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Abstract—To discover patterns of high importance in data, a
popular data science task is high utility itemset mining (HUIM).
It aims at discovering all sets of values that have a high utility
(importance) in database records. A key application is to find
products purchased together in online stores that yield a high
profit (utility), as it can provide insights for marketing and
product recommendation. But HUIM has two key limitations.
First, the discovered patterns do not provide information about
the quantities of items. But in real-life, quantities are important
(e.g. buying 1 bread is not the same as buying 12 breads). Second,
it is observed in real shopping data that many itemsets yield a
high utility (profit) but contain weakly correlated items. Such
itemsets can be misleading as their joint sale may just appear by
chance. This paper addresses both issues by proposing a novel
algorithm called CHUQI-Miner (Correlated High Utility Quanti-
tative Itemset-Miner). It extends the state-of-the-art HUQI-Miner
algorithm for quantitative high utility itemset mining with the
bond correlation measure. This allows finding strongly correlated
high utility itemsets with quantities. Experiments on retail data
show that the algorithm is efficient and can filter a huge amount
of spurious itemsets.

Index Terms—high utility itemsets, correlation, quantitative
itemsets, bond measure

I. INTRODUCTION

Data has become a key part of modern information sys-
tems. To gain insights from large datasets, many data science
algorithms have been developed. In recent years, high utility
itemset mining (HUIM) has become a key data science task
[1]–[3]. It aims at discovering all high utility itemsets (sets
of values) that have a high importance (utility) in data.
The concept of utility may take various forms for different
applications. The most representative HUIM application is to
find sets of products bought together by customers that yield a
high profit. In that context, a high utility itemset (HUI) is a set
of items that yield a profit that is equal to or greater than a user-
defined minimum utility threshold (minutil). For a decision-
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maker, HUIM can reveal useful information about customer
behavior that can be used for marketing. For example, it can be
found that the items {pen, eraser} bought together generate a
high profit. However, a problem with traditional HUIM is that
HUIs do not give any information about purchase quantities.
But this information can be useful for marketing purposes. For
instance, it is not the same to buy 1 pen or a box of 24 pens.
As a solution, HUIM was recently generalized as the task of
high utility quantitative itemset mining (HUQIM) [4]–[7]. The
output is a set of HUIs with quantity information, called high
utility quantitative itemsets (HUQIs). For instance, a HUQI
may be {pen:12-24, eraser:1} indicating that purchasing 12 to
24 pens with one eraser is profitable. The problem of HUQIM
is much more difficult than HUIM because not only various
items may be combined to make itemsets but also different
quantities and ranges of quantities.

Though HUQIM is an emerging research area and many
algorithms were designed [4]–[7], a major problem is that
HUQIs often contain items that are weakly correlated. For
instance, a HUI {pen : 12− 24, diamond} may be profitable
but there are no relationship between pens and diamonds.
Hence, this itemset is a HUQI simply because diamonds are
expensive and pens are purchased by many customers. A
traditional HUQIM algorithm can thus output many spurious
patterns, which can be misleading for decision-makers.

This paper addresses the above limitation by proposing
a novel algorithm named CHUQI-Miner (Correlated High
Utility Quantitative Itemset-Miner). The algorithm integrates
a measure of correlation named the bond in the search for
HUQIs. This allows filtering spurious patterns to only find
strongly correlated HUQIs (CHUQIs). As it will be shown in
the experimental evaluation on real shopping data, this allows
filtering out a huge amount of spurious patterns.

The rest of this paper is organized as follows: Section 2
reviews related work. Section 3 describes preliminaries and the



problem definition. Section 4 presents the developed CHUQI-
Miner algorithm. Section 5 describes experiments. Finally,
Section 6 concludes the paper.

II. RELATED WORK

Since the 1990s, itemset mining has attracted the attention
of many researchers. The first algorithms were designed to find
frequent itemsets [8], that is sets of values appearing frequently
in data. Frequent itemset mining (FIM) algorithms efficiently
find frequent itemsets without checking all possibilities by
relying on the anti-monotonicity property of the support. This
property states that the support (occurrence frequency) of an
itemset cannot be greater than that of its subsets. Because
frequent itemsets are not always interesting, other pattern
selection criteria have been proposed. In high utility itemset
mining (HUIM), a generalization of FIM, the goal is to
find itemsets that have a high utility (importance), where the
utility can be defined in terms of various criteria such as
the profit or the time [9]–[11]. HUIM is a difficult problem
because the utility function for selecting patterns is not anti-
monotonic nor monotonic. To cope with this challenge, HUIM
algorithms rely on anti-monotonic upper bounds on the utility
to reduce the search space such as the transaction weighted
utility (TWU) [10] and the remaining utility upper bound [12].
HUIM algorithms can be classified into two categories: Two-
phase based algorithms and one-phase based algorithms [1],
[2]. As indicated in its name, the two-phase based algorithms
are based on two phases [10], the first phase may overestimate
some low utility itemsets, but it never underestimates any high
utility itemset. In the second phase, these algorithms perform
another database scan to calculate the exact utility of candi-
dates and filter low-utility itemsets. The first two phase based
algorithm is TP [10]. Based on TP algorithm, other algorithms
were proposed such as: IHUP [13] and UPGrowth [14]. It was
shown that two-phase based algorithms generate a very large
number of candidate itemsets in the first phase. To address this
problem, one-phase based algorithms have emerged from the
appearance of HUI Miner algorithm [12]. These algorithms
immediately identify high utility itemsets in only one phase
without need to generate candidate itemsets. Several one-
phase based algorithms have been proposed such as: FHM [9],
mHUIMiner [11], HMiner [15] and ULB-Miner [16].

To consider quantities in HUIM, several HUQIM algorithms
were designed. The HUQA [7] algorithm adopts a candidate
generation approach and reduces the search space using a k-
support bound measure. To avoid doing many database scans,
a faster algorithm called VHUQI [4] utilizes a vertical data
representation. More recently, the HUQI-Miner algorithm [5]
applied two upper bounds based on the TWU and remaining
utility to reduce the search space. An extension called FHUQI-
Miner [6] was then introduced with additional search space
reduction strategies. FHUQI-Miner is to our best knowledge
the state-of-the-art HUQIM algorithm [6].

To address the problem that items are often weakly cor-
related in itemsets in FIM and HUIM, several correlation
measures have been integrated such as the bond [17], [18],

TABLE I: A quantitative
transaction database

Tid Transaction

T1 (A,2) (B,5) (C,2) (D,1)
T2 (B,4) (C,3)
T3 (A,2) (C,2)
T4 (A,2) (B,6) (D,1)

TABLE II: External utility
values of items

Item i A B C D

pi 3 1 2 2

all-confidence [18], [19] and affinity [20], [21]. However, none
of them has been used in HUQIM.

III. PRELIMINARIES AND PROBLEM DEFINITION

The next paragraph presents preliminaries and then the
proposed problem of CHUQIM.

Let I be a finite set of N items (symbols), denoted as I =
{I1, I2, . . . , lN}. A positive number pi indicates the relative
importance (e.g. unit profit) of each item i ∈ I , and is called its
external utility. A quantitative transaction database (QTDB)
is a set of one or more transactions D = {T1, T2, . . . , TM}.
Each transaction Td ∈ D is a set of exact Q-items, Td =
{x1, x2, . . . , xk} and has a unique identifier d. An exact Q-
item x is a tuple (i, q) telling that q units of item i ∈ I have
been purchased. As example, consider the QTDB of Table I,
which will be used as running example. It has four transactions
(T1, T2, T3, T4) made up of four items I = {A,B,C,D}. The
third transaction T3 contains two Q-items, (A, 2) and (C, 2),
indicating that a customer bought two units of item A, and
two units of item C. The external utility values of items are
listed in Table II. For instance, pD = 2 means that the sale of
each unit of item D yields a profit of 2$.

To find HUQIs, two types of Q-items are considered, namely
the range Q-items and the exact Q-items. The range Q-items
do not exist in an input database but they are created when
searching for itemsets by combining exact Q-items and/or
range Q-items. A range Q-item is a tuple (i, l, u) specifying
that from l to u units of item i have been purchased. It is
said to have an interval (Q-interval) of size u − l + 1. As
example, the interval size of range Q-item (A, 2, 4) is 3. It can
be observed that any exact Q-item (i, q) can be represented
as a range Q-item (i, q, q). A Q-itemset is a finite set of Q-
items. If a Q-itemset has k items, it is called a k-Q-itemset.
If a Q-itemset has a Q-item with a Q-interval of size no less
than 1, it is a range Q-itemset. As example, [(A, 1)(C, 2, 3)]
is a range 2-Q-itemset.

An exact Q-item x = (i, q) is contained in a range Q-item
y = (j, l, u) if i = j and q ∈ [l, u]. Besides, a range Q-item
z = (j′, l′, u′) is contained in y if j′ = j, u ≥ u′ and l ≤ l′.
For instance, the exact Q-item (A, 2) is contained in (A, 1, 5),
and this latter is contained in range Q-item (A, 1, 6).

Let there be an exact Q-item x, a range Q-item y and a
transaction Td. If x ∈ Td, then it is said that x occurs in Td.
If a Q-item of Td is contained in y, then it is said that y occurs
in Td. As example, (C, 2) occurs in T1 and T3, while (C, 2, 3)
occurs in T1, T2 and T3.



Let there be a Q-itemset X and a transaction Td. If each
Q-item x ∈ X occurs in Td, then X is said to occur
in Td. The occurrence-set of X is the set of transactions
where X occurs, denoted as OCC(X). The support of X
is defined as sup(X) = |OCC(X)| and also called occur-
rence frequency. As example, let X = [(A, 2), (C, 2)]. Then,
sup(X) = |OCC(X)| = |{T1, T3}| = 2.

HUQIM aims at enumerating all the Q-itemsets having a
high utility (e.g. profit) [4]. Let there be a transaction Td.
For a Q-item x = (i, q), the utility in Td is defined as
u(x, Td) = pi × q. For a range Q-item x = (i, l, u), the
utility in Td is defined as u(x, Td) =

∑u
j=l u((i, j), Td). For

a Q-itemset X , the utility in Td is defined as u(X,Td) =∑
x∈X u(x, Td). For instance, u((A, 2), T3) = 3 × 2 = 6,

u((C, 2, 3), T3) = u((C, 2), T3) + u((C, 3), T3) = 4 + 0 = 4
and u([(A, 2)(D, 1)], T1) = 6 + 2 = 8. For a database D, the
utility of X is defined as u(X) =

∑
Td∈OCC(X) u(X, Td) [4].

For example, u([(B, 5, 6)(D, 1)]) = u([(B, 5) (D, 1)], T1)
+u([(B, 6) (D, 1)], T4) = 7 + 8=15 and u([(A, 2) (C, 2)]) =
u([(A, 2)(C, 2)],T1) + u([(A, 2)(C, 2)],T3)=10 + 10=20.

The utility of a transaction Td is TU(Td) =
∑

y∈Td
u(y, Td)

(The sum of its Q-items’ utility). The utility of database D
is defined as σ =

∑
Td∈D TU(Td) (the sum of its trans-

actions’ utility). For instance, TU(T2) = u((B, 4), T2) +
u((C, 3), T2) = 4 + 6 = 10 and σ = TU(T1) + TU(T2) +
TU(T3) + TU(T4) = 51.

Formally, the problem of HUQIM consists of enumerating
the high utility quantitative itemsets (HUQIs) in a database
D. A Q-itemset X is a HUQI if its utility is no less
than a user-defined minimum utility threshold minutil ∈
[0, σ], i.e. u(X) ≥ minutil. If u(X) < minutil, it is a
low utility quantitative itemset (LUQI) [4]. For example, if
minutil = 10, the Q-itemset [(A, 2)(D, 1)] is a HUQI because
u([(A, 2)(D, 1)]) = 16 ≥ 10.

HUQIM is an extension of HUIM that is more difficult to
solve. The search space in HUQIM is larger than in HUIM
because not only different itemsets need to be evaluated but
also different quantities for each itemset. For an item, different
quantities yield different Q-items such as B(2) and B(3)
for the item B. Moreover, various quantities for an itemset
can produce different range Q-itemsets such as B(2, 3) and
B(2, 4). Besides, another challenge is that the utility of a
Q-itemset is not anti-monotonic nor monotonic, that is a Q-
itemset may have a utility that is smaller, greater or equal
to that of its subsets or supersets [4]. As a consequence, the
utility cannot be directly used to prune the search space.

To mine HUQIs, recent algorithms apply two operations
[5], [6]. The join operation appends two Q-itemsets to obtain
a larger Q-itemset (a Q-itemset with one more Q-item). The
merge operation takes two Q-itemsets having Q-items with
consecutive quantities and merges them to obtain a Q-itemset
with a larger Q-interval. For instance, a join of Q-items
(B, 4) and (C, 3) produces the Q-itemset [(B, 4)(C, 3)], while
a merge of (C, 2) and (C, 3) yields the range Q-itemset
[(C, 2, 3)]. An interesting property of the HUQIM problem
is that pairs of LUQIs can be sometimes combined to produce

a range HUQI. To avoid generating too many combinations, a
Quantitative Related Coefficient (qrc) is used, such that qrc >
0. This coefficient restricts the size of Q-intervals produced
by merge operations. Using qrc, a merge operation can be
done with two Q-itemsets X = [(x1, l1, u1), (x2, l2, u2), . . . ,
(xk, lk, uk)] and Y = [(y1, l

′
1, u
′
1), (y2, l

′
2, u
′
2),. . . ,(yk, l′k, u

′
k)]

to produce a range Q-itemset Z = [(i1, l1, u1), (i2, l2, u2), . . . ,
(ik, lk, u

′
k)] if the following conditions are met [5]:

(1) X and Y are candidate Q-itemsets, that is minutil
qrc ≤

u(X) ≤ minutil and minutil
qrc ≤ u(Y ) ≤ minutil.

(2) The first (k − 1) Q-items of X and Y are identical, i.e,
∀(1 ≤ i ≤ k − 1): xi = yj , li = l′j and ui = u′j .
(3) The Q-interval of the last Q-item to be generated should
be less than or equal to qrc, i.e, u′k − lk ≤ qrc.
(4) For the last Q-item, xk = yk and l′k = (uk + 1).

There are three methods to combine Q-itemsets, called
Combine All, Combine Min, and Combine Max [5],
[22], which can produce different sets of HUQIs. Us-
ing Combine All, all possible range HUQIs are cre-
ated by combining candidate Q-itemsets, or candidate Q-
itemsets with range Q-itemsets [5]. For instance, consider a
set of candidate Q-itemsets {[(B, 2)(D, 3)], [(B, 2)(D, 4)],
[(B, 2)(D, 5)]}. The Combine All method will generate
three range Q-itemsets: [(B, 2)(D, 3, 4)], [(B, 2)(D, 4, 5)] and
[(B, 2)(D, 3, 5)]. After combination, only HUQIs are kept
from the generated Q-itemsets.

Because of the limited space, this section only describes
Combine All. The reader is referred to [5], [6] for more
details about the join and merge operations.

Although HUQIM is useful, a major limitation of HUQIM
algorithms is that the correlation between items is not assessed.
This can lead to finding many spurious HUQIs. To address
this issue, this paper proposes the task of Correlated HUQIM
(CHUQIM) where the bond correlation measure is integrated
in HUQIM to prune all weakly correlated HUQIs. While many
correlation measures have been used in FIM and HUIM, the
bond is selected because it is popular and easy to interpret
[17], [18].

Definition 1 (bond measure): Given a Q-itemset X , the
Bond measure of a pattern is based on its support count
(sup) and its disjunctive support. The disjunctive support
of X , denoted as disup(X), is defined as: disup(X) =
|{Td ∈ D|X ∩ Td 6= ∅}|. Based on these two supports,
the bond of Q-itemset X , written as bond(X), is given by
bond(X) = sup(X)/disup(X).

Any Q-itemset’s bond value is always in the range [0,1].
Moreover, one important specificity of the bond measure is
that it is anti-monotonic [17]. Therefore, it can be used as an
upper-bound to prune non-correlated Q-itemsets with all their
supersets.

Correlated High Utility Quantitative Itemset Mining
(CHUQIM). The task of correlated HUQIM is to enumerate
all correlated HUQIs (CHUQIs). A HUQI X is a CHUQI if
bond(X) ≥ minbond, where minbond is set by the user.

For example, if minutil = 10 and minbond = 0.5, the
CHUQIs are: [(A, 2) : 18, 1], [(B, 4, 6) : 15 : 1], [(B, 5, 6) :



11 : 1], [(C, 2, 3) : 14 : 1], [(A, 2)(C, 2) : 20 : 0.66],
[(A, 2)(D, 1) : 16 : 0.66],[(B, 4)(C, 3) : 10 : 1] where the
first number after the colon represents the pattern’s utility and
the second number is the pattern’s bond.

IV. THE CHUQI-MINER ALGORITHM

Traditional HUQIM algorithms such as HUQI-Miner [5]
and FHUQI-Miner [6] discover a set of itemsets with their
quantities that yield to high profits in a transaction database.
However, these algorithms do not take into consideration
the correlation between items. Because of that, HUQIM al-
gorithms may find a large set of Q-itemsets having high
utilities where most are weakly correlated in the database.
To address this limitation, a novel algorithm is designed,
called CHUQI-Miner (Correlated High Utility Quantitative
Itemset Miner). CHUQI-Miner is based on FHUQI-Miner with
additional pruning strategies to keep only CHUQIs. In the
following, the Q-item utility-list structure is first introduced.
Then, we present the pruning strategies adopted by CHUQI-
Miner to prune low utility Q-itemsets. Finally, the CHUQI-
Miner algorithm is described with pruning strategies adopted
to prune weakly correlated Q-itemsets.

Q-items utility-lists. Similarly to FHUQI-Miner, CHUQI-
Miner is also a utility-list based algorithm. A utility-list is a
structure that is used to represent each pattern (Q-itemset in
our case) of the mining problem. It is used since it allows to
quickly find the utility of patterns during the mining process
without repetitively reading the database [6], [12]. Formally,
given a database D and also a total order relation ≺ on distinct
Q-items in D, the utility-list of a Q-itemset X ⊆ D is denoted
as UL(X). UL(X) stores the utility information of X in all
transactions that contain X . The utility information is stored
in a set of tuples that have the form (Td, Eutil, Rutil) where
d is the identifier of a transaction Td such that X ⊆ Td,
Eutil is the utility of X in Td, i.e, Eutil(X,Td) = u(X,Td),
and Rutil is the remaining utility of X in Td, denoted
as Rutil(X,Td). Rutil(X,Td) =

∑
i∈Td/X

u(i, Td), where
Td/X contains the set of all Q-items that come after Q-
items of X according to the predefined order ≺. Moreover,
UL(X) contains also two additional values SumEutil and
SumRutil. SumEutil is the sum of all Eutils of X . It gives
the exact utility of X in D, i.e, u(X), while SumRutil is
the sum of all Rutils of X . SumRutil will be further used
to prune the search space using the remaining utility pruning
strategy.

In CHUQI-Miner, utility-lists not only store the utility
information. But they are also adopted to store information for
computing the bond measure to identify correlated patterns.
More precisely, it is necessary to find the disjunctive support
(disup) and support count (sup) of different Q-itemsets during
the search for patterns. The support count of a Q-itemset X
can be easily calculated from its utility list. It is equal to the
number of tuples in UL(X), i.e. |UL(X)|. To calculate the
disjunctive support, a naive approach is to scan the database for
each pattern. However, this is impracticable and requires a long
time. To overcome this problem, we adopt the disjunctive bit

vector structure [18]. More precisely, each utility-list contains
a bit vector that stores the occurrence set of its corresponding
Q-itemset. Given a Q-itemset X , the ith bit of the bit vector
of X is set to 1 if ∃j ∈ X such that j ∈ Ti. Otherwise,
this bit is set to 0. First, the disjunctive bit vectors of initial
Q-items are calculated during the first database scan. Then,
during the recursive mining search, disjunctive bit vectors of
larger Q-itemsets can be easily constructed by performing a
logical OR operation on smaller Q-itemsets.

Back to our running example, suppose that the order ≺
between Q-items is: (A, 2) ≺ (B, 4) ≺ (B, 5) ≺ (B, 6) ≺
(C, 2) ≺ (C, 3) ≺ (D, 1), the utility-list of Q-item [(A, 2)]
has three tuples which are: (T1, 6, 11), (T3, 6, 4) and (T4, 6, 8)
with SumEutil = 18 and SumRutil = 23. The disjunctive
bit vector of [(A, 2)] is 1011. The utility of Q-item [(C, 2)]
contains two tuples (T1, 4, 2) and (T3, 4, 0) with SumEutil =
8 and SumRutil = 2. The disjunctive bit vector of [(C, 2)]
is 1010. The utility-list of Q-itemset [(A, 2)(C, 2)] has two
tuples (T1, 10, 2) and (T3, 10, 0) with SumEutil = 20 and
SumRutil = 2. The disjunctive bit vector of [(A, 2)(C, 2)]
is obtained by performing a logical OR between the disjunc-
tive bit vectors of [(A, 2)] and [(C, 2)]. More precisely, The
disjunctive bit vector of [(A, 2)(C, 2)]= 1011 OR 1010=1011.

Using utility-lists allows to overcome the problem of repet-
itively scanning the database and allows to obtain exact
utilities of different Q-itemsets. However, it is impracticable
to construct utility-lists for all possible Q-itemsets, especially,
with databases that contain a large set of items. Therefore,
CHUQI-Miner adopts some pruning strategies to prune low
utility and weakly correlated Q-itemsets with their transitive
extensions that are unpromising as well.

Pruning Strategies. CHUQI-miner considers that Q-
itemsets should have high utilities and should contain cor-
related Q-items. Thus, there are two categories of pruning
strategies, one for eliminating low utility Q-itemsets and the
other for eliminating non correlated Q-itemsets. In this section,
we explain the pruning strategies adopted by CHUQI-Miner
to eliminate low-utility Q-itemsets. The other strategies that
are used to prune non correlated Q-itemsets will be discussed
in the next section with the CHUQI-miner algorithm.

Strategy 1: TWU Pruning Strategy.
Given a Q-itemset X , the transaction weighted utility of

X , denoted as TWU(X), is the sum of transactions util-
ities of transactions containing X . Formally, TWU(X) =∑

Td∈OCC(X) TU(Td). The TWU is anti-monotonic and it is
an upper bound on the utility of Q-itemsets and their supersets.
Therefore, it can be used to prune unpromising Q-itemsets.

Given a Q-itemset X , if TWU(X) < minutil
qrc , then X with

all its transitive extensions can be eliminated because they are
not promising.

Back to our example, TWU([(A, 2)(B, 6)])=u(T4)= 14. If
minutil = 30 and qrc = 2, then TWU([(A, 2)(B, 6)]) =
14 < 30

2 . Thus, [(A, 2)(B, 6)] can be pruned with all its
extensions because they are not promising.

Strategy 2: Remaining utility pruning strategy.



This pruning strategy is based on the SumRutil of a Q-
itemset stored in its utility-list.

Given a Q-itemset X , if SumEutil(X)+SumRutil(X) <
minutil then X with all its supersets can be elimi-
nated because they are LUQIs. For example, SumEutil
([(A, 2)(D, 1)])=16 and SumRutil([(A, 2)(D, 1)])=0. If
minutil = 30, then [(A, 2) (D, 1)] can be eliminated with
all its extensions.

Strategy 3: Co-occurrence pruning strategy based on the
utility measure.

The co-occurrence pruning strategy allows to eliminate
LUQIs with their transitive extensions without even the need to
construct their utility-lists. It is based on the TQCS structure,
(TWU of Q-items Co-occurrence based Structure), which is
constructed during the second scan of the database. The TQCS
stores all pairs of Q-items, i.e, 2-Q-itemsets, that have co-
occurred in the database with their utility information [6].

Formally, the TQCS contains a set of tuples that have the
form (a, b, c, d), where a and b are two Q-items that co-
occurred in the database, c is the TWU of the Q-itemset [ab],
i.e, c = TWU([ab]), and d is the support count of Q-itemset
[ab], i.e, d = sup([ab]).

Using the TQCS, there are two strategies to prune low utility
Q-itemsets, namely Exact Q-items Co-occurrence Pruning
Strategy (EQCPS) and Range Q-items Co-occurrence Prun-
ing Strategy (RQCPS). EQCPS prunes unpromising exact Q-
itemsets while RQCPS is used for pruning unpromising range
Q-itemsets. The reader can refer to [6] to see a detailed
explanation of these strategies with illustrative examples.

The Algorithm. This section describes the main steps of
CHUQI-Miner to find CHUQIs including the raising strategies
that are used. CHUQI-Miner (Algorithm 1) has five input
parameters: (1) The transaction database D, (2) The user-
defined minimum utility threshold (minutil), (3) The user-
defined minimum bond (minbond) which should be selected
between 0 and 1, (4) The combining method CM and (5) The
quantitative related coefficient qrc. CHUQI-Miner provides
the set of correlated HUQIs in D.

CHUQI-Miner starts by scanning the database to calculate
the TWU of each Q-item in D (line 1). Then, CHUQI-Miner
applies the TWU pruning strategy (strategy 1) to keep only
promising Q-items and remove non promising Q-items (line
2).

The second database scan is then performed to create initial
utility-lists of promising Q-items (line 3). Besides, promising
Q-items are first ordered according to the pre-defined order
≺. Then, initial utility-lists of these Q-items are built and the
TQCS structure is also constructed.

Then, CHUQI-Miner checks the utility of each promising
Q-item. If the current Q-item has a utility that is greater than or
equal to the minutil value, then this Q-item is output because
it is a CHUQI (lines 5-7). Otherwise, two tests are performed
to put this Q-item either in the set of candidate Q-items (C)
(line 10) or in the set of Q-items to be explored (E) (line 9).

Note that, CHUQI-Miner does not check the bond of
promising Q-items because the bond of any Q-itemset that has

Algorithm 1: The CHUQI-Miner algorithm
Input : D: The quantitative transaction database, minutil: The user-defined

minimum utility threshold, minbond: The user-defined minimum
bond value, CM : The combining method (Combine Min,
Combine Max or Combine All), qrc: The quantitative related
coefficient.

Output: The set of correlated HUQIs.

1 First database scan to calculate the TWU of each Q-item;
2 Create initial set of promising Q-items P∗ such that

∀x ∈ P∗ : TWU(x) ≥ minutil
qrc and discard unpromising

Q-itemsets; // Strategy 1
3 Second database scan to create utility-lists of promising Q-items ULs(P∗)

and build the TQCS structure;
4 foreach x ∈ P∗ do
5 if UL(x).SumEutil ≥ minutil then
6 H = H ∪ x;
7 Output x;
8 else
9 if UL(x).SumEutil + UL(x).SumRutil ≥ minutil then

E = E ∪ x ;
10 if minutil

qrc ≤ UL(x).SumEutil ≤ minutil then
C = C ∪ x ;

11 Discover High Utility range Q-itemsets (HR) using CM and C;
12 QIs ← sort(H ∪ E ∪ HR);
13 Recursive Mining Search(∅, QIs, ULs(QIs), P∗, minutil,minbond,

CM , qrc);

only one Q-item, i.e, Q-item, is always 1. Thus, if a Q-item
is a HUQI, it is a CHUQI.

If the set of candidate Q-items (C) is not empty, CHUQI-
Miner performs the combination process to generate correlated
high utility range Q-itemsets (line 11). It is worth noticing
that, range Q-itemsets do not explicitly exist in the database
but they are obtained after combining exact or range Q-items.
Thus, it is assumed that the bond measure of range Q-itemsets
is equal to 1 and it suffices to just check their utilities.

At this point, CHUQI-Miner calls the recursive mining
procedure which is presented in Algorithm 2 (line 13).

The recursive mining search algorithm of CHUQI-Miner is
similar to that used in FHUQI-Miner [6] with some changes
to discover HUQIs that are correlated. The recursive mining
search algorithm is a depth-first search algorithm that has
eight parameters as input: (1) P : The prefix Q-itemset, (2)
QIs: The set of extensions of P , (3) UL(QIs): Utility-lists of
QIs, (4) P ∗: The list of promising Q-itemsets (5) minutil:
The user-defined minimum utility threshold, (6) minbond: The
user-defined minimum bond value, (7) CM : The combining
method and (8) qrc: The quantitative related coefficient.

The recursive mining search algorithm explores the search
space starting from smaller Q-itemsets to larger Q-itemsets
based on the following principle: Given a prefix Q-itemset P
and a list of Q-itemsets to be explored QIs, for each Q-itemset
Px in QIs, the algorithm traverses all extensions Py such that
x ≺ y to explore larger Q-itemsets that have the form Pxy
(lines 1-3). For each extension Pxy, the algorithm performs
a series of three pruning strategies to decide whether it is
necessary to construct the utility list of Pxy or to pass directly
to the next extension Py. More precisely, the algorithm starts
by applying Strategy 3 to check the TWU of xy (line 4). Then,
Strategy 4 is applied to check if xy is strongly or weakly
correlated (line 5).

Strategy 4: Co-occurrence pruning strategy based on the



Algorithm 2: Recursive Mining Search
Input : P : The prefix Q-itemset, QIs: The list of Q-itemsets, ULs(QIs):

Utility lists of Q-itemsets, P∗: The list of promising Q-itemsets,
minutil: The user-defined minimum utility threshold, minbond:
The user-defined minimum bond value, CM : The combining
method, qrc: The quantitative related coefficient.

Output: The set of CHUQIs with respect to prefix P .

1 foreach [Px] such that x ∈ QIs do
2 QIs ← ∅; newP∗ ← ∅;
3 foreach [Py] such that y ∈ P∗ and y � x do
4 Apply Co-occurrence pruning strategy based on the utility

measure;// Strategy 3
5 Apply Co-occurrence pruning strategy based on the bond

measure;// Strategy 4
6 Bit vector(Pxy)←

PerformOR(Bit vectors(Px, Py));
7 if min(sup(Px),sup(Py))

|Bit vector(Pxy)| < minbond then
8 // Strategy 5
9 Go to next Py;

10 Z ← [Pxy]; UL(Z) = Construct(P, Px, Py);
11 if UL(Z).TWU ≥ minutil

qrc and bond(Z) ≥ minbond then
12 newP∗ = newP∗ ∪ Z;
13 if UL(Z).SumEutil ≥ minutil then
14 Output Z;
15 H = H ∪ Z;
16 else
17 if UL(Z).SumEutil + UL(Z).SumRutil ≥

minutil then E = E ∪ Z;
18 if minutil

qrc ≤ UL(Z).SumEutil ≤ minutil

then // Strategy 2
19 C = C ∪ Z;
20 Discover High Utility range Q-itemsets HR using CM and C;
21 QIs ← (H ∪ E ∪ HR);
22 Recursive Mining Search(Px, QIs, ULs(QIs), newP∗,

minutil,minbond, CM , qrc);

correlation measure.
This strategy is inspired by the EQCPS used in strategy 3.

However, it is used to prune the weakly correlated Q-itemsets.
Given a prefix Q-itemset P and two consecutive Q-itemsets
Px and Py. If min{sup(Px),sup(Py),sup(xy)}

max{disup(Px),disup(Py)} < minbond,
the utility list of Pxy should not be constructed because
Q-itemset Pxy is weakly correlated with all its supersets.
Note that, sup(xy) is extracted from the TQCS structure.
Mathematically, the left end of the inequality is an upper
bound on the bond measure of Pxy, i.e, ∀P, x, y ∈ D,
min{sup(Px),sup(Py),sup(xy)}

max{disup(Px),disup(Py)} ≥ bond(Pxy). Therefore, the
left end of the inequality can be used to prune the search
space.

For instance, if P = ∅, Px = [(A, 2)], Py = [(D, 1)] and
minbond = 0.8, then min{3,2,2}

max{3,2} =0.66. This value is less than
minbond = 0.8. Thus, the algorithm can pass directly to the
next Py extension.

After applying the two above co-occurrence pruning strate-
gies (Strategies 3 and 4), the algorithm performs Strategy 5
which is applied just before the construction process (lines
6-8).

Strategy 5: Pruning supersets of non correlated Q-itemsets.
An additional strategy is used in CHUQI-Miner to prune the

weakly correlated Q-itemsets with their supersets without con-
structing their utility-lists. Based on the fact that the bond mea-
sure is anti-monotonic [17], [18], if min{sup(Px),sup(Py)}

disup(Pxy) <
minbond, then a Q-itemset Pxy can be pruned with all its
extensions because these Q-itemsets are weakly correlated.
disup(Pxy) is extracted by performing a logical OR between

disjunctive bit vectors of Px and Py.
For example, suppose that, P = ∅, Px = [(A, 2)], Py =

[(B, 5)] and minbond = 0.5, min{3,1}
|1011 OR 1000|=

1
3 = 0.33 < 0.5.

Thus, the extension [(A, 2)(B, 5)] can be pruned with all its
supersets.

If the combination Pxy is not pruned by the above pruning
strategies, the algorithm performs the join process to build
UL(Pxy) from UL(P ), UL(Px) and UL(Py) (line 9).

During the construction process, Strategy 6 is applied.
Strategy 6 (Early Abandoning Utility-Lists Construction).

This strategy is performed during the construction of the
Q-itemset Pxy. More precisely, the construction process is
stopped if a specific condition is met because it is sure
that the resulted Pxy is not promising. Given the minbond
value and disup(Pxy) which has been previously calcu-
lated by performing the logical OR operator between dis-
junctive bit vectors of Px and Py, the Q-itemset Pxy
can be a CHUQI if and only if sup(Pxy)

|disup(Pxy)| ≥ minbond,
i.e., sup(Pxy) ≥ |disup(Pxy)| ∗ minbond. Therefore, if
sup(Pxy) < |disup(Pxy)| ∗minbond, then the construction
of Pxy is stopped. To see more details how Strategy 6 works
with the construction process, we suggest the reader to refer
to [23].

If the construction process is not stopped by Strategy 6, the
extension Pxy is put in the list of new promising Q-itemsets
newP ∗ (line 11) and the algorithm performs similar tests as
in Algorithm 1. More precisely, based on the utility of Pxy,
Pxy can be: A CHUQI (Pxy ∈ H), a candidate Q-itemset
(Pxy ∈ C) or a Q-itemset to be explored (Pxy ∈ E)(lines
12-17).

After traversing all extensions of P , the algorithm performs
the combination process to discover correlated high utility
range Q-itemsets (line 18). Then, the new QIs is created from
sets H ,C and HR (line 19).

At this point, the recursive mining search algorithm per-
forms a recursive call with the new prefix Px (line 20). Since
the algorithm starts from the prefix P = ∅, CLH-Miner is able
to identify all CHUQIs in the database D.

V. EXPERIMENTS

Experiments were performed to assess the performance of
CHUQI-Miner. They were done on a workstation running
Windows 7, having an Intel(R) i7-8700 processor and 16
GB of RAM. CHUQI-Miner was compared with the state of
art FHUQI-Miner HUQIM algorithm. CHUQI-Miner was run
with minbond values varied from 0.1 to 0.9. Henceforth, the
notation (CHUQI x) refers to CHUQI-Miner with minbond =
x. FHUQI-Miner and CHUQI-Miner are implemented in Java.

Datasets. Algorithms were evaluated on four datasets that
have various characteristics. These datasets were downloaded
from the SPMF data mining library [22] and are often used
in the HUQIM literature to evaluate algorithms.

Mushroom is a dense dataset with 8,416 transactions and
128 items. Connect is a dense dataset of long transactions.
It contains 67,557 transactions and 129 items. Foodmart is a
sparse dataset with 4,141 transactions and 1,559 distinct items.
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Fig. 2: Patterns found using FHUQI-Miner and CHUQI-Miner
for different minbond and minutil values

Chess is a dense dataset with long transactions. It has 3,196
transactions and 75 items. Besides, the quantities of items are
varied from 1 to 5.

Runtime comparison on different datasets. The first ex-
periment was done to compare the execution time of CHUQI-
Miner with FHUQI-Miner for different values of minutil and
minbond. Results are presented in Fig. 1. It can be observed
that mining CHUQIs is much faster than mining HUQIs in
case of dense datasets especially for small values of minutil
and large values of minbond. More precisely, for Mushroom,
Connect and Chess, CHUQI-Miner is up to 29, 49 and 194
times faster than FHUQI-Miner. On average, CHUQI-Miner
is 11.14, 17.91 and 52.67 faster than FHUQI-Miner. The
main reason why CHUQI-Miner outperformed FHUQI-Miner
is that these datasets contain many Q-items that are weakly

correlated. As a result, a large quantity of HUQIs will be
pruned using the bond during the search process because these
Q-itemsets are not correlated and occur rarely in the database.
For the sparse Foodmart dataset, the runtime of CHUQI-Miner
is closer to FHUQI-Miner because in that dataset the Q-items
are more correlated. It can be also seen from Fig. 1 that the
runtimes of CHUQI-Miner variants with different values of
minbond have similar performance. This means that the bond
measure does not affect very much the performance of the
algorithm on that datasets.

Number of generated patterns on different datasets In
a second experiment, the number of patterns, i.e, HUQIs for
FHUQI-Miner and CHUQIs for CHUQI-Miner, are recorded
and depicted in Fig. 2. It can be seen that for both dense and
sparse datasets, CHUQI-Miner can output much less patterns
than FHUQI-Miner, especially in case of small values of
minutil. For example, on Connect with minutil = 1.5,
FHUQI-Miner returns 3,013 HUQIs while CHUQIs with
minbond = 0.1 gives only 36 CHUQIs. It can be also
observed that a huge reduction is achieved on Chess where
CHUQI-Miner found up to 2,120 times less patterns than
FHUQI-Miner. On average, for Chess, Mushroom, Connect
and Foodmart, the set of CHUQIs is 290.37, 46.19, 31.70 and
17.18 times smaller than the set of HUQIs.

Overall, these results show the usefulness of CHUQI-Miner
because it was able to filter out a huge amount of weakly
correlated Q-itemsets encountered in real datasets. This allows
to not only speed up the discovery of HUQIs but also to only
keep the correlated ones. CHUQIs can be viewed as preferable
to traditional HUQIs for scenarios such as the cross-promotion
of items in online stores.

VI. CONCLUSION

A major limitation of traditional HUQIM algorithms is that
many weakly correlated itemsets are often found. To address
this issue, this paper proposed the novel problem of Correlated
HUQIM by integrating the bond measure in HUQIM. An
efficient algorithm named CHUQI-Miner was presented to
find all CHUQIs. The algorithm applies a depth-first search
and various pruning strategies. Experiments on four datasets
have shown that CHUQI-Miner has an excellent performance
compared to the state-of-the-art FHUQI-Miner algorithm and
can filter out a large number of spurious patterns.

There are several opportunities for future work such as
integrating other correlation measures in HUQIM such as the
all-confidence [18], [19] and affinity [20], [21], integrating the
concept of taxonomy [23], [24], and mining streaming data
[25]–[27].
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