusion and future work
We propose the TK-RNSP algorithm, which effectively accomplishes Top-K mining
tasks for RNSPs, demonstrating high efficiency even when the preset support threshold
is set to zero. This addresses the challenges users face in determining appropriate
thresholds. Additionally, we have established that RNSP mining within the proposed
framework adheres to the property of anti-monotonicity, enabling us to introduce
the MAXG-MINUP strategy for pruning. Furthermore, we use DFBS strategy to
achieve efficient pattern search and support calculation. Finally, experimental results
across multiple datasets indicate that the TK-RNSP algorithm excels in both mining
efficiency and result stability.

In the 5G era, social media platforms have rapidly evolved, generating a substan-
tial amount of streaming data, and users’ real-time interactions and content uploads
present unprecedented challenges. Although the existing TK-RNSP algorithm demon-
strates a certain level of efficiency in RNSP mining, it falls short in effectively handling
real-time data streams. Therefore, future research should focus on enhancing the
algorithm’s capacity to process streaming data, particularly by optimizing the TK-
RNSP algorithm to adapt to the dynamically changing data environment.With these
improvements, the TK-RNSP algorithm is expected to play a significant role in social
media data analysis and provide more comprehensive and robust support in emerging
fields such as online behavior analysis. This will further advance the development of
data mining technologies.
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