Noname manuscript No.
(will be inserted by the editor)

TSPIN: Mining Top-k Stable Periodic Patterns

Philippe Fournier-Viger - Ying Wang - Peng Yang -
Jerry Chun-Wei Lin - Unil Yun - Rage Uday Kiran

Received: date / Accepted: date

Abstract Discovering periodic patterns consists of identifying all sets of items (values) that periodically
co-occur in a discrete sequence. Although traditional periodic pattern mining algorithms have multiple
applications, they have two key limitations. First, they consider that a pattern is not periodic if the
time difference between two of its successive occurrences is greater than a maxPer threshold. But this
constraint is too strict, as a pattern may be discarded based on only two of its occurrences, although it
may be usually periodic. Second, traditional algorithms use a constraint that the support (occurrence
frequency) of a pattern must be no less than a minSup threshold. But setting that parameter is not
intuitive. Hence, it is usually set by trial and error, which is time-consuming. This paper addresses
the first limitation by introducing a concept of stability to find periodic patterns that have a stable
periodic behavior. Then, the second limitation is addressed by proposing an algorithm named TSPIN
(Top-k Stable Periodic pattern mINer) to find the top-k stable periodic patterns, where the user can
directly specify the number of patterns k to be found rather than using the minSup threshold. Several
experiments have been performed to assess TSPIN’s performance, and it was found that it is efficient
and can discover patterns that reveal interesting insights in real data.

Keywords Periodic patterns - Stability - Top-k patterns - Sequence

1 Introduction

A popular sub-field of data mining is pattern mining [34]. It consists of applying algorithms to discover
patterns in data that satisfy some user requirements. Pattern mining is generally an unsupervised process
that is done to reveal patterns that may help to understand the data and/or support decision-making.
One of the most popular pattern mining tasks is Frequent Itemset Mining (FIM) [2,5,6,15,22,23,35,
51,52,34], which aims at identifying all itemsets (sets of values or symbols) that appear frequently in

Philippe Fournier-Viger
School of Humanities and Social Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen, China
E-mail: philfv8@yahoo.com

Y. Wang
School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China
E-mail: iwangying 919@163.com

P. Yang
School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China
E-mail: pengyeung@163.com

J. C. W. Lin

Department of Computing, Mathematics and Physics, Western Norway University of Applied Sciences (HVL), Bergen,
Norway

E-mail: jerrylin@ieee.org

U. Yun

Department of Computer Engineering, Sejong University, Seoul, Republic of Korea

E-mail: unilyun@gmail.com

R. U. Kiran

The University of Tokyo, Tokyo, Japan
E-mail: uday rage@tkl.iis.u-tokyo.ac.jp

2 Fournier-Viger et al.

data. The input is a transaction database and a minimum support (minSup) threshold. The output is
the set of all frequent itemsets, that is sets of values having a support (occurrence frequency) that is no
less than the minSup threshold. FIM has been applied in many domains such as image classification,
bioinformatics, network traffic analysis, e-learning, activity monitoring and malware detection [15,34].
However, selecting itemsets based on their frequency is useful but it may still reveal many patterns that
are uninteresting to users. For example, analyzing a customer transaction database may reveal that
some customers have bought milk and bread together many times but it does not say much about the
context of these purchases. To find patterns that are more tailored to the needs of users for various
applications, additional criteria have been considered and other types of patterns were studied. For
example, it was proposed to mine condensed representations of patterns such as maximal frequent
itemsets [21] and closed frequent itemsets [41] to obtain a summary of all frequent itemsets. Moreover,
other variations of the FIM task were considered such as to mine the most profitable patterns [14,18,
47,49,50], itemsets when considering uncertainty [33,46], rare patterns [31], frequent episodes [24,19,
36], sequential patterns [13] and periodic frequent patterns [3,4,12,16,27,28,30,32,39,40,42,43,45].

Itemsets that are frequent and periodically appear in a database are called periodic-frequent patterns
(PFP). For instance, a periodic frequent pattern found in transactions made by a customer may be
{wine, cheese, bread}, indicating that he periodically buys wine, cheese and bread together, every four
transactions or less. Such periodic pattern can be very interesting as it reveals some habit that a
customer repeats over time. This pattern could be used for marketing [12,45]. For instance, based on
this pattern, a retailer could send a text message every week to the customer to remind him of buying
these items and offer him a discount. Besides market basket analysis, there are many other domains
where it is interesting to find events that periodically re-appear in a sequence of events, or more generally
in a sequence of symbols. For instance, periodic patterns have been discovered in activity sequences to
perform activity monitoring [26]. A periodic pattern found in an activity sequence can be for example
that someone always prepare coffee, eat breakfast, and brush his teeth. Other examples of applications
are to analyse GPS trajectories [53], finding patterns in patient data for health management [25], in
location sequences to perform user location prediction [48]. in spatial sensor data to understand how
pollution is spreading [29], and to improve the performance of recommender systems [9]. While some
studies have considered discovering PFPs in a database of sequences [8,16], most studies have considered
analyzing a single sequence of events (sets of items), called a transaction database [3,4,11,12,27,30,45].

The goal of PFP mining in a sequence of events is to find some sets of events (itemsets) that re-
peatedly appear. This is done by looking at the periods of patterns to find patterns that have a small
periodicity. The periods of a pattern are the time gaps or number of events between each consecutive
occurrences of that pattern. The periodicity of a pattern is traditionally defined as its maximum period.
A pattern is then considered periodic if its periodicity is not greater than a user-defined max Per thresh-
old [27,45]. For example, a pattern {wine, cheese, bread} may be considered to have a periodicity of 4
transactions if is purchased at least every four transactions by a customer (all the pattern’s periods are
not greater than 4). And if mazxper > 4, this pattern is periodic. This model sometimes called full PFP
mining has been well studied but has an important drawback. It is that it is too strict as a pattern is
discarded if it has only one period exceeding max Per. For instance, consider that maxzPer = 1 week, and
that a customer buys {bread, cheese} every week-end. This pattern will be periodic, but if the customer
skips a single week, then it will be considered as not periodic.

To provide more flexibility, the model of partial PFP mining was defined [30]. It relaxes the mazPer
constraint to allow up to a maximum number of periods to exceed maxPer. In other words, a pattern
is deemed periodic if no more than = of its periods are greater than maxPer, where z is a user-defined
threshold. Thus, full PFP mining is the special case where x = 0. Partial PFP mining is more flexible
than full PFP mining but still has an important issue, which is that it only checks if each period exceeds
the max Per threshold but it does not consider by how much a period exceeds that threshold. Thus, if
maxPer is set to three days, this model considers that if a customer stops buying some products for
a period of one week, it is the same as if he had stopped for a period of one year. Besides, another
limitation of this model and previous ones is that they do not check whether the periods satisfying the
max Per constraint are close to each other or not. Thus, a pattern may be considered as periodic even
if it frequently alternates between periods that are longer and shorter than maxzPer. For applications
such as the analysis of customer behavior, it is desirable to find stable periodic-frequent patterns, i.e.
patterns that have consecutive periods that are more or less stable in terms of length over time. The
reason is that a stable pattern will be more predictable than an unstable one as its periods will not
vary greatly. Thus, taking decisions based on a stable pattern can be viewed as less risky than based
on unstable patterns. Discovering stable patterns can reveal useful information for various applications
such as marketing, predicting product demand and managing inventories. For example, knowing that

TSPIN: Mining Top-k Stable Periodic Patterns 3

customers of a store periodically purchase some products about every week and that these patterns are
very stable, can help plan orders to refill inventories.

Besides, a second problem with traditional PFP mining algorithms is that the user must set a
constraint on the support (occurrence frequency) of patterns. This constraint, inspired by FIM, states
that a PFP must have a support that is no less than a minSup threshold [45]. Though this constraint is
useful to focus on popular trends in the data, setting the minSup parameter is not intuitive. If minSup
is set too high, few PFPs may be found, while if minSup is set too low, too many PFPs are found
and algorithms may have very long runtimes or even run out of memory or storage space. Because how
minSup influences the number of PFPs depends on datasets characteristics, a user will typically set this
parameter by trial and error until just enough patterns are found, which is time-consuming.

This paper addresses the two above limitations of traditional PFP mining. First, a function to
measure the stability is introduced to find periodic patterns that may not always be periodic but
generally have a stable periodic behavior. Second, to avoid relying on a minSup threshold, it is proposed
to find the top-k most frequent patterns that have a stable periodicity. In this novel problem, the user
can directly specify the number of patterns k to be found rather than having to set a minSup threshold.
The parameter k is more intuitive to set than minSup because choosing an appropriate minsup value
depends on datasets characteristics that are initially unknown to users, while k simply represents the
number of patterns that the user wants to analyze. The contributions of this paper are threefold:

1. To be able to identify stable periodic patterns, a novel function to measure stability is proposed
named lability. It is designed to assess how stable the periodic behavior of an itemset is in a sequence
of transactions. This function is based on the concept of cumulative sum and evaluates by how much
each period exceeds a maxPer threshold, and how close these periods are. Properties of the lability
function are studied and based on that function a formal definition of the concept of stable periodic
pattern is proposed. Furthermore, a search space pruning property is designed to discover stable
periodic patterns without considering all possible patterns.

2. An algorithm, named TSPIN (Top-k Stable Periodic pattern mINer) is designed to efficiently discover
the complete set of top-k stable periodic itemsets in a sequence of transactions. Those are the k
most frequent itemsets that have a stable periodicity. The algorithm is correct and complete and its
complexity is discussed.

3. Extensive experiments have been done on various benchmark datasets to evaluate TSPIN’s per-
formance. Moreover, stable periodic patterns found in real transactions from an online retail store
using the designed stability function have been analyzed. Results show that TSPIN is efficient for
finding the top-k stable periodic patterns. Moreover, insightful patterns have been found in the real
shopping data, which cannot be discovered using traditional PFP mining algorithms.

It is to be noted that this paper extends the paper Discovering Stable Periodic-Frequent Patterns in
Transactional Data, published in the proceedings of the IEA AIE 2019 conference [17]. In that early
version of this work, an algorithm named SPP-Growth was presented for discovering stable frequent
periodic patterns using the minSup threshold. In the current paper, SPP-Growth is revised as the
TSPIN algorithm for mining the k& most frequent stable periodic patterns. All sections of the current
paper are much more detailed than the conference paper and new experiments have been done.

The rest of the paper is organized as follows. Related work is reviewed in Section 2. The proposed
model is presented in Section 3. Then, the TSPIN algorithm is introduced in Section 4. Finally, Section
5 describes experimental results and Section 6 draws a conclusion.

2 Related work

Frequent itemset mining [2] is a popular data mining task that was originally proposed for analyzing
customer transaction data to identify sets of frequently purchased items. Frequent itemset mining is
applied to a type of data called a transaction database. A transaction database, also called a sequence
of events, is defined as follows [2,15,23].

Definition 1 (Transaction database) Consider a set of items (e.g. events, symbols or products), de-
noted as I. An itemset is a subset X C I. An itemset containing k items is said to be of size k, or
to be a k-itemset. A transaction database D = {T1,T5,...,Tn} is a multi-set of transactions, where each
transaction T, (1 < ¢ < n) is an itemset (T, C I). Moreover, the number c in subscript of a transaction
Te is said to be its unique Transaction IDentifier (TID). In the following, the notation tid(T.) will be
also used to refer to the transaction identifer of a transaction T .

4 Fournier-Viger et al.

Ezxample 1 A transaction database is shown in Table 1, which will be used as running example. It
contains ten transactions denoted as Th to Tip. The transaction identifier of T3 is ¢id(T3) = 3. The
transaction T3 is a 3-itemset {a,b,e}. In the context of market basket analysis, this transaction may
indicate that a customer has purchased some items a, b and e together.

A transaction database can be viewed as a table of records described according to binary attributes.
Each transaction is a record and the presence or absence of an item in a transaction indicates if an
attribute is true or false. Because this representation is quite general, frequent itemset mining has been
applied in many domains [34]. Moreover, if transactions are ordered, this representation can also model
a sequence of events such as the sequence of purchases made by a customer, the sequence of treatments
received by a hospital patient, or the sequence of learning activities done in an e-learning environment.

The goal of frequent itemset mining is to find all sets of items (values) that frequently appear in a
transaction database. FIM is defined based on a frequency measure, called the support.

Definition 2 (Support) Let there be a database D and an itemset X. The set of transactions containing
X is defined as trans(X) = {T|T € DAX C T}, and the support of X is defined as sup(X) = [trans(X)|.
In other words, the support of an itemset is the number of transactions that contains it.

Definition 3 (Frequent itemset mining) Let there be a threshold minSup > 0, set by the user. Fre-
quent itemset mining is the task of enumerating all frequent itemsets. An itemset X is called infrequent
if sup(X) < minSup and frequent if sup(X) > minSup [2,34].

Ezample 2 The itemset {a,b, c} appears in the transactions trans({a,b,c}) = {T1,T2}. Thus, its support
is sup({a,b,c}) = [trans({a,b,c})| = 2. If minSup = 5, the result of FIM is the frequent itemsets {a},
{b}, {c}, {e} and {b, e}, which have support values of 5, 8, 6, 6 and 5, respectively.

Table 1 A transaction database containing ten transactions

TID Itemset TID Itemset
1 {a,b,c,e} 6 {b,c,e}
2 {a,b,c,d} 7 {b,c,d, e}
3 {a,b,e} 8 {a,c}
4 {c,e} 9 {a,b,d}
5 {b,d, e} 10 {b}

The problem of itemset mining is not an easy problem because up to 211 1 itemsets may have to be
evaluated (excluding the empty set) for a set I of items. For large databases containing many distinct
items, this search space can be very large. To avoid considering all possibilities and still find all frequent
itemsets, several efficient FIM algorithms have been designed. The first algorithm, named Apriori [2],
adopts a breadth-first search. It initially counts the support of single items and then combines pairs
of frequent itemsets to generate candidate 2-itemsets. Apriori then scans the database to count the
support of these 2-itemsets and then combine frequent 2-itemsets to generate candidate 3-itemsets.
Then, this process is repeated to find all larger frequent itemsets. Apriori reduces the search space using
a property of the support measure called Apriori property or downward-closure property, which states that
the support of an itemset cannot be greater than the support of its subsets [2]. Thus, if an itemset is
infrequent, all its supersets can be ignored. Though Apriori can greatly reduce the search space using
that property, a major drawback of Apriori is that it performs many database scans to count the support
of itemsets.

To address this issue, other FIM algorithms have been proposed. For example, the Apriori-TID [2]
and Eclat [51] algorithms have adopted a vertical database representation where each itemset is anno-
tated with the list of transactions where it appears. This representation can be built using only two
database scans, and then allows to calculate the support of any itemset. However, this list-based rep-
resentation can consume a large amount of memory for databases having many transactions or dense
databases. Besides, all the above algorithms have the drawback that they can generate candidate pat-
terns that do not exist in the database, and thus waste a considerable amount of time evaluating them.

To find all frequent itemsets without generating candidate patterns, the FP-Growth [23] algorithm
was proposed, which adopts a pattern-growth approach. It first scans the database to build a tree based
representation. Then, it mines frequent itemsets from the tree and projected trees using a depth-first

TSPIN: Mining Top-k Stable Periodic Patterns 5

search. This approach was shown to be faster than previous approaches. Then, many other FIM algo-
rithms were designed, mainly by extending the Apriori, Eclat and FP-Growth algorithms or some of
their concepts, and several variations of the FIM problem have been studied [6,15,34,35,52].

To find patterns that periodically appear in a transaction database where transactions are ordered
by time, it was proposed to mine periodic frequent patterns (PFPs) [3,12,30,44]. The traditional model
of PFP mining, called (full) PFP mining [45], is defined based on the following definitions.

Definition 4 (Transaction database ordered by time) A transaction database D = {T,T%, ...,Tn}
is said to ordered by time if for any two transactions T;,T; € D such that i < j, then T; occurred before
;.
Definition 5 (List of transactions containing an itemset) Let there be a transaction database D =
{T1,T2, ..., Tn} ordered by time and an itemset X. The list of transactions containing X is denoted as
g(X) and defined as the list of transactions from trans(X), ordered by time.

Ezample 3 Consider the database of Table 1. For the rest of the paper, it will be assumed that this
database is ordered by time. The list of transactions containing the itemset {b, c} is g(X) = (T1, T2, Ts, T%).

Definition 6 (i-th transaction containing an itemset X) Let there be a transaction database D
ordered by time. The i-th transaction containing X is denoted as T;X and is the i-th transaction in g(X).
Thus, g(X) can be written as g(X) = (Tf%, T5* .. ‘T\)s{up(X)l>'

Ezample 4 Let X = {b,c}. The first transaction of Table 1 containing the itemset X is T{X = T1. The
second transaction containing X is TZX = T5. The third transaction containing X is T3X = Ts. The
fourth transaction containing X is 7§ = Tx.

Definition 7 (Extended list of transactions containing an itemset) To simplify some calculations,
two transactions are added to the list of transactions g(X) of an itemset X. The result is called the

extended list of transactions of X, which is defined as g(X) = (Ts%, T{X, T5° . .. Tgp(x),Tgp(x)+l>. where
Ts¥ and Ts)qip(X)+1 have the identifiers tid(T5) = 0 and tid(TS)pr(XHl) = |D|, respectively. In other

word, Ts)fbp(X)+1 is the last transaction of the database, whereas T;% is a virtual transaction that would

have occurred before the first transaction.
Ezample 5 The extended list of transactions containing the itemset {b, c} is g(X) = (To, T1, T2, Ts, T7, Tho)-

Definition 8 (Period of an itemset) Let there be a database D ordered by time and an itemset X.
Consider any two transactions TZ-X,TZ{f_1 € g(X). The period between T;X and Tﬁf_l is the number of
transactions between 77X and TfH. It is formally defined as per(X,i) = tid(TfH) — tid(T;X), and is said
to be a period of X.

Definition 9 (List of periods of an itemset) The list of periods of an itemset X is defined as per(X) =
(per(X,0), per(X, 1), ... per(X, sup(X)).

Ezample 6 Let X = {b,c}. The period between T5* and T{* is per(X,0) = tid(T5%) —tid(Tg*) = 1—0 = 1.
The period between T7 and T5* is per(X,1) = tid(T5%) — tid(T{*) = 2 — 1 = 1. The period between T35
and T5< is per(X,2) = tid(T5) — tid(T5') = 6 — 2 = 4. The period between T5* and T3* is per(X,3) =
tid(T;") — tid(T5*) = 7 — 6 = 1. The period between T5* and TyX is per(X,4) = tid(T:") — tid(T{) =
10 — 7 = 3. Hence, the list of periods of X is: per(X) = (1,1,4,1, 3).

Definition 10 (Periodic frequent pattern mining) Let there be two user-defined thresholds maxz Per >
0 and mazSup > 0. The problem of (full) periodic frequent pattern mining consists of identifying all pe-
riodic frequent patterns. An itemset X is a periodic frequent pattern (PFP) if mazper(X) < mazPer and
sup(X) > minSup, where the periodicity of X is denoted and defined as mazper(X) = maz(per(X)) [45].

Example 7 Assume that mazPer = 2 and minSup = 5. The PFPs found in the database of the running
examples are {b} and {c}, where sup({b}) = 8, mazper({b}) = 2, sup({c}) = 6, and mazper({c}) = 2.

It is important to note that the problem of PFP mining can be easily adapted to handle a database
where each transaction has a unique timestamp. This can be done by simply replacing transaction
identifiers by timestamps in the database. The result will be that all periods will be calculated in terms
of time duration instead of number of transactions, which can be more meaningful for some applications.

6 Fournier-Viger et al.

Example 8 Assume that transactions Ty, Ts ...T19 were recorded at time 10, 20...100. Then, the list
of periods of {b,c} is per(X) = (10,10, 40, 10, 30), assuming that Tg* = 0.

The problem of mining PFPs was introduced by Tanbeer et al. [45]. They designed the PF-growth
algorithm to enumerate all PFPs by extending the FP-Growth algorithm. Thereafter, an algorithm
inspired by Eclat was proposed, named MTKPP [3]. It relies on a depth-first search and a vertical
database representation to enumerate all PFPs. However, a problem with PF-tree, MKTPP and other
traditional PFP mining algorithms is that they discard a pattern if only one of its periods is larger than
mazPer. For example, if maxzPer = 2, the itemset {e} is not considered as periodic because it has one
period of 3 exceeding maxz Per, although it is otherwise always periodic.

To provide more flexibility, it was proposed to set a minSup threshold and a maxzPer threshold
for each item [44] so that each item can be assessed differently. Although this can be useful for some
applications, a problem is that the user needs to set 2 x |I| parameters in an appropriate way, which
can be difficult and time-consuming in practice.

To relax the maximum periodicity constraint, an alternative solution designed by Kiran et al. [30]

was to use a function called periodic-frequency. The periodic frequency of an itemset X is defined as

perFreq(X) = |{i\per(X,i)Sﬁ;:ﬁ;{rﬁie[oasw()ﬂ]}\

Then, an algorithm was designed to mine all (partial) periodic patterns, that is those having a periodic
frequency that is no less than a user-defined threshold. Though this definition is more flexible than full
PFP mining, a major problem is that patterns having some very long periods can still be considered as
periodic. For instance, the item {a} could be considered as partial-periodic for mazPer = 2 even if it is
periodic only in the first few transactions. This problem occurs because the amount by which mazPer
is exceeded in a period is not taken into account.

, that is the percentage of periods where X is periodic.

In another study, Fournier-Viger et al. [11] proposed to measure the average periodicity of a pattern
as avg(X) = avg(per(X)) and find patterns having an average periodicity that is between a minimum
and maximum value. They proposed an algorithm inspired by Eclat to find these patterns, named
PFPM [11], and an extension for high utility itemset mining, named PHM [12]. Though using the
average allows to consider by how much a period is exceeded, this algorithm does not consider whether
periods exceeding the threshold are close to each other or not. In other words, each period is evaluated
independently of the periods that occurred before and after. As a result, a pattern could have dozens of
very long consecutive periods where it is not periodic followed by dozens of periods where it is periodic,
and still be considered as periodic for the whole sequence in terms of average periodicity. But such
patterns clearly do not have a stable periodicity. A similar approach has been to use the variance [32,
42,43] and the standard deviation [39,40,1] to evaluate the periodicity of patterns. But these studies
have the same limitation of not considering whether periods are close to each other or not.

Some approximate algorithms were also proposed for periodic pattern mining. For instance, the
ITL-tree algorithm [4] searches for PFPs while using an approximate calculation of the periodicities of
patterns. Another approximate algorithm for PFP mining was proposed by Kiran and Reddy [28]. A
drawback of these algorithms is that they cannot guarantee a complete set of results. This paper focus
on designing an exact algorithm.

Some other variations of the above models were also designed to address specific needs. For instance,
Kiran et al. designed an Eclat-based algorithm to mine partial periodic patterns in spatial data [29],
Afriyie proposed a method to find a summary of periodic frequent patterns [1], Islam et al. designed a
model for mining periodic patterns in RF-tag data [26], and Huang et al. integrated the PFPM algorithm
in a system for health management [25].

To summarize, many studies on PFP mining evaluate the periodic behavior of a pattern by only
counting the number of periods that are greater than maxzPer and ignore by how much these peri-
ods exceed mazxPer [3,45]. Though a few studies have proposed solutions such as using the average
periodicity [11,12], variance [32,42,43] and standard deviation [39,40,1], they process each period inde-
pendently, that is they do not consider whether periods are close to each other or not. Moreover, another
limitation is that most studies require to set a minSup threshold that is hard to set [40,42,43,45]. If it
is set too low, few patterns are found. And if it is set too high, too many patterns may be found and
algorithms may have long runtimes. To find patterns that have a stable periodic behavior over time,
this study propose a novel problem of mining the top-k stable periodic-frequent patterns by considering
not only by how much the periods of each pattern exceed maxzPer but also whether these periods are
close in time. Moreover, rather than using a minSup threshold, the user can directly set k, the number
of patterns to be found, and the proposed algorithm returns the top-k most frequent patterns that have
a stable periodic behavior.

TSPIN: Mining Top-k Stable Periodic Patterns 7

3 The Proposed Model

This section presents the proposed model of top-k stable periodic-frequent pattern mining. It can be
viewed as an extension of periodic-frequent pattern mining that captures frequent patterns having a
stable periodic behavior.

Identifying stable periodic patterns requires to measure how the periodic behavior of a pattern is
changing over time and to check if the patterns always remain more or less periodic. For assessing
how a pattern’s periodic behavior varies, this paper introduces a novel model based on the concept of
cumulative sum. It is a technique commonly used to find changes in time series. The cumulative sum
for the first data point of a time series is the difference between that point and a fixed number p. Then,
the cumulative sum for the i-th point of a time series is the sum of the differences of each of the first ¢
data points and p, or zero if the total is negative. Then, if the cumulative sum at the i-th point exceeds
a fixed number « that is greater than p, then a change is said to have happened in the time series at
that point [20,38]. To explain this more formally, consider a sequence of w numbers w1, ws, ..., w,. The
cumulative sum for the i-th data point (0 < ¢ < w) is defined as C; = max(0,C;—1 + w; — p) where
Co = 0. Although the cumulative sum is useful to detect a change in a time series by looking at how
values change over time, it is not designed for assessing the periodicity of patterns using their periods
and for identifying stable periodic patterns.

As a solution, this paper proposes to assess the stability of a pattern by calculating the cumulative
sum of the difference between each of its periods and maxz Per. This allows to accumulate the amount by
which max Per is exceeded for consecutive periods. Then, a change detected using this sum is interpreted
as a display of instability. The novel function for assessing the stable periodic behavior of patterns based
on the cumulative sum is called lability, and is defined as follows.

Definition 11 (Lability of an itemset) The lability of an itemset X is a list of values denoted as
la(X) = (la(X,0), la(X, 1), ...,la(X, sup(X))) that contains sup(X)+ 1 values. In other words, |la(X)| =
sup(X) + 1 = |per(X)|. Each lability value in la(X) is no less than zero. The first lability value of X is
defined as la(X,0) = max(0, per(X,0) — mazPer). It calculates the difference between the first period
of X and maxzPer. Then, the i-th lability value of X for ¢ > 0 is defined based on the the previous
lability value as la(X,4) = maxz(0,la(X,i— 1) + per(X,i) — maxPer). Thus, lability values are calculated
as a cumulative sum. Note that the above definition of lability can also be rewritten more concisely
as follows: la(X,i) = maz(0,la(X,i —1) + tid(Tﬁ_l) — tid(T;X) — mazPer) where la(X, —1) is defined as
la(X,—1) = 0.

The main idea behind that definition is the following. For an itemset X, a list of lability values is
calculated. The i-th lability value of X corresponds to the i-th period of X. The first lability value is the
difference between the first period of X and maxzPer. This is to evaluate by how much the first period
exceeded the maxPer threshold. If that value is negative, then it is set to zero. Then, the following
lability values are a cumulative sum of the lability values to accumulate the differences between each
period and the maxPer threshold. This definition is interesting as it allows to accumulate the amounts
by which maxPer is exceeded over time. If an itemset exceeds maxPer for several periods that are
close to each others, the exceeding amounts will be accumulated in the lability values. Conversely, if the
periods of a pattern are less than max Per for many periods that are close to each other, the accumulated
lability values will decrease, until it reaches a minimum value of zero. A lability value close to zero means
that a pattern has a stable periodic behavior while a large lability value means that a pattern has an
unstable periodic behavior (its periods often exceeds mazPer or exceed maxPer by large values).

Ezample 9 For the database of the running example and mazPer = 2, the periods of itemset {d} are
per({d}) ={2,3,2,2,1}. Since the itemset {d} has five periods, it also has five lability values. The first
lability value of {d} is la({d},0) = maxz(0, per({d},0) —mazPer) = max(0,2—2) = 0. Then, the following
lability values are la({d},1) = 1, la({d},2) = 1, la({d},3) = 1 and la({d},4) = 0. Thus, the lability of
itemset {d} is la({d}) = {0,1,1,1,0}.

The proposed lability function has the interesting property that if a pattern always has periods
smaller than maxPer, its lability will be zero, and if a pattern has many periods larger/smaller than
mazPer, the amounts above/below mazPer will be accumulated by increasing/decreasing the lability
values. Hence, the lability of an itemset is changing over time depending on its recent periodic behavior.
Because low lability values indicate a stable behavior and high values indicate an unstable one, the
lability function can be used to find stable patterns by setting a maximum constraint on the lability.
Based on this idea, the concept of stable periodic frequent pattern is defined as follows.

8 Fournier-Viger et al.

Definition 12 (Stability) The mazimum lability of an itemset X is defined as mazla(X) = maz(la(X)),
and is also called the stability of X.

Ezample 10 As the lability values of itemset {d} are la({d}) = {0, 1,1, 1,0}, then mazla({d}) = 1.

Definition 13 (Stable periodic pattern) Let there be an itemset X and a threshold maxzLa > 0,
called maximum lability threshold. An itemset X having a lability no greater than mazLa is said to
be a stable periodic pattern (SPP), i.e. mazla(X) < mazLa. Moreover, to avoid finding infrequent
patterns, a support constraint can be added. An SPP that has a support that is no less than a user-
defined threshold minSup > 0 is said to be a stable periodic-frequent pattern, i.e. sup(X) > minSup.

Based on the above definition, the problem of stable periodic-frequent pattern mining is defined.

Definition 14 (Stable periodic-frequent pattern mining) Let there be a transaction database D, a
set of items I, three user-defined thresholds minSup > 0, maxPer > 0 and maxLa > 0. The problem
of mining the stable periodic-frequent patterns in D consists of enumerating each itemset X in D such
that mazla(X) < mazLa and sup(X) > minSup.

Ezample 11 If marLa = 1 and minSup = 4, the periodic-frequent patterns in the database of the
running example are {b}, {c}, {e} and {b,e}. The support and stability of {b} are sup({b}) = 8 and
mazla({b}) = 0, respectively. The itemset {c} has a support of 6 and a stability of 0. The itemset {e}
has a support of 6 and a stability of 1. Finally, the itemset {b, e} has a support of 5 and a stability of 1.

It can be observed that the above problem of stable periodic-frequent pattern mining generalizes
the problem of full PFP mining. Indeed, if maxLa = 0, the former becomes equivalent to the latter.
The problem of SPP mining is more flexible than that of traditional PFP mining, since SPP mining
allows periods to exceed the mazPer threshold as long as the accumulated sum (lability) remains below
maxLa. But a limitation of the problem of SPP mining is that the user still need to set a minSup
threshold, and finding an appropriate value for this parameter is not obvious in practice as it is dataset
dependent.

To address this issue, a variation of the SPP mining problem is proposed called top-k stable periodic-
frequent pattern mining, where minSup is replaced by a parameter k. This let the user directly specify
the number & of patterns to be discovered.

Definition 15 (Top-k stable periodic-frequent pattern mining) Let there be a set of items I, a
transaction database D and three user-defined parameters minSup > 0, maxPer > 0 and k > 1. The
problem of top-k stable periodic-frequent pattern mining consists of discovering the set of the k most
frequent itemsets that are stable periodic patterns, that is a set Z of k itemsets such that VX €
Z,mazla(X) < maxLah AY € Z|sup(Y) > sup(X).

Ezample 12 If maxPer = 5, maxzLa = 1 and k = 3, the top-3 stable periodic-frequent patterns are {b},
{c} and {e} because no other stable periodic patterns have a higher support. The support and lability
values of these patterns are (8,0), (6, 0) and (6,1), respectively.

It can be observed that for some databases and values of k, it is possible that more than k patterns
could be included in the set Z. For instance, this can happen if more than k patterns have exactly
the same support. In that case, the above problem definition only requires to find k of those patterns.
Besides, it is also possible that the set Z contains less than k patterns. For instance, this can happen if
the number of possible patterns in a database is less than k.

In terms of applications, the proposed problem of top-k SPP mining can be applied in many domains
where data is modeled as a sequence of events or symbols, with or without timestamps. Because the
proposed problem generalizes the problem of full PFP mining, it can be used for the same applications
such as to perform activity monitoring [26], to analyse GPS trajectories [53], for health management [25],
to perform user location prediction [48], to improve the performance of recommender systems [9], for
market basket analysis [11], and to analyze pollution data [29]. For these applications, the benefits of
finding stable periodic patterns instead of traditional PFPs is to allow more flexibility when searching
for periodic patterns by allowing maxzPer to be temporarily exceeded, and to ensure that patterns are
stable by having a periodic behavior that remains more or less below maxPer in consecutive periods).
A use case of SPP mining in market basket analysis is to analyze the purchases of a customer over time
to find his most steady habits such as to buy a newspaper, bread and coffee every morning. Finding
steady habits (stable patterns) is more interesting for marketers than studying irregular habits because

TSPIN: Mining Top-k Stable Periodic Patterns 9

the former are more predictable. Stable patterns can be used to offer personalized marketing such as
offering discounts on newspaper with bread and coffee. A second interesting use case is to follow the
activities of an elderly person to find stable patterns representing the typical activities that the person
performs everyday. These patterns can then be used to define a model of the normal behavior of that
person. Then, if the person’s behavior eventually deviates from that model (e.g. because of a fall), an
alarm could be raised.

Creating an algorithm to efficiently enumerate all SPPs or top-k SPPs in a transaction database
requires to design efficient search space pruning strategies. In FIM, there exists the well-known Apriori
property for reducing the search space using the support measure [2]. To be able to also reduce the
search space using the lability function, the following lemma and theorem are presented.

Lemma 1 (Monotonicity of the mazimum lability) For any two itemsets X C Y C I, the relationship
mazla(Y) > mazla(X) holds.

Proof Because X C Y, it follows that g(Y) C g(X). In the case where g(Y') = g(X), the periods of X and
Y are the same. Hence la(Y) = la(X) and mazla(Y) = maxla(X). In the case where g(Y) C g(X), then
for each transaction {T%|T: € g(X) AT: ¢ g(Y)}, the corresponding period per(X, z) will be replaced by
a larger period per(Y,z). Hence, any period in per(Y’) cannot be smaller than a period in per(X). Thus,
mazla(Y) > mazla(X), and the lemma holds.

Theorem 1 (Mazimum lability pruning) For a database D, if maxla(X) > mazLa for an itemset X, then
X and its supersets are not SPPs. Hence, the part of the search space containing X and its supersets can be
ignored.

Proof According to the definition of SPP, if mazla(X) > maxzLa, then X is not a SPP. Then, any
superset Y of X is also not a superset based on Lemma 1.

Besides, it can be observed that the problem of top-k stable periodic-frequent pattern mining is
more difficult than that of SPP mining since the minimum support value to obtain the k most stable
periodic-frequent patterns is not known in advance. Consequently, all itemsets having a support greater
than zero may have to be evaluated to select the top-k SPPs. Because of this, the search space of
top-k stable periodic-frequent pattern mining is always greater or equal to that of SPP mining when
the minimum support threshold is set to the optimal value to obtain k patterns. To efficiently discover
top-k stable periodic-frequent patterns, the next section describes the proposed TSPIN algorithm.

4 The TSPIN Algorithm

This section presents the proposed TSPIN algorithm, which performs two main steps. First, it scans
the input database to create a stable periodic-frequent tree (SPP-tree) structure. Then, TSPIN mines
the top-k stable periodic-frequent patterns directly from that tree using a depth-first search.

To avoid generating candidate itemsets that do not exist in the database, TSPIN adopts a pattern-
growth approach similar to that of FP-Growth [23] for FIM. But there are several differences between
FP-Growth and TSPIN. First, TSPIN stores the IDs of transactions (or timestamps) in its tree structure
to calculate periods and the lability function. Second, TSPIN utilizes the lability function to identify
SPPs and for search space pruning. Third, TSPIN is also adapted to find the top-k patterns rather than
using a fixed minSup threshold.

This section first presents the SPP-tree structure and how it is built. Then, the process for mining
the SPP-tree to discover the top-k SPPs is described, and a brief example of how the algorithm is
applied is presented.

4.1 The SPP-tree structure

The main data structure used by TSPIN is a structure called SPP-tree, which contains two sub-
structures:

— The prefiz-tree is a tree structure that stores transactions from the input database. Each tree node
represents an item and each tree path represents a transaction or a part of a transaction. Initially,
the algorithm scans the database to build this tree, and then the database is not required anymore
as all the relevant information for mining SPPs is stored in that tree.

10 Fournier-Viger et al.

— The SPP-list is a structure that is used for quickly finding items in the prefix-tree. The SPP-list
contains a tuple of the form (i, S, ML, pt) for each item i appearing in the prefix-tree. In that tuple,
S is the support sup(i) of i and ML is the maximum lability mazla(i) of item ¢ for transactions in
the prefix-tree. Moreover, pt is a pointer to a prefix-tree node that contains item 4.

The prefix-tree is similar to the FP-tree of FP-Growth [23] since they both stores transactions or
parts of transactions as tree paths. However, a difference is that while each FP-tree node stores an item %
and a support value, an SPP-tree node does not store the support but can store additional information.
More precisely, there are two types of SPP-tree nodes:

— An ordinary node stores an item 4, similarly to an FP-tree node.

— A tail node is a node that contains the last item 7 of a path representing a transaction. A tail node
stores the item ¢ but also a list called T'ID-list indicating the transactions (or timestamps) ending at
that node. Keeping this extra information is useful for calculating the maximum lability and support
of itemsets, as it will be explained. Formally, the content of a tail node is denoted as i[ta, ty, . - . , tc,
where ¢ is the node’s item and t; (j € [1,n]) is the IDs of transactions where ¢ is the last item.

After building the tree, the designed TSPIN algorithm traverses the tree to mine SPPs. For this
purpose, each prefix-tree node has pointers to its parent and childs. Moreover, as previously explained,
each tuple (i, S, M L,pt) of an SPP-list contains a pointer to a prefix-tree node containing the item ¢ in
the prefix-tree. This node has a pointer called nodelink which points to the next node having the item
i in the prefix-tree, and this latter points to another one, and so on, such that all nodes having item ¢
are linked by these pointers. Thus, these nodelink pointers allows to quickly traverse all nodes having a
given item ¢ in the prefix-tree.

The process for building the SPP-Tree structure is detailed in the next sub-section. It consist of
inserting all transactions from the input database as a branch in the tree. But before this process starts,
items in transactions are sorted according to a total order < on I (e.g. the lexicographical order). By
ensuring that items in transactions are sorted, all transactions that share a same prefix will overlap in
the prefix-tree (have some common tree nodes), which will reduce the space required by the tree. To
have a high likelihood that transactions overlap, the < order used in the implementation of the proposed
algorithm is the descending order of item support as used in FP-Growth [23].

4.2 Building an SPP-tree

Two main tasks must be carried out to build an SPP-tree: building the SPP-list and constructing the
prefix-tree.

Constructing an SPP-list. The process for building an SPP-list is described in Algorithm 1. The
input is a transaction database D and the user-specified maxPer and maxLa parameters. The output
is an SPP-list, which contains a tuple (i, S, ML) for each item i found in the database that is an SPP,
and where S = sup(i) and ML = maxzla(i).

The algorithm first initializes a temporary array ¢ (line 1). This array will store for each item 4, the
TID of the last transaction containing i, denoted as t;,5; (i), the maximum lability M L(7) of i, the lability
la(i) of ¢ and the support S(i) of i. The values are initialized as M L(i) = 0, la(i) = 0 and S(¢) = 0. Then
the algorithm reads each transaction T having a TID (or timestamp) tcur (line 2). For each item 4 in
the transaction T, the algorithm increases S(i) by 1, updates the lability la(¢) using the current period
length teur — t14s¢(7), updates the maximum lability M L(7), and updates t;,4: (i) (line 3 to 7). After the
last transaction has been read, tcur is set to the database size |D| and the information of each item i is
updated in ¢ (line 10). Then, the SPP-list is created, containing a tuple (z, S, ML) for each item i such
that M L(:) < maxLa according to ¢, and where items are sorted in descending order of support (line
11). Note that at this stage, the pt field of each tuple of the SPP-list is not created yet.

An example is provided to illustrate the process of SPP-list construction. Consider the database of
Table 2, mazPer = 2 and maxzLa = 1. Figures 1(a) illustrates the content of the ¢ array after reading
the first transaction. Figure 1(b) shows the t array after reading the second transaction. Figure 1(c)
depicts the t array after inserting all transactions. Figures 1 (d) shows the t array after adding the TID
g(sup(X) + 1) to every item (line 10 of Algorithm 1). Figures 1 (e) shows the final SPP-list containing
the stable itemsets, sorted by descending order of support (line 11 of Algorithm 1).

Constructing a prefix-tree. After building an SPP-list, TSPIN scans the database again to build
the prefix-tree. This is done by Algorithm 2, which takes as input a transaction database and the SPP-
list. The output is a prefix-tree and an updated SPP-list. The prefix-tree is constructed in a way that is

TSPIN: Mining Top-k Stable Periodic Patterns 11

i S ML tiagpg | @ S ML tasg S ML tiggqp| ¢ S ML i|S |ML

b 1 1 b 2 2 b 8 0 10 b 8 0 b| 8

c 1 1 c 2 2 c 6 8 c 6 0 c| 6

e 1 1 e 1 1 e 6 7 e 6 1 e| 6|1
(a) (b) © (d) (e)

Fig. 1 Thet array after scanning (a) the first transaction of Table 2, (b) the second transaction, (c) the entire database,
(d) after adding t = g X (sup(X) + 1) to each item, and (e) the final SPP-list containing the sorted list of items.

Algorithm 1 Construction of an SPP-list

Input:

D: a transaction database,

maxPer, maxLa: the user-specified parameters
Output: the SPP-list containing the sorted list of items

1: Create a temporary array ¢ to store for each item ¢, the TID ¢;45:(¢) of the last transaction containing 4, the maximum
lability M L(%) of 4, the lability la(i) of « and the support S(z) of i. The values are initialized as M L(¢) < 0, la(i) < 0
and S(i) < 0.

: for each transaction T' € D with TID t.y, do

for each item ¢ € T do
S(i) « S(i) + 1;
la(i) +— maz(0, la(i) + teur — tiast (7') - mamPeT)?
ML(i) < max(ML(t),la(i));
tlast(i) < teur;
end for

end for

: Set teur = |D| and update the information of each item in ¢.

: Create a SPP-list containing a tuple (4,5, ML) for each item ¢ such that M L(i) < maxLa according to ¢, and
where items are sorted in descending order of support.

: Return the SPP-list.

2O ORI W

_ =

—
[\

Table 2 A transaction database with three items b, ¢, e

TID Itemset TID Itemset
1 {b,c, e} 6 {b,c, e}
2 {b,c} 7 {b,c,e}
3 {b, e} 8 {c}

4 {c,e} 9 {0}
5 {b,e} 10 {b}

similar to how FP-Growth constructs an FP-tree [23]. However, there are some differences because an
SPP-tree stores a list of TIDs (or timestamps) in each tail node, and support values are not stored in
nodes.

The algorithm first creates the tree root T with ¢« = null as item. Then, each transaction T is read,
sorted using the descending order of item support (as in the SPP-list), and inserted in the prefix-tree.
The insertion is done by calling the insert_tree procedure. It creates a path in the prefix-tree representing
the transaction. During the tree creation, the pt pointers in the SPP-list, as well as the parent, child
and nodelink pointers of each node are updated.

An example of prefix-tree construction for the transaction database of Table 2 is described next.
Figure 2(a)-(e) illustrates the SPP-tree that is built after scanning the first, second, eighth, and all
database transactions. An SPP-list contains a pointer pt from each item i in the SPP-list to an item ¢
in the tree. Moreover, all nodes representing an item ¢ in the tree are linked by the nodelink pointers.
This allows to quickly traverse all occurrences of each item ¢ in the tree when mining patterns from the
tree. For the sake of simplicity, these pointers are not shown in the illustrations of Figure 2. But they
are created in the same way as for an FP-tree.

12 Fournier-Viger et al.

Algorithm 2 Construction of an SPP-tree

Input:
D: a transaction database,
SPP-list: contains stable periodic-frequent items, their support S and maximum lability ML

1: Create the root of the SPP-tree, R, and label it with ”null”;

2: for each transaction T' € D with TID t¢y, do

3: Sort stable periodic-frequent items in 7" according to the descending order of support.

4: Let the sorted candidate item list be [p|P], where p is the first item and P is the remaining items.

5 Call insert_tree([p|P), tcur, R), which is performed as follows. If R has a child N such that N.item-name #
p.item-name, then create a new node N. Link its parent to R. Let its nodelink be linked to nodes with the same
ttem-name via the nodelink structure. Remove p from [p|P]. If P is empty, add tcur to the leaf node; else, call
insert_tree(P, tscur, N) recursively.

6: end for

7: Return the SPP-tree;

i|S ML { }null i|S ML { }null i|S ML { }null ilsImL { }null
b| 8|0 | b|8|0 | b|8|0 / \ b| 8 /
clé6|o b cl6]0 b cl6]0 b ¢ |icle b:9,10 c¢:8
el6|1 | el6]1 | e|6]1 / N | el6]1 / N |
c c:2 c:2 e35 e4 c:2 e:35 e4
e:l e:l e:1,6,7 e:1,6,7
(@ (b © (@

Fig. 2 The SPP-tree built after scanning the (a) first transaction, (b) second transaction, (c) eighth transaction, and
(d) all transactions.

4.3 Mining an SPP-tree

After the proposed algorithm has built the SPP-tree, it does not need the original database anymore to
find SPPs because all the important information for mining SPPs is stored in the SPP-tree.

The basic idea of T'SPIN for finding the top-k patterns is the following. TSPIN first sets an internal
minSup variable to 1. Then, TSPIN starts searching for stable periodic-frequent patterns by applying
a recursive depth-first search procedure. As soon as a pattern is found, it is added to a priority queue
of itemsets Q. ordered by the support. This queue is used to maintain the top-k patterns found until
now. Once k SPPs have been found, the internal minSup variable is raised to the support of the least
frequent itemset in Q. Raising the minSup value is done to prune the search space when searching for
more SPPs. Then, each subsequent time that an SPP is inserted into Qy, the least frequent itemset
is removed from Qj, and minSup is raised to the support of the least frequent itemset among those
remaining in Q. Then, TSPIN continues searching for more patterns until no pattern can be generated.
Then, it has found the top-k stable periodic patterns.

To explore the search space of itemsets, TSPIN performs a depth-first search, which is conducted by
Algorithm 3. This algorithm takes as input an itemset a to be extended to find SPPs (initialy the empty
set), the initial SPP-tree P, and the corresponding SPP-list PListn, the priority queue Qy (initially
empty), a minSup threshold (initially set to 1), and the user-defined mazPer and mazLa thresholds.
The TSPIN procedure attempts to find extensions of « of the form 8 = a U {i} that are top-k SPPs.
For each such extension, the procedure then recursively calls itself to find other top-k SPPs having 8
as prefix. This recursive process of extending patterns starting from single items ensures that all top-k
SPPs can be found.

The algorithm performs a loop on items stored in the SPP-list PListy in reverse order. For each
item 4 such that ML(i) < maxLa and S(i) > minSup, the algorithm saves the itemset 3 = a U {i} as a
top-k SPP in Q) with its support and maximum lability. If Q. contains at least k itemsets, the minSup
threshold is raised to that of the least frequent itemset in Q. And if @}, contains more than k itemsets,
the least frequent itemset in @y, is removed from Q). Then, the algorithm tries to find all items that
could extend 8 to generate larger itemsets. The set of these items, called v, contains the ancestors of
B in the SPP-tree P,. The algorithm traverses the nodelinks of ¢ to collect the TID (or timestamps)
of all items in v, and creates a conditional pattern base of 8. The conditional pattern base of 3 is the
set of paths in the current SPP-tree P, that leads to i (excluding the nodes representing ¢). Then, an
SPP-list is created, denoted as PListg, containing an entry PListg(j) for each item j in ~. This entry

TSPIN: Mining Top-k Stable Periodic Patterns 13

will be used to calculate the maximum lability and support of 3U {j} to determine if it is an SPP. The
set of all items that allows to build a SPP is called 7/. If this set is not empty, the TSPIN algorithm
recursively calls itself to store all SPPs of the form gU{j} where j € fy’ and to look for other SPPs that
extend these patterns. The recursive call is done using a new SPP-tree Pg, which is created by inserting

all paths of the conditional pattern base of 8 as transactions, and using 'y/ as items for its SPP-list,
denoted as PListg. Then, the item ¢ is removed from the SPP-tree Py and its TIDs (or timestamps) are
pushed to its parent node. The item i can be removed because it is not needed when exploring the rest
of the search space according to the processing order of items. Since the algorithm starts from single
item SPPs and recursively explores the search space by appending items, all itemsets can be visited.
And since the algorithm only prunes itemsets using Theorem 1, it can be seen that this procedure is
correct and complete to discover the top-k SPPs.

Note that to accelerate the search for finding the top-k SPPs, the user can decide to start from an
internal minSup value greater than 1. However, if this is done, there is a risk of missing some top-k
SPPs. Thus, the implementation of TSPIN uses minSup = 1 as default value to guarantee completeness.

Algorithm 3 The TSPIN algorithm

Input:

«: an itemset (initially 0),

P,: an SPP-tree,

PListy; the corresponding SPP-list,

Qk: a priority queue for storing the current top-k stable periodic patterns (initially empty), where patterns with
smaller support have higher priority

minSup: an internal minimum support threshold (initially set to 1)
max Per: the user-specified maximum periodicity threshold,
maxLa: the user-specified maximum lability threshold,

k: the user-specified number of patterns to be found

Output: a set of top-k stable periodic patterns

1: for each item ¢ in PList, (in reverse order) such that M L(i) < maxLa and S(i) > minSup do

2 B+ aU{i};

3 Insert 8 into Qp;

4 if Qp.size > k then

5: minSup < sup(Qg.peek());

6: end if

7 if Qg.size > k then

8 pop the highest priority (least frequent) itemset from Qg;

9 end if

0 Let v be the ancestor items of 8 in Py;

1 Traverse the nodelink of ¢ to construct 3’s conditional pattern base and collect the TIDs (or timestamps) of each
item in 7;

12: Create an SPP-list, denoted as PListg, containing an entry PListg(j) for each item j in ~;

130~ « {jlj € v A Plista(j).size > 0};

14: if 4 # 0 then

— =

15: Construct ’s conditional tree Pg while updating the pt fields of tuples in PListg;
16: Call TSPIN(B, Pg, PListg, Qy, minSup, maxPer, maxLa, k);

17: end if

18: Remove i from P, and push ¢’s TIDs (or timestamps) to its parent nodes;

19: end for

20: Return Qg;

To provide more details about the process of mining SPPs using the SPP-tree structure, a brief
example is given. Consider the transaction database of Table 2 and that k¥ = 3, maxPer = 2 and
mazLa = 1, respectively. The prefix-tree P, for a = 0 is initially built by scanning the database. That
SPP-tree is shown in Figure 2 (c), where the SPP-list contains the items b, ¢, and e, sorted in that order.
The TSPIN procedure is then called with this tree P,, the corresponding SPP-List PLista, a = 0,
the priority queue Q. initialized as empty, and the maxLa, maxPer and k parameters. To make this
example shorter, it will be assumed that the internal minsup threshold is initially set to 5 rather than 1.
The TSPIN procedure processes each item i € PListq in reverse order. For each such item, an itemset
of the form g U {i} is created.

First, consider 8 = {e}. Since S(e) = 6 > minSup and ML(e) = 1 < mazLa according to PLista,
{e} is a SPP and it is inserted in @ as a current top-k SPP. Then, the next step is to evaluate whether
extensions of 8 may be also top-k SPPs. For this purpose, the nodelinks of e are followed to quickly
find all occurrences of e in the SPP-tree. The TIDs (or timestamps) of all ancestors of e are collected.

14 Fournier-Viger et al.

i| s mL i|s ML i|SsmMmL
b8 |0 null b|5|1 i b|5|1 null
Jeto] U o] O {I}
b:3,5,9,10 c:4,8 b: 3,/5 c:4 b:13567
/ / .) ’))
c:1,2,6,7 c:1,6,7
@ ®) ©

Fig. 3 Mining stable periodic-frequent patterns using suffix item e. (a) The SPP-tree after removing the item e, (b)
Prefix-tree of suffix item e, (¢) Conditional tree of suffix item e.

Those ancestors are v = {b, c}. The conditional pattern base of {e} is created, which is shown in the
second line / third column of Table 3, and illustrated as a tree in Figure 3 b). Then, the procedure
calculates the SPP-list of §, denoted as PListg, and in particular tuples for 8 U {b} and g U {c}. These
tuples are shown in the second line / fourth column of Table 3. Because the support of SU{c} is greater
than minsup = 5, that extension of 8 is not a SPP and does not need to be considered or extended.
On the other hand, g U {b} has a support of 5 and a mazimum lability of 1, and is thus a top-k SPP
and its extensions must be considered. Thus, 'y/ = {b}. The SPP-tree of beta is built by applying the
SPP-tree construction procedure using the paths from the conditional pattern base of 5. The result is
the SPP-tree Py, shown in Figure 3 ¢) where the SPP-list contains the item 7/ = b. This tree is then
recursively mined by calling the TSPIN procedure. This latter inserts the itemset {b, e} with its support
of 5 and maximum lability of 1 in Qf, and explores its extensions. This recursion is not described for
the sake of brevity. After the recursive call for mining the conditional tree of {e} returns, each node
representing {e} is deleted from the SPP-tree and its TIDs (or timestamps) are pushed to the parent
nodes. The result is shown in Figure 3 a).

Then, the algorithm considers 8 = {c}. Since S(c) = 6 > minSup and M L(c) = 0 < mazLa according
to PLista, {c} is a SPP and it is inserted in Qj as a current top-k SPP. Since Qj contains k itemsets,
the minSup threshold is set to that of the least frequent itemset in @, which is 5. The conditional
pattern base of {c} is then calculated, which is depicted in the third line / third column of Table 3.
Here, v = {b}. It is found that the support of S U {b} is less than 5 and the maximum lability of U {b}
is more than 1, so it is not a SPP and thus g U {b} and its extensions do not need to be considered.

Then, the algorithm considers 8 = {b}. Since S(b) = 8 > minSup and M L(c) = 0 < mazLa according
to PLista, {b} is a SPP and it is inserted in Q) as a current top-k SPP. The queue Q) now contains
four itemsets: {e} (support = 6, maximum lability = 1), {b,e} (support = 5, maximum lability = 1),
{b} (support = 8, maximum lability = 0), and {c} (support = 6, maximum lability = 0). Because Qj
contains more than k = 3 itemsets, the least frequent itemset {b, e} is removed from Q. and the minSup
threshold is raised to the support of the least frequent itemset in @Qy, which is now 6. Then, it is found
that the conditional pattern base of {b} is empty and it has no ancestors. Thus, extensions of this itemset
are also not considered.

The algorithm then terminates and the queue @} contains the top-k SPPs, which in this example are:
{e} (support = 6, maximum lability = 1), {b} (support = 8, maximum lability = 0), and {c} (support
= 6, maximum lability = 0).

Table 3 Calculations for mining the example SPP-tree containing items 8 = {e}, {c} and {b}

7

B ¥ Conditional Pattern Base SPP-list 5 Conditional SPP-tree SPPs

. . . {{b75?17pt}7 .
{e} {b,c} {bc:1,6,7}{b:3,5} {c:4} {e,4,0,pt}} {b} {b:1,3,5,6,7} {be, 5,1}
{C} {b} {b : 1a27677} {{b7 4727pt}} - - -
oy - - : - -

4.4 Complexity Analysis

The TSPIN algorithm can be viewed as an extension of FP-Growth [23]. Hence, they both have a
similar complexity, which is analyzed as follows. Let m be the number of transactions, n be the number

TSPIN: Mining Top-k Stable Periodic Patterns 15

of distinct items, and p be the average length of the transactions. The first operation performed by
TSPIN and FP-Growth is to scan the database to build a prefix-tree to store the transactions. Scanning
the database and building the prefix-tree is done in linear time, as each transaction is inserted one by
one and at most one path is added to the tree per transaction [23]. In terms of memory, the size of
a prefix-tree is analyzed as follows. In the worst case, all the transactions will be different, and the
prefix-tree will contain a distinct path for each transaction. Thus, the prefix-tree will contain m x p
nodes and no more than m x p parent-child links between nodes. TSPIN stores an item and a list of
up to m TIDs in each prefix-tree node, while FP-Growth only stores an item. Moreover, TSPIN creates
a SPP-list for the prefix-tree which is an array containing at most n entries of constant size, where
each entry is linked to the tree using up to m node-links. Instead of building an SPP-list, FP-Growth
builds a header-table, which contains different information but has the same size complexity. On overall
the size of the prefix-tree and SPP-list (or header table) is linear with respect to the database size
(m x p). Though the size of a prefix-tree may seems large, generally many transactions are similar in
real databases. As a result, many paths of the prefix-tree will overlap, which reduces the number of
nodes and links. Thus, the size of a prefix-tree is often much smaller than the original database [23].

After the initial prefix-tree construction, TSPIN and FP-Growth perform a depth-first search to
recursively find all the desired itemsets. The number of possible itemsets is h = 2l7l-1. But in practice
the number of itemsets that is considered depends on the characteristics of the database, and the
parameters of the algorithms. If minSup, maxPer or maxLa are increased, or if k is decreased, less
itemsets may be considered due the application of the search space pruning strategies.

For each considered itemset 8 that extends an itemset «, TSPIN traverses the node-links of the
SPP-list of a to create the conditional pattern base, SPP-list and prefix-tree of 8. This construction
is done in linear time as these structures of a are traversed once. The size of the three structures of
B are bounded by the size of these structures for «, and can be much smaller. FP-Growth performs a
similar process to build a conditional pattern-base, header-table and prefix-tree but those contains less
information. The number of SPP-lists, prefix-trees and conditional pattern bases that are built is at
most h. And it can be observed that as the depth-first search go deeper, conditional prefix-trees will
become smaller [23].

An important difference between TSPIN and FP-Growth is that TSPIN maintains a queue Qy, to keep
the top-k best patterns until now. This queue can contains up to h itemsets, and each itemset is inserted
and removed at most once from that queue. The three operations performed on the priority queue are
insertion, deletion and peek, which have worst-case O(logh), O(logh), and O(1) time complexity using
a binomial heap [7]. Other implementations can also be considered such as using a Fibonacci heap to
obtain an amortized time of O(1), O(logh), and O(1) for insertion, deletion and peek [7].

Thus, on overall the main factors influencing the time and space complexity of TSPIN and FP-
Growth are the number of itemsets that are considered h, and the database size. The time complexity of
FP-Growth is roughly O(h x m x p) while that of TSPIN is roughly O(h x m X p x log(h)). The difference
is due to the additional effort to manage the priority queue. The space complexity of FP-Growth and
TSPIN is roughly the same as O(h x m X p x h).

As for SPP-Growth, the complexity is roughly the same as same as that of FP-Growth as it does
not have to manage a priority queue.

5 Experimental evaluation

To evaluate the proposed algorithm, extensive experiments have been done on a workstation running
Windows 10, equipped with an Intel (R) Xeon(R) CPU W-2123 3.60GHz, and 32 GB of RAM. The
TSPIN algorithm was implemented in Java, and runtime and peak memory usage were measured using
the standard Java API. Four benchmark datasets have been used, which are described in Table 4,
in terms of number of transactions (|D|), number of distinct items (|I|), minimum transaction length
(Thmin), maximum transaction length (Tmaz), and average transaction length (Thvg). These datasets
were selected as they represent different types of data (long/short transactions, few/many items, and
dense/sparse data).

T1014D100K is a synthetic dataset, which was created using the SPMF library’s random transaction
generator [10]. The dataset contains 100,000 transactions and 870 distinct items. Mushroom is a dataset
about mushrooms, often used in benchmarks for itemset mining. It contains 8,124 transactions and
119 distinct items. Kosarak is 990,002 transactions of real click-stream data from a Hungarian news
portal. It is a very large dataset having 41,270 distinct items. OnlineRetail is a real-world shopping
dataset where each transaction indicates items purchased together by a customer. OnlineRetail contains

16 Fournier-Viger et al.

Table 4 Description of the datasets

Dataset |D] |1 Trmin Trmax Tavg
T1014D100K 100,000 870 1 29 10
Mushroom 8,124 119 23 23 23
Kosarak 990,002 41,270 1 2,498 8
OnlineRetail 541,909 2,603 1 1,108 23
30 50
T1014D100K Mushroom
25 -
40 1 o—
20 1
))
[} Q
£ 15 E 30
g 8
= o
= =
2 e~ /_—/
10 -
9 20 4
5 4
0 . . . 10 . . .
5,000 10,000 15,000 20,000 25,000 500 1,000 1,500 2,000 2,500
Kk Kk
=@=30% - 30% 30%-40% ==>=40%-30% =@=40% -40% =@=30% - 30% 30%-40% ===40%-30% =@=40% -40%
300 2.0
Kosarak OnlineRetail
250 1o
200
o) @18 1 /
[} (5]
E 150 - E
E =]
Z L 217
100 -
50 16 1
0 4 . . . 15 . . .
10,000 15,000 20,000 25,000 30,000 10,000 15,000 20,000 25,000 30,000
k k
=@=0.5% - 0.5% 0.5%-1.0% ===1.0%-0.5% =@=1.0%-1.0% == 30% - 30% 30%-40% =—=40%-30% =@=40% -40%

Fig. 4 Execution times for different parameter values

541,909 transactions and 2,603 distinct items. All datasets can be downloaded from the SPMF website
(http://www.philippe-fournier-viger.com/spmf/).

To calculate the periodicity of itemsets, two approaches are used. For the T10I4D100K, Mushroom
and kosarak datasets, the periodicity is calculated using the transaction identifiers as in the definitions
of Section 2 and 3. The first transaction of a dataset has the identifier 1, the second transaction has
the identifier 2, and so on. For the OnlineRetail dataset, transaction timestamps are used to calculate
the periodicity (other datasets do not have timestamps). To do this, the transaction identifiers are
simply replaced by the timestamps (as explained in Section 2). Transactions timestamps in OnlineRetail
range from 2010-12-1 8:26 to 2011-12-9 12:50, where the time unit is the minute. Using real timestamps
instead of transaction identifiers was done because it can lead to discovering more meaningful patterns
in customer transactions.

5.1 Influence of parameters on the performance of TSPIN

In a first experiment, the parameters maxPer, maxLa and k were varied to evaluate their influence on the
performance of TSPIN in terms of runtime and peak memory usage on the Mushroom and T10I4D100K
datasets. Runtime results are shown in Fig. 4 and peak memory usage is shown in Table 5.

http://www.philippe-fournier-viger.com/spmf/

TSPIN: Mining Top-k Stable Periodic Patterns

17

In Figure 4, k values are shown on the x axis, while the y axis denotes excution time. The notation
P-L denotes the TSPIN algorithm with maxPer = P and maxLa = L. The following observations are

drawn from that figure:

— Increasing k often increases the runtime. This is reasonable since as k is increased, more patterns are
found, and more itemsets from the search space may have to be considered to find the top-k SPPs.
As a result, TSPIN may need to consider more patterns to fill Qy.

— Increasing maxPer or mazLa often increases the runtime. The reason is that increasing maxPer or
maxLa will increase the range of period and lability values accepted for SPPs. Hence, more itemsets
may have to be considered from the search space to find the top-k SPPs.

— The TSPIN algorithm has better performance on the sparse dataset than on the dense dataset.
The reason is that itemsets in the sparse datasets are more likely to be unstable. Thus, the TSPIN
algorithm can eliminate many candidate patterns for such datasets.

Table 5 Comparison of peak memory usage.

T10I4D100K Mushroom
maxPer | maxLa k Peak memory maxPer | maxLa k Peak memory
30% 30% 10,000 611 30% 30% 1,000 2103
30% 30% 20,000 607 30% 30% 2,000 2658
30% 40% 10,000 2206 30% 40% 1,000 2641
30% 40% 20,000 2699 30% 40% 2,000 2667
40% 30% 10,000 2207 40% 30% 1,000 2633
40% 30% 20,000 2699 40% 30% 2,000 2633
40% 40% 10,000 2191 40% 40% 1,000 2704
40% 40% 20,000 2748 40% 40% 2,000 2704
Kosarak OnlineRetail
maxPer | mazxzLa k Peak memory maxPer | maxLa k Peak memory
0.5% 0.5% 10,000 1640 30% 30% 10,000 263
0.5% 0.5% 20,000 1780 30% 30% 20,000 264
0.5% 1.0% 10,000 1985 30% 40% 10,000 264
0.5% 1.0% 20,000 2419 30% 40% 2,000 264
1.0% 0.5% 10,000 1726 40% 30% 10,000 264
1.0% 0.5% 20,000 2317 40% 30% 20,000 268
1.0% 1.0% 10,000 2494 40% 40% 10,000 264
1.0% 1.0% 20,000 2166 40% 40% 20,000 265

The peak memory usage of TSPIN is shown in Table 5, for different parameter values on the four

datasets. The following observations are drawn from Table. 5:

— The TSPIN algorithm consumes more memory as k is increased. This is because when k is set to
larger values, TSPIN generally need to consider more itemsets to fill Q. Moreover, the size of Qj
also contributes to the peak memory usage.

— The TSPIN algorithm consumes more memory when increasing maxPer or maxLa. The reason is
that when maxz Per or maxLa are increased, the range of period and lability values may increase. The
number of nodes in the SPP-tree may thus increase, and the size of the SPP-tree also contributes
to the peak memory usage.

5.2 Influence of the number of transactions on TSPIN’s performance

We also evaluated the proposed algorithm’s scalability in terms of execution time and number of tree
nodes when the number of transactions is varied. For this experiment, the real-world dataset kosarak is
used, since it has a large number of distinct items and transactions. The dataset was divided into five
parts and the performance of the algorithm was measured after adding each part to the previous ones.
Figure 5 shows the experiment’s results for maxPer = 1%, maxLa = 1% and k = 10, 000.

It is clear that the execution time and number of nodes increase along with the database size. This
is reasonable because the number of itemsets may be greater in a larger database, and tail nodes may
have to store longer lists of transaction IDs (timestamps). Hence, the algorithm may spend time for
evaluating additional itemsets, and more time for building the SPP-tree.

18 Fournier-Viger et al.

140 5000k
Kosarak Kosarak
120 (maxPer=1%,maxLa=1%,k=10,000) L (maxPer=1%,maxLa=1%,k=10,000)
4000k
1%]
<
@ S 3000k -
[}
£ 5
'4'3 S
= [
£ 2 2000k |
=
z
1000k 4 I
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
Database size Database size

Fig. 5 Scalability of SPP-growth when variying the database size

—&—BOX
7 4 —— CAKE & HEART & VINTAGE

Iy
=
DESIGN & PACK & WHITE (g
g

per(X,i) (hour)
3
)
=
v
]

w
L

0 500 1000 . 1500 2000 2500
13

Fig. 6 Periods of some interesting SPPs found in OnlineRetail

5.3 Analysis of some interesting SPPs found in customer transaction data

We also analyzed the SPPs found in the real-world OnlineRetail dataset to see if the proposed algorithm
allows finding interesting patterns. OnlineRetail contains transactions of a UK-based online store from
01/12/2010 to 09/12/2011. The data was segmented into hours to obtain 2,975 non empty transactions.
Figure 6 shows SPPs that have been found, which are {Box}: (2553, Oh), { Cake, Heart, Vintage}: (2284,
1h) and {Design, Pack, White}: (2131, 2h), where each SPP X is annotated with (sup(X), mazla(X)).
The X-axis indicates period numbers of patterns, and the Y-axis indicates the value per(X,i) for the
i-th period. Note that to reduce the number of points on that chart, only the maximum value for each
group of 50 periods is shown in Figure 6. It can be observed that frequent patterns exceeding maxPer
having a stable periodic behavior are obtained, while such patterns would be ignored by traditional
PFP mining algorithms due to the strict maxzPer constraint. The stable patterns found about the sale
of products are also deemed interesting as they indicate stable sale trends. Such information could be
used to forecast product sales.

5.4 Performance comparison with SPP-Growth set with an optimal minSup threshold

This journal extends a conference paper where an early version of TSPIN was presented, called SPP-
Growth [17]. The main difference between TSPIN and SPP-Growth is that TSPIN let the user directly
choose the number of patterns k to be found, while SPP-Growth requires that the user sets a minSup
threshold. Using the parameter k instead of minsup was proposed because finding an appropriate value
for the minSup parameter whithout having background knowledge about a dataset is a process of trial

TSPIN: Mining Top-k Stable Periodic Patterns 19

and error, which can be time-consuming. By letting the user set k, the user can directly specify how
many patterns to be found. Though, using k is more intuitive, the resulting problem of top-k SPP
mining is much more difficult than that of mining all SPPs using a minSup threshold. The reason is
that in top-k SPP mining, the search for patterns must start from minSup = 1, while in SPP mining the
minSup threshold is fixed beforehand by the user, and thus SPP-Growth can directly use that threshold
to reduce the search space.

Because TSPIN and SPP-Growth have different parameters and are designed for two different prob-
lems, it is difficult to compare them. To still do a comparison, a scenario was considered where SPP-
Growth was run with an optimal minsup value to generate the same number of itemsets as TSPIN. The
goal of this experiment is to evaluate if top-k stable periodic pattern mining using TSPIN can have a
similar performance to mining stable periodic patterns using SPP-Growth. That question is interesting
since top-k stable periodic pattern mining is a more difficult problem than stable periodic pattern min-
ing. For this experiment, both TSPIN and SPP-Growth were implemented in Java, and use the same
code for loading datasets, constructing an SPP-tree, mining an SPP-tree and saving patterns.

TSPIN was run with mazPer = 30% and maxzLa = 30%, while k was varied from 5,000 to 25,000
on the T10/4D100K dataset, 500 to 2,500 on the Mushroom dataset, and 10,000 to 30,000 on the
OnlineRetail dataset. TSPIN was also run with mazPer = 0.5% and mazLa = 0.5%, while k was varied
from 10,000 to 30,000 on the Kosarak dataset. Then, the SPP-growth algorithm was run with the
optimal minSup value to obtain the same number of itemsets. Runtime and peak memory usage were
measured. Tables 6 to 9 show results for the four datasets, respectively.

From these results, it is found that TSPIN takes more time than SPP-growth on Mushroom and
Kosarak while TSPIN and SPP-growth have very similar runtime on 7107/4100K and OnlineRetail. This
is considered a good result since the problem of top-k stable periodic pattern mining is more difficult
than the problem of stable periodic pattern mining using minSup.

In terms of memory, TSPIN generally consumes more memory than SPP-growth (up to 15 times
more on the Mushroom dataset and up to 1.5 times on T10/4100K and Kosarak). This is reasonable
since TSPIN needs to keep a priority queue Qj to store the current top-k patterns.

It is important to note that this experiment was done by setting an optimal minSup value for SPP-
growth to obtain the same number of patterns as TSPIN. But in real-life, the user typically don’t know
how to set minSup threshold. Selecting a value for k is more intuitive than setting minSup because
the former represents the number of patterns that the user wants to find. If the user sets the minSup
threshold too low, SPP-growth may find too many patterns and may become very slow, while if the
threshold is set too high, the user may need to run the algorithm again until a suitable value is found,
which is time-consuming. To avoid such trial-and-error approach to find a suitable minSup value, this
paper has proposed the TSPIN algorithm, which let the user directly specify the number of patterns to be
found. Because the runtime of TSPIN is close to that of SPP-growth on T10714D100K and OnlineRetail,
TSPIN can be considered as a valuable alternative to SPP-growth, especially for sparse datasets.

Table 6 Comparison of TSPIN and SPP-Growth with optimal minSup threshold on the T1014D100K dataset

K minSup Runtime (s) Memory (MB)
TSPIN SPP-Growth TSPIN SPP-Growth
5,000 292 2.397 2.020 522 354
10,000 227 2.833 2.185 611 366
15,000 183 2.914 2.194 608 416
20,000 141 3.045 2.287 607 464
25,000 111 3.239 2.366 617 525

Table 7 Comparison of TSPIN and SPP-Growth with optimal minSup threshold on the Mushroom dataset

K minSup Runtime (s) Memory (MB)
TSPIN SPP-Growth TSPIN SPP-Growth
500 3312 12.447 0.385 2104 96
1,000 2960 13.109 0.505 2103 127
1,500 2736 15.605 0.628 2661 127
2,000 2592 16.204 0.707 2658 127
2,500 2496 17.059 0.812 2653 127

20 Fournier-Viger et al.

Table 8 Comparison of TSPIN and SPP-Growth with optimal minSup threshold on the Kosarak dataset

K minSup Runtime (s) Memory (MB)
TSPIN SPP-Growth TSPIN SPP-Growth
10,000 2369 54.563 13.519 1640 1646
15,000 2150 65.015 15.524 1755 1295
20,000 2087 80.262 16.016 1780 1185
25,000 2045 91.088 17.446 1845 1202
30,000 2019 101.342 17.880 1853 1191

Table 9 Comparison of TSPIN and SPP-Growth with optimal minSup threshold on the OnlineRetail dataset

K minSup Runtime (s) Memory (MB)
TSPIN SPP-Growth TSPIN SPP-Growth
10,000 371 1.550 1.279 263 139
15,000 244 1.639 1.463 265 173
20,000 177 1.673 1.529 264 202
25,000 131 1.687 1.399 264 223
30,000 97 1.712 1.438 265 244

6 Conclusion

Traditional algorithms for mining periodic patterns have three main limitations: (1) they discard a
pattern as non periodic if only one period exceed maxzPer, (2) they do not consider by how much a
period exceeds that threshold, and (3) they generally requires to set a minSup threshold that is hard
to set. This paper addressed these limitations by proposing a novel problem of mining the top-k stable
periodic-frequent patterns in a sequence of transactions (events). A new lability function was defined
to identify patterns that have a stable periodic behavior. A pattern-growth algorithm named TSPIN
was designed to efficiently find the top-k SPPs. An experimental evaluation on both synthetic and real
datasets have shown that TSPIN is efficient and can find useful patterns in customer transaction data.

For future work, we plan to adapt the concept of stability to mine other types of patterns such as
sequential patterns [13] and uncertain patterns that are stable. Besides, we intend to develop applications
around the proposed model of stable periodic patterns to evaluate in more details their usefulness.
Another interesting possibility for future work is to design alternative models for identifying stable
periodic patterns that would also address the three above limitations.

Declarations

Acknowledgements. This study was partly funded by the National Natural Science Foundation of
China and the Harbin Institute of Technology.

Conflicts of interest/Competing interests. The authors declare that they have no conflict of interest
and competing interests.

Avalilability of data and material, and code availability. The code and datasets will be integrated
in the SPMF data mining library (http://www.philippe-fournier-viger.com/spmf) following the article
acceptance.

References

1. Afriyie, MK, Nofong, VM, Wondoh, J, Abdel-Fatao, H (2020). Mining Non-redundant Periodic Frequent Patterns.
In: Proceedings of the 12th Asian Conference on Intelligent Information and Database Systems. Springer, pp 321-331

2. Agrawal R, Imielinski T, Swami AN (1993) Mining Association Rules Between Sets of Items in Large Databases.
In: Proceedings of the 19th ACM SIGMOD International Conference on Management of Data. ACM, pp 207-216

3. Amphawan K, Lenca P, Surarerks A (2009) Mining top-k periodic-frequent pattern from transactional databases
without support threshold, In: Proceedings of the 3rd International Conference on Advances in Information Tech-
nology. pp 18-29

4. Amphawan K, Surarerks A, Lenca P (2010) Mining periodic-frequent itemsets with approximate periodicity using
interval transaction-ids list tree. In: Proceedings of the 3rd International Conference on Knowledge Discovery and
Data Mining. pp 245-248.

5. Bodon F, Schmidt-Thieme L (2005) The Relation of Closed Itemset Mining, Complete Pruning Strategies and Item
Ordering in Apriori-Based FIM Algorithms. In: Proceedings of the 9th European Conference on Principles and
Practice of Knowledge Discovery in Databases. ACM, pp 437-444

TSPIN: Mining Top-k Stable Periodic Patterns 21

6. Chon KW, Hwang SH, Kim MS (2018) GMiner: A fast GPU-based frequent itemset mining method for large-scale
data. Information Sciences 1(439):19-38

7. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT press

8. Dinh DT, Le B, Fournier-Viger P, Huynh VN (2018) An efficient algorithm for mining periodic high-utility sequential
patterns. Applied Intelligence 48(12):4694-4714

9. Fong ACM, Zhou B, Hui SC, Hong GY, Do T (2011) Web content recommender system based on consumer behavior
modeling. IEEE Transactions on Consumer Electronics 57(2):962-969

10. Fournier-Viger P, Gomariz A, Gueniche T, Soltani A, Wu C, Tseng VS (2014) SPMF: a Java Open-Source Pattern
Mining Library. The Journal of Machine Learning Research 15(1):3389-3393

11. Fournier-Viger P, Lin JCW, Duong QH, Dam TL, Sevcik L, Uhrin D, Voznak M (2017) PFPM: discovering periodic
frequent patterns with novel periodicity measures. In: Proceedings of the 2nd Czech-China Scientific Conference 2016.
IntechOpen.

12. Fournier-Viger P, Lin JCW, Duong QH, Dam TL (2016) PHM: Mining Periodic High-Utility Itemsets. In: Pro-
ceedings of the Industrial Conference on Data Mining. pp 64-79

13. Fournier-Viger P, Lin JCW, Kiran RU, Koh YS, Thomas R (2017) A Survey of Sequential Pattern Mining. Data
Science and Pattern Recognition 1(1):54-77

14. Fournier-Viger P, Lin JCW, Truong-Chi T, Nkambou R (2019) A Survey of High Utility Itemset Mining. In
High-Utility Pattern Mining (pp. 1-45). Springer, Cham.

15. Fournier-Viger P, Lin JCW, Vo B, Truong TC, Zhang J, Le HB (2017) A survey of itemset mining. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery 7(4):¢1207

16. Fournier-Viger P, Li Z, Lin, JCW, Kiran RU, Fujita H (2018) Discovering Periodic Patterns Common to Multiple
Sequences. In: Proceedings of the 20th International Conference on Data Warehousing and Knowledge Discovery.
Regensburg: Springer, pp 231-246

17. Fournier-Viger P, Yang P, Lin JCW, Kiran RU (2019) Discovering Stable Periodic-Frequent Patterns in Transac-
tional Data. In: Proceedings of the 32nd International Conference on Industrial, Engineering and Other Applications
of Applied Intelligent Systems. Springer, pp 230-244

18. Fournier-Viger P, Wu CW, Zida S, Tseng, VS (2014) FHM: Faster high-utility itemset mining using estimated
utility co-occurrence pruning. In: Proceedings of the 21st International Symposium on Methodologies for Intelligent
Systems. pp 83-92

19. Fournier-Viger P, Yang P, Lin C, Yun U (2019) HUE-Span: Fast High Utility Episode Mining. In: Proceedings of
the 14th International Conference on Advanced Data Mining and Applications. pp 169-184

20. Gama, J, Zliobaite, I, Bifet, A, Pechenizkiy, M, Bouchachia, H (2014) A Survey on Concept Drift Adaptation.
Journal of ACM Computing Surveys, 46(4):1-37

21. Gouda K, Zaki MJ (2001) Efficiently mining maximal frequent itemsets. In: Proceedings of the 17th IEEE Inter-
national Conference on Data Mining. ACM, pp 163-170

22. Grahne G, Zhu J (2005) Fast algorithms for frequent itemset mining using fp-trees. IEEE transactions on knowledge
and data engineering, 17(10):1347-1362

23. Han J, Pei J, Yin Y, Mao R. (2000) Mining frequent patterns without candidate generation: A frequent-pattern
tree approach. Data mining and knowledge discovery, 8(1):53-87

24. Huang K, Chang C (2008) Efficient mining of frequent episodes from complex sequences. Information Systems,
33:96-114

25. Huang, Y, Hsu, CL, Tseng, VS (2020) PURL: Periodic user representation learning from temporal event records
for personalized health management. In: Proceedings of the 7th IEEE International Conference on Big Data and
Smart Computing. IEEE, pp 358-365

26. Islam, MA, Acharjee, UK (2020) Mining Periodic Patterns and Accuracy Calculation for Activity Monitoring Using
RF Tag Arrays. In: Proceedings of the International Joint Conference on Computational Intelligence. Springer, pp
85-95

27. Kiran RU, Kitsuregawa M, Reddy PK (2016) Efficient discovery of periodic-frequent patterns in very large
databases. Journal of Systems and Software 112:110-121

28. Kiran RU, Reddy PK (2010) Mining rare periodic-frequent patterns using multiple minimum supports. In: Pro-
ceedings of the 15th International Conference on Management of Data. pp 7-8

29. Kiran, RU, Saideep, C, Zettsu, K, Toyoda, M, Kitsuregawa, M., Reddy, PK (2019) Discovering Partial Periodic
Spatial Patterns in Spatiotemporal Databases. In: Proceedings of the 2019 IEEE International Conference on Big
Data. IEEE, pp 233-238

30. Kiran RU, Venkatesh JN, Fournier-Viger P, Toyoda M, Reddy PK, Kitsuregawa M (2017) Discovering Periodic
Patterns in Non-uniform Temporal Databases. In: Proceedings of the 21th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (2). pp 604-617

31. Koh YS, Ravana SD (2016) Unsupervised rare pattern mining: a survey. ACM Transactions on Knowledge Discovery
from Data 10(4):45

32. Kumar V, Valli Kumari V (2013) Incremental mining for regular frequent patterns in vertical format. Int. J. Eng.
Tech. 5(2):1506-1511

33. Li H, Hai M, Zhang N, Zhu J, Wang Y, Cao H (2019) Probabilistic maximal frequent itemset mining methods over
uncertain databases. Intelligent Data Analysis 23(6):1219-1241

34. Luna, JM, Fournier-Viger, P, Ventura, S (2019) Frequent Itemset Mining: a 25 Years Review. WIREs Data Mining
and Knowledge Discovery. Wiley, 9(6):e1329.

35. Manku GS. (2016) Frequent itemset mining over data streams. In Data Stream Management (pp. 209-219). Springer,
Berlin, Heidelberg.

36. Mannila H, Toivonen H, Verkamo AI (1995) Discovering Frequent Episodes in Sequences. In: Proceedings of the
First International Conference on Knowledge Discovery and Data Mining. pp 210-215

37. Minato SI, Uno T, Arimura H (2008) LCM over ZBDDs: Fast generation of very large-scale frequent itemsets using
a compact graph-based representation. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and
Data Mining. pp 234-246

38. Muthukrishnan, S, Berg, EVD, Wu, Y (2007 Sequential Change Detection on Data Streams. In: Proceedings of the
7th IEEE Intern. Conf. on Data Mining Workshops. pp. 551-550

22 Fournier-Viger et al.

39. Nofong VM (2015) Discovering Productive Periodic Frequent Patterns in Transactional Databases. In: Proceedings
of the Second International Conference on Data Science. pp 141-150

40. Nofong VM (2018) Fast and Memory Efficient Mining of Periodic Frequent Patterns. In: Proceedings of the 10th
Asian Conference onModern Approaches for Intelligent Information and Database Systems. pp 223-232

41. Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules. In:
Proceedings of the 7th International Conference on Database Theory. ACM, pp 398-416

42. Rashid MM, Gondal I, Kamruzzaman J (2013) Regularly frequent patterns mining from sensor data stream. In:
Proceedings of the 20th International Conference on Neural Information Processing. pp 417-424

43. Rashid MM, Karim MR, Jeong BS, Choi HJ (2012) Efficient mining regularly frequent patterns in transactional
databases. In: Proceedings of the 17th International Conference on Database Systems for Advanced Applications,
pp 258-271

44. Surana A, Kiran RU, Reddy PK (2012) An Efficient Approach to Mine Periodic-Frequent Patterns in Transactional
Databases. In: Proceedings of the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining. pp 254-
266

45. Tanbeer SK, Ahmed CF, Jeong BS, Lee YK (2009) Discovering periodic-frequent patterns in transactional
databases. In: Proceedings of the 13rd Pacific-Asia Conference on Knowledge Discovery and Data Mining. pp
242-253

46. Tong YX, Chen L, She J (2015) Mining frequent itemsets in correlated uncertain databases. Journal of Computer
Science and Technology 30(4):696-712

47. Truong-Chi T, Fournier-Viger P (2019) A survey of high utility sequential pattern mining. In High-Utility Pattern
Mining (pp. 97-129). Springer, Cham.

48. Wong MH, Tseng VS, Tseng JC, Liu SW, Tsai CH (2017). Long-term user location prediction using deep learning
and periodic pattern mining. In: Proceedings of the 12th International Conference on Advanced Data Mining and
Applications. pp 582-594.

49. Yun U, Kim D, Yoon E, Fujita H (2018) Damped window based high average utility pattern mining over data
streams. Knowledge-Based Systems 144:188-205

50. Yun U, Lee G, Yoon E (2017) Efficient high utility pattern mining for establishing manufacturing plans with sliding
window control. IEEE Transactions on Industrial Electronics 64(9): 7239-7249

51. Zaki, MJ, Gouda, K (2003) Fast vertical mining using diffsets. In: Proceedings of the 9th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM, pp 326-335

52. Zhang R, Chen W, Hsu TC, Yang H, Chung YC (2019) ANG: a combination of Apriori and graph computing
techniques for frequent itemsets mining. The Journal of Supercomputing. 6(2):646-61

53. Zhang, D, Lee, K, Lee, I (2019) Mining hierarchical semantic periodic patterns from GPS-collected spatio-temporal
trajectories. Expert Systems with Applications. 122: 85-101.

	Introduction
	Related work
	The Proposed Model
	The TSPIN Algorithm
	Experimental evaluation
	Conclusion

