VGEN: Fast Vertical Mining of Sequential
Generator Patterns

Philippe Fournier-Viger', Antonio Gomariz2, Michal Sebek®, Martin Hlosta3

! Dept. of Computer Science, University of Moncton, Canada
2 Dept. of Information and Communication Engineering, University of Murcia, Spain
3 Faculty of Information Technology, Brno University of Technology, Czech Republic
philippe.fournier-viger@umoncton.ca, agomarizQum.es,
{isebek,ihlosta}@fit.vutbr.cz

Abstract. Sequential pattern mining is a popular data mining task with
wide applications. However, the set of all sequential patterns can be
very large. To discover fewer but more representative patterns, several
compact representations of sequential patterns have been studied. The
set of sequential generators is one the most popular representations. It
was shown to provide higher accuracy for classification than using all
or only closed sequential patterns. Furthermore, mining generators is
a key step in several other data mining tasks such as sequential rule
generation. However, mining generators is computationally expensive. To
address this issue, we propose a novel mining algorithm named VGEN
(Vertical sequential GENerator miner). An experimental study on five
real datasets shows that VGEN is up to two orders of magnitude faster
than the state-of-the-art algorithms for sequential generator mining.

Keywords: sequential patterns, generators, vertical mining, candidate
pruning

1 Introduction

Sequential pattern mining is a popular data mining task, which aims at discov-
ering interesting patterns in sequences [10]. A subsequence is called sequential
pattern or frequent sequence if it frequently appears in a sequence database, and
its frequency is no less than a user-specified minimum support threshold called
minsup [1]. Sequential pattern mining plays an important role in data mining
and is essential to a wide range of applications such as the analysis of web click-
streams, program executions, medical data, biological data and e-learning data
[10]. Several algorithms have been proposed for sequential pattern mining such
as PrefizSpan [11], SPAM [2], SPADE [15] and CM-SPADE [5]. However, a crit-
ical drawback of these algorithms is that they may present too many sequential
patterns to users. A very large number of sequential patterns makes it difficult
for users to make a good analysis of results to gain insightful knowledge. It may
also cause the algorithms to become inefficient in terms of time and memory be-
cause the more sequential patterns the algorithms produce, the more resources

they consume. The problem becomes worse when the database contains long
sequential patterns. For example, consider a sequence database containing a se-
quential pattern having 20 distinct items. A sequential pattern mining algorithm
will present the sequential pattern as well as its 22° — 1 subsequences to the user.
This will most likely make the algorithm fail to terminate in reasonable time
and run out of memory. To reduce the computational cost of the mining task
and present fewer but more representative patterns to users, many studies focus
on developing concise representations of sequential patterns [3,4,6,13]. Two of
those representations are closed sequential patterns [6,13] and sequential gen-
erator patterns [8,12] that allow us to keep all the information about all the
frequent patterns that can be potentially generated.

Among the aforementioned representations, mining sequential generators is
desirable for several reasons. First, if sequential generators are used with closed
patterns, they can provide additional information that closed patterns alone can-
not provide [12]. For example, a popular application of sequential generators is
to generate sequential rules with a minimum antecedent and a maximum conse-
quent [9]. When we focus on obtaining rules, by using generators as antecedents
and closed patterns as consequents, we obtain rules which allows deriving the
maximum amount of information based on the minimum amount of information
[9]. Second, it was shown that generators provide higher classification accuracy
and are more useful for model selection than using all patterns or only closed
patterns [7,12]. Third, sequential generators are preferable according to the prin-
ciples of the MDL (Minimum Description Length) as they represent the smallest
members of equivalence classes rather than the largest ones [8,12]. Lastly, the
set of sequential generators is compact. It has a similar size or can be smaller
than the set of closed sequential patterns [8].

Although mining sequential generators is desirable, it remains computation-
ally expensive and few algorithms have been proposed for this task. Most algo-
rithms such as GenMiner [8], FEAT [7] and FSGP [14] employ a pattern-growth
approach by extending the PrefixSpan algorithm [11]. These algorithms differ
by how they store patterns, prune the search space, and whether they identify
generators on-the-fly or by post-processing. Because these algorithms all adopts
a pattern-growth approach, they also suffer from its main limitation which is
to repeatedly perform database projections to grow patterns, which is an ex-
tremely costly operation (in the worst case, a pattern-growth algorithm will
perform a database projection for each item of each frequent pattern). Recently,
an algorithm named MSGPs was also proposed. But it only provides a marginal
performance improvement over previous approaches (up to 10%)[12].

In this paper, we propose a novel algorithm for mining sequential genera-
tors named VGEN (Vertical sequential GENerator miner). VGEN performs a
depth-first exploration of the search space using a vertical representation of the
database. The algorithm incorporates three efficient strategies named ENG (Effi-
cient filtering of Non-Generator patterns), BEC (Backward Extension checking)
and CPC (Candidate Pruning by Co-occurrence map) to effectively identify gen-
erator patterns and prune the search space. VGEN can capture the complete set

of sequential generators and requires a single database scan to build its vertical
structure. An experimental study with five real-life datasets shows that VGEN
is up to two orders of magnitude faster than the state-of-the-art algorithms for
sequential generator mining and performs very well on dense datasets.

The rest of the paper is organized as follows. Section 2 formally defines the
problem of sequential generator mining and its relationship to sequential pat-
tern mining. Section 3 describes the VGEN algorithm. Section 4 presents the
experimental study. Finally, Section 5 presents the conclusion.

2 Problem Definition

Definition 1 (sequence database). Let I = {iy,i2,...,%;} be a set of items
(symbols). An itemset I, = {i1,i2,...,%m} C I is an unordered set of distinct
items. The lexicographical order =, is defined as any total order on I. Without
loss of generality, we assume that all itemsets are ordered according to »je;. A
sequence is an ordered list of itemsets s = (I, I, ..., I,,) such that I, C T (1 <
k <mn). A sequence database SDB is a list of sequences SDB = (s1, S2, ..., Sp)
having sequence identifiers (SIDs) 1,2...p.

Running example. Consider the following sequence database:

sequence 1: {({a,b}, {c},{f, g}, {9}, {e})
sequence 2: ({a,d}, {c}, {b},{a,b,e, f})
sequence 3: ({a}, {b},{f, 9}, {e})
sequence 4: ({b},{f,g})

It contains four sequences having the SIDs 1, 2, 3 and 4. Each single letter
represents an item. Items between curly brackets represent an itemset. The first
sequence ({a,b}, {c},{f, g}, {g}, {e}) contains five itemsets. It indicates that
items a and b occurred at the same time, were followed by ¢, then f and g at
the same time, followed by g and lastly e.

Definition 2 (sequence containment). A sequence s, = (A1, Ag, ..., 4,) is
said to be contained in a sequence s, = (B, Ba, ..., By,) iff there exist integers
1<y <ig < ... <ip <msuch that A; C B;1, A3 C By, ..., Ay, C By, (denoted
as sq C sp). In such a case, s, is said to be a sub-pattern of sp, and s to be a
super-pattern of s, Example. Sequence 4 of the running example is contained
in Sequence 1.

Definition 3 (prefix). A sequence s, = (A4, As, ..., A,) is a prefix of a se-
quence Ssp = <B1,BQ, ...,Bm>, Vn < m, iff Ay = Bl,AQ = BQ, ---aAn—l = B,_1
and the first |A,| items of B,, according to >, are equal to A,,.

Definition 4 (extensions). A sequence s; is said to be an s-extension of a
sequence s, = (I, Is,...Iy) with an item x, iff s, = (I1, Is,... I, {z}), i.e. 5, is a
prefix of s, and the item x appears in an itemset later than all the itemsets of
Sq. In the same way, the sequence s, is said to be an i-extension of s, with an
item x, iff s. = (I, Iz, ...I, U {x}), i.e. s, is a prefix of s, and the item z occurs
in the last itemset of s,, and the item x is the last one in [}, according to »;e.

Fig.1. All/closed/generator sequential patterns for the running example when
minsup = 2

Definition 5 (support). The support of a sequence s, in a sequence database
SDB is defined as the number of sequences s € SDB such that s, C s and is
denoted by supspp(sa)-

Definition 6 (sequential pattern mining). Let minsup be a minimum
threshold set by the user and SDB be a sequence database. A sequence s is a
sequential pattern and is deemed frequent iff supspp(s) > minsup. The problem
of mining sequential patterns is to discover all sequential patterns [1]. Exam-
ple. The lattice shown in Fig. 1 presents the 30 sequential patterns found in
the database of the running example for minsup = 2, and their support. For
instance, the patterns ({a}), ({a}, {g}) and () (the empty sequence) are frequent
and have respectively a support of 3, 2 and 4 sequences.

Definition 7 (closed/generator sequential pattern mining). A sequen-
tial pattern s, is said to be closed if there is no other sequential pattern sy,
such that s, C sp, and their supports are equal. A sequential pattern s, is said
to be a generator if there is no other sequential pattern s;, such that s, C s,,
and their supports are equal. An alternative and equivalent definition is the
following. Let an equivalence class be the set of all patterns supported by the
same set of sequences, partially-ordered by the C relation. Generator (closed)
patterns are the minimal (maximal) members of each equivalence class [8]. The
problem of mining closed (generator) sequential patterns is to discover the set
of closed (generator) sequential patterns. Example. Consider the database of
the running example and minsup = 2. There are 30 sequential patterns (shown
in Fig. 1), such that 15 are closed (identified by a gray color) and only 11 are
generators (identified by a dashed line). It can be observed that in this case,
the number of generators is less than the number of closed patterns. Consider
the equivalence class {({c}), ({a},{c}), ({c}, {e}), ({a}, {c} {e}), ({a}, {c}, {f})}
supported by sequences 1 and 2. In this equivalence class, pattern ({c}) is the
only generator and ({a}, {c},{e}) and ({a}, {c},{f}) are the closed patterns.

We next introduce the main pruning property for sequential generator min-
ing, which is used in various forms by state-of-the-art algorithms for generator
mining to prune the search space [8].

Definition 8 (database projection). The projection of a sequence database
SDB by a sequence s, is denoted as SDB,, and defined as the projection of
each sequence from SDB by s,. Let be two sequences s, = (43, As, ..., Ayn)
and s, = (By, Ba, ..., By). If s, C 3, the projection of s, by s, is defined as
(Bk1, Bi2...Brm) for the smallest integers 0 < k1 < k2 < ...km < m such that
Ay C By, Ay C Bga, Ay, € By Otherwise, the projection is undefined. Ex-
ample. Consider the sequence database of the running example. The projection

of the database by ({a},{c}) is {{{f, 9}, {9}, {e}), ({b}, {a, b, e, [})).

Property 1. (non-generator pruning). Let SDB be a sequence database,
and s, and s, be two distinct sequential patterns. If s, T s, and SDB;, =
SDB;,, then s, and any extensions of s, are not generators [8]. Example.
For the running example, the projections of ({f}) and ({f,g}) are identical.
Therefore, ({f,¢}) and any of its extensions are not generators.

Definition 9 (horizontal/vertical database format). A sequence database
in horizontal format is a database where each entry is a sequence. A sequence
database in vertical format is a database where each entry represents an item and
indicates the list of sequences where the item appears and the position(s) where
it appears [2]. Example. The sequence database of the running example was
presented in horizontal format. Fig. 2 shows the same database but in vertical
format.

a b c g f g
SID | Itemsets SID | Itemsets SID | Itemsets SID | Itemsets SID | Itemsets SID | Itemsets
1 1 1 1 1 2 1 5 1 3 1 34
2 14 2 34 2 2 2 4 2 4 4 2
3 1 3 2 3 3 4 3 3
4 1 SID [Itemsets 4 2
2 | 1

Fig. 2. The vertical representation of the database from our running example

Vertical mining algorithms associate a structure named IdList [15, 2] to each
pattern. IdLists allow calculating the support of a pattern quickly by making
join operations with IdLists of smaller patterns. To discover sequential patterns,
vertical mining algorithms perform a single database scan to create IdLists of
patterns containing single items. Then, larger patterns are obtained by perform-
ing the join operation of IdLists of smaller patterns (see [15] for details). Several
works proposed alternative representations for IdLists to save time in join oper-
ations, being the bitset representation the most efficient one [2].

3 The VGEN Algorithm

We present VGEN, our novel algorithm for sequential generator mining. It adopts
the IdList structure implemented as bitsets [2, 15]. We first describe the general
search procedure used by VGEN to explore the search space of sequential pat-
terns [2]. Then, we describe how it is adapted to discover sequential generators
efficiently.

The pseudocode of the search procedure is shown in Fig. 3. The procedure
takes as input a sequence database SDB and the minsup threshold. The pro-
cedure first scans SDB once to construct the vertical representation of the
database V(SDB) and the set of frequent items Fj. For each frequent item
s € Fi, the procedure calls the SEARCH procedure with (s), F1, {e € File ez
s}, and minsup. The SEARCH procedure outputs the pattern ({s}) and re-
cursively explores candidate patterns starting with prefix ({s}). The SEARCH
procedure takes as parameters a sequential pattern pat and two sets of items to
be appended to pat to generate candidates. The first set S,, represents items to
be appended to pat by s-extension. The second set S; represents items to be ap-
pended to pat by i-extension. For each candidate pat’ generated by an extension,
the procedure calculate the support to determine if it is frequent. This is done
by the IdList join operation (see [2,15] for details) and counting the number of
sequences where the pattern appears. If the pattern pat’ is frequent, it is then
used in a recursive call to SEARCH to generate patterns starting with the prefix
pat’. Tt can be easily seen that the above procedure is correct and complete to
explore the search space of sequential patterns since it starts with frequent pat-
terns containing single items and then extend them one item at a time while only
pruning infrequent extensions of patterns using the anti-monotonicity property
(any infrequent sequential pattern cannot be extended to form a frequent pat-
tern)[1]. We now describe how the search procedure is adapted to discover only
generator patterns. This is done by integrating three strategies to efficiently fil-
ter non-generator patterns and prune the search space. The result is the VGEN
algorithm, which returns the set of generator patterns.

Strategy 1. Efficient filtering of Non-Generator patterns (ENG). The
first strategy identifies generator patterns among patterns generated by the
search procedure. This is performed using a novel structure named Z that stores
the set of generator patterns found so far. The structure 7 is initialized as a set
containing the empty sequence () with its support equal to |SDB|. Then, during
the search for patterns, every time that a pattern s,, is generated by the search
procedure, two operations are performed to update Z.

— Sub-pattern checking. During this operation, s, is compared with each pat-
tern s, € Z to determine if there exists a pattern s, such that s, C s, and
sup(sq) = sup(sp). If yes, then s, is not a generator (by Definition 7) and
thus, s, is not inserted into Z. Otherwise, s, is a generator with respect to
all patterns found until now and it is thus inserted into Z.

PATTERN-ENUMERATION(SDB, minsup)

1.
2.
3.

Scan SDB to create V(SDB) and identify S;,;, the list of frequent items.
FOR each item s € Sii,
SEARCH((s), Sint, the set of items from S;,;; that are lexically larger than s, minsup).

S

=

1Y)

BO®NZ OO A WNE

EARCH(pat, S, I,, minsup)

Output pattern pat.
stemp = Ilemp =0
FOR eachitem j € S,
IF the s-extension of pat is frequent THEN Siey := Stemp U{i}-
FOR each item j€ Sepp,
SEARCH(the s-extension of pat with j, S, , elements in Siy, greater than j, min-

FOR each itemj € I,
IF the i-extension of pat is frequent THEN ligmp := liemp U{i}-
FOR each item j € lemp,
SEARCH(i-extension of pat with j, Semp , all elements in I, greater than j, minsup).

Fig. 3. The search procedure

— Super-pattern checking. If s, is determined to be a generator according to

sub-pattern checking, the pattern s, is compared with each pattern s, € Z.
If there exists a pattern s, such that s, C s, and sup(s,) = sup(sp), then sy
is not a generator (by Definition 7) and s; is removed from Z.

By using the above strategy, it is obvious that when the search procedure

terminates, Z contains the set of sequential generator patterns. However, to make
this strategy efficient, we need to reduce the number of pattern comparisons and
containment checks (£). We propose four optimizations.

1. Size check optimization. Let n be the number of items in the largest pattern

found until now. The structure Z is implemented as a list of maps Z =
{My, My, ...M,}, where M, contains all generator patterns found until now
having x items (1 < & < n). To perform sub-pattern checking (super-pattern
checking) for a pattern s containing w items, an optimization is to only
compare s with patterns in My, My...My,—1 (in Myy1, Myy2...M,,) because
a pattern can only contain (be contained) in smaller (larger) patterns.

SID count optimization. To verify the pruning property 1, it is required to
compare pairs of patterns s, and s, to see if their projected databases are
identical, which will be presented in the BEC strategy. A necessary condition
to have identical projected databases is that the sum of SIDs (Sequence IDs)
containing s, and s; are the same. To check this condition efficiently, the sum
of SIDs is computed for each pattern and each map M) contains mappings
of the form (I, S;) where Sy, is the set of all patterns in Z having [as sum
of SIDS (Sequence IDs).

Sum of items optimization. In our implementation, each item is represented
by an integer. For each pattern s, the sum of the items appearing in the pat-
tern is computed, denoted as sum/(s). This allows the following optimization.

Consider super-pattern checking for pattern s, and sp,. If sum(s,) > sum(sp)
for a pattern s, then we don’t need to check s, C sp. A similar optimization
is done for sub-pattern checking. Consider sub-pattern checking for a pattern
sq and a pattern sp. If sum(sy) > sum(s,) for a pattern sy, then we don’t
need to check s C s,.

4. Support check optimization. This optimization uses the support to avoid
containment checks (C). If the support of a pattern s, is less than the support
of another pattern s, (greater), then we skip checking s, C sp (85 C 5,).

Strategy 2. Backward Extension checking (BEC). The second strategy
aims at avoiding sub-pattern checks. The search procedure discovers patterns
by growing a pattern by appending one item at a time by s-extension or i-
extension. Consider a pattern x’ that is generated by extension of a pattern
z. An optimization is to not perform sub-pattern checking if z’ has the same
support as (because this pattern would have z as prefix, thus indicating that
x is not a generator).

This optimization allows to avoid some sub-pattern checks. However it does
allows the algorithm to prune the search space of frequent patterns to avoid
considering patterns that are non generators. To prune the search space, we
add a pruning condition based on Property 1. During sub-pattern checking for
a pattern x, if a smaller pattern y can be found in Z such that the projected
database is identical, then x is not a generator as well as any extension of x.
Therefore, extensions of should not be explored (by Property 1). Checking if
projected databases are identical is done by comparing the IdLists of x and y.

Strategy 3. Candidate Pruning with Co-occurrence map (CPC). The
last strategy aims at pruning the search space of patterns by exploiting item co-
occurrence information. We introduce a structure named Co-occurrence MAP
(CMAP) [5] defined as follows: an item k is said to succeed by i-extension to
an item j in a sequence (I, I, ..., I,) iff j,k € I, for an integer = such that
1 <z <nand#k >, j. In the same way, an item k is said to succeed by s-
extension to an item j in a sequence (I1, Io, ..., I;,) iff j € I, and k € I, for some
integers v and w such that 1 < v < w < n. A CMAP is a structure mapping
each item k € I to a set of items succeeding it.

We define two CMAPs named CMAP; and CMAP,. CMAP; maps each
item k to the set ecm; (k) of all items j € I succeeding k by i-extension in no less
than minsup sequences of SDB. CM AP, maps each item k to the set em (k) of
all items j € I succeeding k by s-extension in no less than minsup sequences of
SDB. For example, the CM AP; and CM AP, structures built for the sequence
database of the running example are shown in Table 1. Both tables have been
created considering a minsup of two sequences. For instance, for the item f, we
can see that it is associated with an item, em;(f) = {g}, in CM AP;, whereas it
is associated with two items, cms(f) = {e, g}, in CMAP;. This indicates that
both items e and g succeed to f by s-extension and only item g does the same
for i-extension, being all of them in no less than minsup sequences.

VGEN uses CMAPs to prune the search space as follows. Let a sequential
pattern pat being considered for s-extension (i-extension) with an item x € S,
by the SEARCH procedure (line 3). If the last item a in pat does not have an item
x € cmg(a) (z € em;), then clearly the pattern resulting from the extension of pat
with x will be infrequent and thus the join operation of z with pat to count the
support of the resulting pattern does not need to be performed. Furthermore, the
item x is not considered for generating any pattern by s-extension (i-extension)
having pat as prefix, by not adding « to the variable Siemp (Itemp) that is passed
to the recursive call to the SEARCH procedure. Moreover, note that we only
have to check the extension of pat with x for the last item in pat, since other
items have already been checked for extension in previous steps.

CMAPs are easily maintained and are built with a single database scan.
With regards to their implementation, we define each one as a hash table of
hashsets, where an hashset corresponding to an item k only contains the items
that succeed to k in at least minsup sequences.

CMAP; CMAP,
item|is succeeded by (i-extension)||item|is succeeded by (s-extension)
a {b} a {b,c.e, f}
b 0 b fe, f. 9}
c 0 c {e, f}
e 0 e)
f {9} f fe. g9}
g 0 g 0

Table 1. CM AP; and CM AP;s for the database of Fig. 1 and minsup = 2.

4 Experimental Evaluation

We performed several experiments to assess the performance of the proposed
algorithm. Experiments were performed on a computer with a third genera-
tion Core 15 64 bit processor running Windows 7 and 5 GB of free RAM. We
compared the performance of VGEN with FSGP [14] and FEAT [7] for mining
sequential generators and BIDE [13] for closed sequential pattern mining. Note
that we do not compare with MSGPs for generator mining since it only provide
a marginal speed improvement over FSGP (up to 10%) [12]. Furthermore, we
do not compare with GenMiner, since authors of GenMiner reported that it is
slower than BIDE [8]. All memory measurements were done using the Java APIL
Experiments were carried on five real-life datasets commonly used in the data
mining literature, having varied characteristics and representing three different
types of data (web click stream, text from a book and protein sequences). Ta-
ble 4 summarizes the datasets’ characteristics. The source code of all compared
algorithms and datasets can be downloaded from http://goo.gl/xat4k.

ldataset [sequence count|item count[avg‘ seq. length (items)[type of data

Leviathan |5834 9025 33.81 (std= 18.6) book

Snake 163 20 60 (std = 0.59) protein sequences
FIFA 20450 2990 34.74 (std = 24.08) web click stream
BMS 59601 497 2.51 (std = 4.85) web click stream
Kosarak10k|10000 10094 8.14 (std = 22) web click stream

Table 2. Dataset characteristics

Experiment 1. Influence of the minsup parameter. The first exper-
iment consisted of running all the algorithms on each dataset while decreasing
the minsup threshold until an algorithm became too long to execute, ran out
of memory or a clear winner was observed. For each dataset, we recorded the
execution time, memory usage and pattern count. Note that the execution time
of VGEN includes the creation of ID-Lists.

In terms of execution time, results (see Fig. 4) show that VGEN is from
one to two orders of magnitude faster than FEAT, FSGP and BIDE for all
datasets. Furthermore, we observe that VGEN has excellent performance on
dense datasets. For example, on Snake, VGEN is 127 times faster than FEAT,
149 times faster than FSGP, and 263 times faster than BIDE.

In terms of pattern count (see Fig. 4), as expected, we observe that the set of
sequential generators can be much smaller than the set of all sequential patterns,
and that there is about as much sequential generators as closed patterns.

In terms of memory consumption the maximum memory usage in megabytes
of VGEN/FSGP/FEAT/BIDE for the Kosarak, BMS, Leviathan, Snake and
FIFA datasets for the lowest minsup value were respectively 820,/840/381/427,
1641/759/*/383, 3422/1561/*/* 135/795/776/329 and 1815/1922/1896/2102,
where * indicates that an algorithm has no result because it ran out of memory
or failed to execute within the time limit of 1000s. We note that VGEN has the
lowest memory consumption for Snake and FIFA, the second lowest for Leviathan
and the third lowest for BMS and Kosarak.

Experiment 2. Influence of the strategies. We next evaluated the benefit
of using strategies in VGEN. We compared VGEN with a version of VGEN with-
out strategy CPC (VGEN_WC) and a version without strategy BEC (VGEN_WB).
Results for the Kosarak and Leviathan datasets are shown in Fig. 5. Results for
other datasets are similar and are not shown due to space limitation. As a whole,
strategies improved execution time by up to to 8 times, CPC being the most ef-
fective strategy.

We also measured the memory footprint used by the CPC strategy to build
the CMAPs data structure. We found that the required amount memory is very
small. For the BMS, Kosarak, Leviathan, Snake and FIFA datasets, the memory
footprint is respectively 0.5 MB, 33.1 MB, 15 MB, 64 KB and 0.4 MB.

1000 Kosarak 1000 BMS

~
- 100 -b\ﬁ_\é\\w‘;—* 400 1
]]
£ E
5 £
“ 10 4 %10 4
. ESOUERIRTL LI)
15 16 17 18 19 20 21 22 23 24 25 26 27 28 37 39 4 43 45
minsup minsup
Leviathan Snake
1000 1000
T———
b
E 100 £107
s &
3
- . 1 I = ccmenaes e
Il T e, T e -
10
70 80 90 minsup 100 110 120 136 141 minsup 146
1000 __ifa.\-\.\.\./' ’ FSGP —8— FEAT +eevmmeee VGEN —=— BIDE‘
\\"\a-\s\a_*_‘ Sequential pattern count for lowest minsup
= Dataset All patterns [Closed |Generators
E 100 Kosarak 272,938 14,654 17,074
£ BMS 110,558| 44,313 50,981
& RAET T PN ——esemea. . -
e T Leviathan 112,027| 104,532 108,024
Snake 17,767 11,048 11,090
0 Fifa 9,699 9,699 9,699
2700 2800 2900 3000 3100 3200
minsup
Fig. 4. Execution times and pattern count
P Leviathan % Kosarak
35 21
= 30 s 16
P v
£ E
52 S 11
3 3
20 F.T .7
15 R
100 110 120
minsup

| —— VGEN-WB —6— VGEN-WC

Fig. 5. Influence of optimizations for Leviathan (left) and Kosarak (right)

5 Conclusion

In this paper, we presented a depth-first search algorithm for mining sequential
generators named VGEN (Vertical sequential GENerator miner). It relies on a
vertical representation of the database and includes three novel strategies named

ENG (Efficient filtering of Non-Generator patterns), BEC (Backward Extension
checking) and CPC (Candidate Pruning by Co-occurrence map) to efficiently
identify generators and prune the search space. We performed an experimental
study with five real-life datasets to evaluate the performance of VGEN. Results
show that VGEN is up to two orders of magnitude faster than the state-of-the-
art algorithms for sequential generator mining. The source code of VGEN and
all compared algorithms can be downloaded from http://goo.gl/xat4k.

Acknowledgement. This work is financed by a National Science and Engi-
neering Research Council (NSERC) of Canada research grant.

References

1. Agrawal, R., Ramakrishnan, S.: Mining sequential patterns. In: Proc. 11th Intern.
Conf. Data Engineering, pp. 3-14. IEEE (1995)

2. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap
representation. In: Proc. 8th ACM Intern. Conf. Knowl. Discov. Data Mining, pp.
429-435. ACM (2002)

3. Fournier-Viger, P., Wu, C.-W., Tseng, V.-S.: Mining Maximal Sequential Patterns
without Candidate Maintenance. In: Proc. 9th Intern. Conference on Advanced Data
Mining and Applications, pp. 169-180 (2013)

4. Fournier-Viger, P., Wu, C.-W., Gomariz, A., Tseng, V. S.: VMSP: Efficient Ver-
tical Mining of Maximal Sequential Patterns. Proc. 27th Canadian Conference on
Artificial Intelligence, pp. 83-94 (2014)

5. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast Vertical Sequential
Pattern Mining Using Co-occurrence Information. In: Proc. 18th Pacific-Asia Conf.
Knowledge Discovery and Data Mining, pp. 40-52 (2014)

6. Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: An Efficient Algorithm
for Mining Frequent Closed Sequences. In: Proc. 17th Pacific-Asia Conf. Knowledge
Discovery and Data Mining, pp. 50-61 (2013)

7. Gao, C., Wang, J., He, Y., Zhou, L.: Efficient mining of frequent sequence generators.
In: Proc. 17th Intern. Conf. World Wide Web:, pp. 1051-1052 (2008)

8. Lo, D., Khoo, S.-C., Li, J.: Mining and Ranking Generators of Sequential Patterns.
In: Proc. SIAM Intern. Conf. Data Mining 2008, pp. 553-564 (2008)

9. Lo, D., Khoo, S.-C., Wong, L.: Non-redundant sequential rules: Theory and algo-
rithm. Information Systems 34(4), 438-453 (2011)

10. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algo-
rithms, ACM Computing Surveys 43(1), 1-41 (2010)

11. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE
Trans. Known. Data Engin. 16(11), 1424-1440 (2004)

12. Pham, T.-T., Luo, J., Hong, T.-P., Vo, B..: MSGPs: a novel algorithm for mining
sequential generator patterns. In: Proc. 4th Intern. Conf. Computational Collective
Intelligence, pp. 393-401 (2012)

13. Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate
maintenance. IEEE Trans. on Knowledge Data Engineering 19(8), 1042-1056 (2007)

14. Yi, S., Zhao, T., Zhang, Y., Ma, S., Che, Z.: An effective algorithm for mining
sequential generators. Procedia Engineering, 15, 3653-3657 (2011)

15. Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1), 31-60 (2001)

