EFIM-Closed: Fast and Memory Efficient
Discovery of Closed High-Utility Itemsets

Philippe Fournier-Viger!, Souleymane Zida2?, Jerry Chun-Wei Lin?,
Cheng-Wei Wu*, Vincent S. Tseng?,

1 School of Natural Sciences and Humanities, Harbin Institute of Technology
Shenzhen Graduate School, China
2 Department of Computer Science, University of Moncton, Canada
3 School of Computer Science and Technology, Harbin Institute of Technology
Shenzhen Graduate School, China
4 Department of Computer Science, National Chiao Tung University, Taiwan
philfv@hitsz.edu.cn, esz2233Q@umoncton.ca, jerrylinQieee.org,
silvemoonfox@gmail.com, tsengsm@mail.ncku.edu.tw

Abstract. Discovering high-utility temsets in transaction databases is
a popular data mining task. A limitation of traditional algorithms is that
a huge amount of high-utility itemsets may be presented to the user. To
provide a concise and lossless representation of results to the user, the
concept of closed high-utility itemsets was proposed. However, mining
closed high-utility itemsets is computationally expensive. To address this
issue, we present a novel algorithm for discovering closed high-utility
itemsets, named EFIM-Closed. This algorithm includes novel pruning
strategies named closure jumping, forward closure checking and backward
closure checking to prune non-closed high-utility itemsets. Furthermore,
it also introduces novel utility upper-bounds and a transaction merging
mechanism. Experimental results shows that EFIM-Closed can be more
than an order of magnitude faster and consumes more than an order of
magnitude less memory than the previous state-of-art CHUD algorithm.

Keywords: pattern mining, high-utility itemset, closed itemset

1 Introduction

High Utility Itemset Mining (HUIM) [2,3,6,8,9,7, 10, 14] is a popular data min-
ing task for discovering useful patterns in customer transaction databases. It con-
sists of discovering itemsets that yield a high utility (e.g. high profit), that is High
Utility Itemsets (HUIs). Besides customer transaction analysis, HUIM also has
applications in other domains such as click stream analysis and biomedicine [2,
3,8,10]. HUIM can be viewed as an extension of the problem of Frequent item-
set Mining (FIM) [1], where a weight (e.g unit profit) may be assigned to each
item, and where purchase quantities of items in transactions are not restricted
to binary values. HUIM is generally viewed as a difficult problem, because the
utility measure used in HUIM is neither monotonic or anti-monotonic, unlike

the support measure in FIM. That is, the utility of an itemset may be greater,
smaller or equal to the utility of its subsets. For this reason, efficient search space
pruning techniques developped in FIM cannot be used in HUIM.

Several algorithms have been proposed for HUIM [2,3,6,8,9, 7,10, 14]. How-
ever, an important limitation of traditional HUIM algorithms is that they often
produce a huge amount of high-utility itemsets. Hence, it can be very time-
consuming for users to analyze the output of these algorithms. Moreover, this
makes HUIM algorithms suffer from long execution times and even fail to run
due to huge memory consumption or lack of storage space. To address this issue,
it was recently proposed to mine a concise and lossless representation of all HUIs
named closed high-utility itemsets (CHUIS) [11]. The concept of CHUT extends
the concept of closed patterns [13,12] from FIM. A CHUI is a HUI having no
proper supersets that are HUIs and appear in the same number of transactions
[11]. This latter representation is interesting since it is lossless (it allows deriving
all HUIs). Furthermore, it is also meaningful for real applications since it only
discovers the largest HUIs that are common to groups of customers. However,
CHUI mining can be very computationally expensive [11].

In this paper, we address the need for a more efficient CHUI mining algorithm
by proposing an algorithm named EFIM-Closed (EFficient high-utility Itemset
Mining - Closed), based on the strict constraint that for each itemset in the
search space, all operations for that itemset should be performed in linear time
and space. EFIM-Closed propose three strategies to discover CHUIs efficiently:
closure jumping (CJU), forward closure checking (FCC) and backward closure
checking (BCC). To reduce the cost of database scans, EFIM-Closed relies on two
efficient techniques named High-utility Database Projection (HDP) and High-
utility Transaction Merging (HTM). Also, the proposed EFIM-Closed algorithm
includes two new upper-bounds on the utility of itemsets named sub-tree utility
and local utility to effectively prune the search space, and an efficient Fast Utility
Counting (FAC) technique to compute them. An experimental study show that
EFIM-Closed is up to 71 times faster and consumes up to 18 times less memory
than the state-of-the-art CHUD algorithm, and has excellent scalability.

The rest of this paper is organized as follows. Sections 2, 3, 4, 5 and 6
respectively presents the problem of HUIM, the related work, the EFIM-Closed
algorithm, the experimental evaluation and the conclusion.

2 Problem Statement

This section introduces the problem of closed high-utility itemset mining. Let I
be a finite set of items (symbols). An itemset X is a finite set of items such that
X C I. A transaction database is a multiset of transactions D = {T1,T5, ..., T, }
such that for each transaction Tr., T. C I and T, has a unique identifier ¢ called
its TID (Transaction ID). Each item ¢ € I is associated with a positive num-
ber p(i), called its external utility (e.g. unit profit). Every item ¢ appearing in
a transaction 7T, has a positive number ¢(i,T.), called its internal utility (e.g.
purchase quantity). For example, consider the database in Table 1, which will be

used as the running example. It contains five transactions (T, T5..., T5). Trans-
action 75 indicates that items a, ¢, e and g appear in this transaction with an
internal utility of respectively 2, 6, 2 and 5. Table 2 indicates that the external
utility of these items are respectively 5, 1, 3 and 1.

Table 1: A transaction database

Table 2: External utility values

TID|Transaction Item|abcde f g
71 |(a,1)(c,1)(d, 1) Profit|5212311
T (a, 2) (Cv 6) (67 2) (97 5)

T3 (a7 1)(b7 2)(Cv 1)(dv 6)(€v 1)(f7 5)
Ty [(b,4)(c,3)(d,3)(e, 1)
Ts (b72)(07 2)(67 1)(972)

The utility of an item ¢ in a transaction T, is denoted as u(%,7T.) and defined
as p(i) X q(i,T.). The utility of an itemset X in a transaction T, is denoted
as u(X,T.) and defined as u(X,T.) = >,y u(i,T,) if X C T.. The utility
of an itemset X in a database is denoted as w(X) and defined as u(X) =
2T.eqx) WX, T¢), where g(X) is the set of transactions containing X. The
support of an itemset X in a database D is denoted as sup(X) and defined as
|g(X)|. For example, the utility of item a in 7% is u(a,T2) = 5 x 2 = 10, and its
support is 1. The utility of itemset {a,c} is u({a,c}) = u({a,c}, T1) + u({a, c},
To)+u({a,c}, T3) = u(a, Th)+ulc, T1) + u(a, To)+u(c, To) + u(a, Ts)+u(c, T3) =
54+1+104+6+5+1=28.

An itemset X is a high-utility itemset if its utility w(X) is no less than a
user-specified minimum utility threshold minutil given by the user (i.e. u(X) >
minutil). Otherwise, X is a low-utility itemset. A HUI X is a closed high-utility
itemset (CHUT) [11] iff there exists no HUI Y such that X C Y and sup(X) =
sup(Y'). The problem of (closed) high-utility itemset mining is to discover all
(closed) high-utility itemsets, given a threshold minutil, set by the user [11]. For
example, if minutil = 30, the high-utility itemsets in the database of the running
example are {b,d}, {a,c, e}, {b,¢c,d}, {b,c,e}, {b,d,e}, {b,c,d, e}, {a,b,c, d, e,
f} with respectively a utility of 30, 31, 34, 31, 36, 40 and 30. Among those, the
closed high-utility itemsets are {a, b, ¢, d, e, f},{b,c,d,e}, {b, ¢, e} and {a, c, e}.

3 Related Work

A key challenge in HUIM is that search space prune techniques used in FIM
cannot be used in HUIM because the utility measure is neither monotonic nor
anti-monotonic [2,9,10]. Several HUIM algorithms circumvent this problem by
overestimating the utility of itemsets using the concept of Transaction- Weighted
Utilization (TWU) measure [2,6,9, 7,10, 14], defined as follows.

Definition 1 (Transaction weighted utilization). The transaction utility of
a transaction T, is the sum of the utilities of items from T, in that transaction.

ie. TU(T.) = Y e, w(w,T¢). The transaction weighted utilization (TWU) of
an itemset X is defined as TWU(X) = X 1 c(x) TU(T0).

For example, The TU of transactions T1,7T5,7T5,T, and T5 for our running
example are respectively 8, 27, 30, 20 and 11. The TWU of single items a, b, ¢, d,
e, f and g are respectively 65, 61, 96, 58, 88, 30 and 38. The following property
of the TWU is commonly used in HUIM to prune the search space.

Property 1 (Pruning using the TWU). Let be an itemset X. If TWU(X) <
manutil, then X is a low-utility itemset as well as all its supersets [9].

Many HUIM algorithms [2,6,9,7,10,11, 14] utilize Property 1 to prune the
search space. They operate in two phases. In the first phase, they identify can-
didate high-utility itemsets by calculating their TWUs. In the second phase,
they scan the database to calculate the exact utility of all candidates to filter
low-utility itemsets. Recently, algorithms that mine high-utility itemsets using a
single phase were proposed to avoid the problem of candidate generation [3, 8],
and were shown to outperform previous algorithms. One-phase algorithms rely
mainly on the concept of remaining utility to prune the search space.

Definition 2 (Remaining utility). Let > be a total order on items from I,
and X be an itemset. The remaining utility of X in a transaction T, is defined
as re(X,Tc) = > icr nis aveex Wi Tc). The remaining utility of X in a database
is defined as re(X) = Y 5 cpre(X, Te).

Property 2 (Pruning using remaining utility). Let X be an itemset. Let the
extensions of X be the itemsets that can be obtained by appending an item i to
X such that i > z, Vo € X. The remaining utility upper-bound of an itemset X
is defined as reu(X) = u(X) + re(X). If w(X) + reu(X) < minutil, then X is a
low-utility itemset as well as all its extensions [3, 8].

A crucial problem in HUIM is that the set of HUIs is often very large. To
address this issue, it was proposed to mine the concise and representative subset
of closed HUIs [11]. But mining CHUIs can be very computationally expensive.
To address this issue, we next introduce a novel more efficient algorithm.

4 The EFIM-Closed Algorithm

The proposed EFIM-Closed algorithm is a highly efficient algorithm for closed
HUI mining. It is a one phase algorithm designed using the strict design con-
straint that for each itemset in the search space, all operations for that itemset
should be performed in linear time and space. This section is organized as fol-
lows. Subsection 4.1 introduces preliminary definitions related to the depth-first
search of itemsets. Subsection 4.2 explains how EFIM-Closed reduces the cost
of database scans. Subsection 4.3 explains how EFIM-closed prune low-utility
itemsets in the search space. Subsection 4.4 explains how EFIM-Closed prunes
non closed HUIs. Finally, subsection 4.5 put all the pieces together, and gives
the full pseudocode of EFIM-Closed.

4.1 The Search Space

Let > be any total order on items from I. According to this order, the search
space of all itemsets 2 can be represented as a set-enumeration tree. For exam-
ple, the set-enumeration tree of I = {a,b,c,d} for the lexicographical order is
shown in Fig. 1. The EFIM-Closed algorithm explores this search space using a
depth-first search starting from the root (the empty set). During this depth-first
search, for any itemset «, EFIM-Closed recursively appends one item at a time
to a according to the > order, to generate larger itemsets. In our implementa-
tion, the > order is defined as the order of increasing TWU because it generally
reduces the search space for HUIM [2, 3, 8, 10]. However, we henceforth assume
that > is the lexicographical order, for the sake of simplicity. We next introduce
definitions related to the depth-first search exploration of itemsets.

/ i
o) o (3 {0

AN NN

{ab} {ac} {ad}{b.c} {bd}{cd}

A

{a,b,c{a,b.d}{a,cd} {b,c.d}

'

{a,b,c,d}

Fig. 1: Set-enumeration tree for I = {a,b, ¢, d}

Let be an itemset a. Let E(«) denote the set of all items that can be used
to extend o according to the depth-first search, that is E(a) = {z|z € [Az >
z, Yz € a}. An itemset Z is an extension of o (appears in a sub-tree of « in
the set-enumeration tree) if Z = o U W for an itemset W € 2F(®) such that
W # 0. An itemset Z is a single-item extension of « (is a child of « in the set-
enumeration tree) if Z = o U {z} for an item z € E(«). For example, consider
the database of our running example and o = {d}. The set E(«a) is {e, f,g}.
Single-item extensions of « are {d, e}, {d, f} and {d, g}. Other extensions of «

are {d,e, f}, {d, f,g} and {d,e, f, g}

4.2 Scanning the Database Efficiently

As we will later explain, EFIM-Closed performs database scans to calculate
the utility of itemsets and upper-bounds on their utility. To reduce the cost of
database scans, it is desirable to reduce the database size. In EFIM-Closed this
is performed by two techniques.

High-utility Database Projection (HDP). This technique is based on the
observation that when an itemset « is considered during the depth-first search,

all items x ¢ E(a) can be ignored when scanning the database to calculate
the utility of itemsets in the sub-tree of «, or upper-bounds on their utility. A
database without these items is called a projected database.

Definition 3 (Projected database). The projection of a transaction T using
an itemset « is denoted as a-T and defined as a-T = {ili € T Ai € E(«)}. The
projection of a database D using an itemset « is denoted as a-D and defined as
the multiset a-D = {a-T|T € D A a-T # 0}.

For example, consider database D of the running example and a = {b}. The
projected database a-D contains three transactions: a-T5 = {c¢,d, e, f}, a-Ty =
{¢,d,e} and a-T5 = {c, e, g}. Database projections generally greatly reduce the
cost of database scans since transactions become smaller as larger itemsets are
explored. To implement database projection efficiently, each transaction in the
original database is sorted beforehand according to the > total order. Then, each
projection is performed as a pseudo-projection, that is each projected transaction
is represented by an offset pointer on the corresponding original transaction.
The complexity of performing a projection is o(nw), where n is the number of
transactions and w is their average length.

High-utility Transaction Merging (HTM). To further reduce the cost
of database scans, EFIM-Closed also introduce an efficient transaction merg-
ing technique named High-utilty Transaction Merging (HTM). HTM is based
on the observation that transaction databases often contain identical transac-
tions (transactions containing exactly the same items, but not necessarily the
same internal utility values). The technique consists of replacing a set of iden-
tical transactions T'ry,Trs,...Tr,, in a (projected) database a-D by a single
new transaction Thy = Try = Try = ... = Tr,, where the quantity of each
item i € Ty is defined as q(i,Tar) = Yy, (i, Try). For example, consider
database D of our running example and a = {c}. The projected database a-D
contains transactions a-T) = {d}, a-Ts = {e, g}, a-T5 = {d, e, f}, a- Ty = {d, e}
and a-T5 = {e, g}. Transactions a- T and «-Ts can be replaced by a new trans-
action Ty = {e, g} where g(e,Tps) =3 and q(g,Tas) = 7.

Transaction merging is obviously desirable. However, a key problem is to
implement it efficiently. To find identical transactions in O(nw) time, we initially
sort the original database according to a new total order > on transactions
defined as the > order when the transactions are read backwards. For example,
let be transactions T, = {b,c}, T, = {a,b,c} and T, = {a,b,e}. We have that
T, =7 T, =7 T,. Sorting is achieved in O(nw log(nw)) time. This cost is
negligible because it is performed only once.

A database sorted according to the =1 order provides the following property.
For a database D or any projected database a-D, identical transactions always
appear consecutively in the projected database a-D. This property holds because
(1) transactions are sorted according to the > order when read backwards and
(2) projections always remove the smallest items of a transactions according to
the > order. Using the above property, all identical transactions in a (projected)
database can be identified by only comparing each transaction with the next

transaction in the database. Thus, using this scheme, transaction merging can
be done very efficiently by scanning a (projected) database only once (linear
time). It is interesting to note that transaction merging as proposed in EFIM-
Closed is not performed in any other one-phase HUIM algorithms.

4.3 Pruning Low-Utility Itemsets

To propose an efficient CHUI mining algorithm, a key problem is to design an
effective mechanism for pruning low-utility itemsets in the search space. For this
purpose, we introduce two new upper-bounds on the utility of itemsets.

The subtree-utility and local utility upper-bounds. The first upper-
bound is defined as follows.

Definition 4 (Sub-tree utility). Let be an itemset a and an item z such that
z € E(a). The Sub-tree Utility of z w.r.t. o is su(a, 2) =

ETGg(aU{z}) [U(O{, T) + U(Z, T) + ZiGT/\iEE(aU{z}) U(Z, T)]

For example, if & = {a}, we have that su(a,c) = (5+1+42) +(10+6 + 11)
+(5+ 1+ 20) =61, su(a,d) = 25 and su(a,e) = 34. The following theorem of
the sub-tree utility allows EFIM-Closed to prune the search space (proof omitted
due to space limitation).

Theorem 1 (Pruning using sub-tree utility). Let be an itemset o and an
item z € E(a). If su(a,z) < minutil, then the single item extension « U {z}
and its extensions are low-utility. In other words, the sub-tree of aeU {z} in the
set-enumeration tree can be pruned.

Using Theorem 1, we can prune some sub-trees of an itemset a. To further
reduce the search space, we also identify items that should not be explored in
any sub-trees of an itemset a.

Definition 5 (Local utility). Let be an itemset « and an item z € E(«). The
Local Utility of z w.r.t. a is lu(e, 2) = 3 pegaugey Ul T) + re(a, T)].

For example, if o = {a}, we have that lu(a,c) = (8 + 274 30) = 65, lu(a, d)
= 30 and lu(a,e) = 57. The following property can be used for pruning low-
utility itemsets (proof ommitted due to space limitation).

Theorem 2 (Pruning using the local utility). Let be an itemset o and
an item z € E(a). If lu(a, z) < minutil, all extensions of « containing z are
low-utility. i.e., item z can be ignored when exploring all sub-trees of «.

The relationships between the proposed upper-bounds and the main ones
used in previous work are the following. Let be an itemset «, an item z and
an itemset Y = a U {z}. It can be demonstrated easily that the relationship
TWU(Y) > lu(a, z) > reu(Y) = su(a, z) holds. Thus, the local utility upper-
bound is a tighter upper-bound on the utility of Y and its extensions compared
to the TWU, which is commonly used in two-phase HUIM algorithms such as

CHUD. About the su upper-bound, one can ask what is the difference between
this upper-bound and the reu upper-bound used by some HUIM algorithms since
they are mathematically equivalent. The major difference is that su is calculated
when the depth-first search is at itemset « in the search tree rather than at the
child itemset Y. Thus, if su(«, z) < minutil, EFIM-Closed prunes the whole
sub-tree of z including node Y rather than only pruning the descendant nodes
of Y. Thus, using su instead of rew is more effective for pruning the search space.

In the rest of the paper, for a given itemset «, we respectively refer to items
having a sub-tree utility and local-utility no less than minutil as primary and
secondary items. Formally, the primary items of an itemset « is the set of items
defined as Primary(a) = {z|z € E(a) A su(a, z) > minutil}. The secondary
items of « is the set of items defined as Secondary(a) = {z|z € E(a)ANlu(a, z) >
manutil}. Because lu(a, z) > su(a, z), Primary(a) C Secondary(a). For in-
stance, consider that a = {a}. Primary(a) = {c,e}. Secondary(a) = {c,d, e}.

Calculating Upper-Bounds and Support Efficiently using Fast Util-
ity Counting (FUC). In the previous paragraphs, we introduced two new
upper-bounds on the utility of itemsets to prune the search space. We now
present a novel efficient array-based approach to compute these upper-bounds
in linear time and space that we call Fast Utility Counting (FUC). It relies on a
novel array structure called utility-bin.

Definition 6 (Utility-Bin). Let be the set of items I appearing in a database
D. A utility-bin array U for a database D is an array of length |I|, having an
entry denoted as U[z] for each item z € I. Each entry is called a utility-bin and
stores a utility value (an integer in our implementation, initialized to 0).

A utility-bin array can be used to efficiently calculate the following upper-
bounds and the support in O(n) time (recall that n is the number of transac-
tions), as follows.

Calculating the TWU of all items. A utility-bin array U is initialized.
Then, for each transaction T of the database, the utility-bin Ul[z] for each item
z € T is updated as U[z] = U[z] + TU(T). At the end of the database scan, for
each item k € I, the utility-bin U[k] contains TWU (k).

Calculating the sub-tree utility w.r.t. an itemset a. A utility-bin array
U is initialized. Then, for each transaction T' of the database, the utility-bin
Ulz] for each item z € T'N E(«) is updated as Ulz] = Ulz] + u(a, T) +u(z,T) +
Y icrniss u(i, T). Thereafter, Ulk] = su(a, k) Vk € E(a).

Calculating the local utility w.r.t. an itemset «. A utility-bin array U
is initialized. Then, for each transaction T of the database, the utility-bin U|z]
for each item z € T N E(«) is updated as Ulz] = Ulz] + u(e, T) + re(a, T).
Thereafter, we have U[k] = lu(a, k) Vk € E(a).

Calculating the support w.r.t. an itemset «. A utility-bin array U is
initialized. Then, for each transaction 7" of the database, the utility-bin U|[z] for
each item z € T N E(«) is updated as U[z] = Ulz] + 1. Thereafter, we have
Ulk] = sup(a U {k}) Vk € E(«).

This approach for calculating upper-bounds and the support is highly effi-
cient. For an itemset «, this approach allows to calculate the three upper-bounds

and the support for all single extensions of « in linear time by performing a single
(projected) database scan. In terms of memory, it can be observed that utility-
bins are a very compact data structure (O(|I]) size). To utilize utility-bins more
efficiently, we propose three optimizations. First, all items in the database are
renamed as consecutive integers. Then, in a utility-bin array U, the utility-bin
Uli] for an item ¢ is stored in the i-th position of the array. This allows to access
the utility-bin of an item in O(1) time. Second, it is possible to reuse the same
utility-bin array multiple times by reinitializing it with zero values before each
use. This avoids creating multiple arrays and thus greatly reduces memory usage.
In our implementation, only four utility-bin arrays are created, to respectively
calculate the TWU, sub-tree utility, local utility and support. This is a reason
why the memory usage of EFIM-Closed is very low compared to the state-of-
the-art CHUD algorithm, as it will be shown in the experimental section. Third,
when reinitializing a utility-bin array to calculate the sub-tree utility or the local
utility of single-item extensions of an itemset «, only utility-bins corresponding
to items in E(«) are reset to 0, for faster reinitialization of the utility-bin array.

4.4 Pruning Non Closed HUIs

We now explain the techniques used by EFIM-closed to prune non closed HUIs.
To find only CHUISs, a naive approach would be to keep all HUIs found until now
into memory. Then, every time that a new HUI is found, the algorithm would
compare the HUI with previously found HUIs to determine if (1) the new HUI
is included in a previously found HUT or (2) if some previously found HUI(s) are
included in the new HUI. The drawback of this approach is that it can consume
a large amount of memory if the number of patterns is large, and it becomes
very time consuming if a very large number of HUIs is found, because a very
large number of comparisons would have to be performed. In this paper, we
present new checking mechanisms that can determine if a HUI is closed without
having to compare a new pattern with previously found patterns. It is inspired
by a similar mechanism used in sequential pattern mining [13]. The mechanism
is based on two separate checks, which we respectively name backward extension
checking check and forward-extension checking, and are defined as follows.

Definition 7 (Forward/backward extensions). Let be an itemset f = o U
{i}. The itemset B is said to have a forward extension if there exists an item
z > i such that z € E(8) and sup(BU {z}) = sup(B). The itemset B is said to
have a backward extension if there exists an item z < i such that z € B and

sup(8 U {z}) = sup(P).
The EFIM-Closed algorithms determine if an itemset is closed as follows.

Property 3 (Identifying non closed itemsets). An itemset § = a«U{i} is a CHUI
if it is a HUI and it has no backward and forward extension. Rationale. By
definition, an itemset is not closed if it has a superset Y = SU{z} with the same
support. The additional item z can respect either z > i or z < i, which corre-
spond respectively to the cases checked by forward and backward extensions.

The above property only allows to decide if a HUI is closed or not. To also
prune the search space of non closed HUIs, the following property is used.

Property 4 (Backward extension pruning). The whole subtree of an itemset 5 =
aU{i} can be pruned during the depth-first search if 5 has a backward extension.
Rationale. Because there exists a backward extension with an item z, and z
thus appear in all transactions where 8 appears, it follows that all itemsets in the
sub-tree of 8 also have a backward extension with z, and thus are not CHUISs.

Furthermore, we also introduce a second property for pruning the search
space that we name closure jumping.

Property 5 (Closure jumping property). Let be an itemset S and a projected
database -D. If sup(B) = sup(B U {z}) for all item z € E(f), then the itemset
BUE(p) is the only closed itemset in the sub-tree of 8. The whole sub-tree of 3
can thus be pruned and g U E(f) can be output if it is a HUL

This property can be easily demonstrated, and is very powerful. It allows to
go directly from an itemset 3 to its closure and prune the rest of its sub-tree.

4.5 The Algorithm

In this subsection, we present the proposed EFIM-Closed algorithm, which com-
bines all the ideas presented in the previous subsections. The main procedure
(Algorithm 1) takes as input a transaction database and the minutil threshold.
The algorithm initially considers that the current itemset « is the empty set.
The algorithm then scans the database once to calculate the local utility of each
item w.r.t. «, using a utility-bin array. Then, the local utility of each item is
compared with minutil to obtain the secondary items w.r.t to «, that is items
that should be considered in extensions of a. Then, these items are sorted by
ascending order of TWU and that order is thereafter used as the > order (as
suggested in [2,3,8,11]). The database is then scanned once to remove all items
that are not secondary items w.r.t to « since they cannot be part of any high-
utility itemsets by Theorem 2. If a transaction becomes empty, it is removed from
the database. Then, the database is scanned again to sort transactions by the
=7 order to allow O(nw) transaction merging, thereafter. Then, the algorithm
scans the database again to calculate the sub-tree utility of each secondary item
w.r.t. a, using a utility-bin array. Thereafter, the algorithm calls the recursive
procedure Search to perform the depth first search starting from a.

The Search procedure (Algorithm 2) takes as parameters the current itemset
to be extended «, the a projected database, the primary and secondary items
w.r.t a and the minutil threshold. The procedure performs a loop to consider
each single-item extension of « of the form 8 = a U {i}, where i is a primary
item w.r.t « (since only these single-item extensions of «a should be explored
according to Theorem 1). For each such extension 3, a database scan is performed
to calculate the utility of 8 and at the same time construct the § projected
database. Note that transaction merging is performed whilst the 5 projected

Algorithm 1: The EFIM-Closed algorithm

input : D: a transaction database, minutil: a user-specified threshold
output: the set of high-utility itemsets

a =

Calculate lu(a, 1) for all items ¢ € I by scanning D, using a utility-bin array;

Secondary(a) = {i|i € I A lu(a,i) > minutil};

Let > be the total order of TWU ascending values on Secondary(a);

Scan D to remove each item i ¢ Secondary(a) from the transactions, and delete
empty transactions;

Sort transactions in D according to »r;

7 Calculate the sub-tree utility su(a,) of each item i € Secondary(a) by

scanning D, using a utility-bin array;
8 Primary(a) = {i|i € Secondary(a) A su(a,i) > minutil};
9 Search («a, D, Primary(a), Secondary(a), minutil);

Gk W N

(=)

database is constructed. If 5 has a backward extension, no extensions of § will
be explored (by Property 4). Otherwise, the projected database of 8 is scanned
to calculate the support, sub-tree and local utility w.r.t 3 of each item z that
could extend f§ (the secondary items w.r.t to «), using three utility-bin arrays.
This allows determining the primary and secondary items of 8. If all items that
can extend S have the same support as 3, the closure jumping optimization is
performed to directly output SU ., ;r.epm(){#} if it is a HUI and prune the
subtree of . Otherwise, the Search procedure is recursively called with £ to
continue the depth-first search by extending (8. If no extension of 8 have the
same support as 8 and the utility of 5 is no less than minutil, § is output as a
CHUI (by Property 3). Based on properties and theorems presented in previous
sections, it can be seen that when EFIM-Closed terminates, all and only the
CHUIs have been output.

Complexity. The complexity of EFIM-Closed is briefly analyzed as follows.
In terms of time, a O(nw log(nw)) sort is performed. This cost is negligible since
it is performed only once. Then, to process each primary itemset « encountered
during the depth-first search, EFIM-Closed performs database projection, trans-
action merging, backward/forward extension checking and upper-bound calcu-
lation in linear time and space (O(nw)). Thus, the time complexity of EFIM-
Closed is proportional to the number of itemsets in the search space, and it is
linear for each itemset.

5 Experimental Results

We performed experiments to evaluate the performance of the proposed EFIM-
Closed algorithm. Experiments were carried out on a computer with a fourth
generation 64 bit core i7 processor running Windows 8.1 and 16 GB of RAM.
The performance of EFIM-Closed was compared with the state-of-the-art CHUD
algorithm. Moreover, to evaluate the influence of the design decisions in EFIM-

Algorithm 2: The Search procedure

input : «o: an itemset, a-D: the o projected database, Primary(a): the
primary items of o, Secondary(a): the secondary items of «, the
minutil threshold

output: the set of high-utility itemsets that are extensions of «

1 foreach item i € Primary(a) do
2 B=aU{i};
3 Scan a-D to calculate u(3) and create 3-D; // with transaction merging
4 if B has no backward extension then
5 Calculate sup(8, z), su(B, z) and lu(B, z) for all item z € Secondary(c)
by scanning -D once, using three utility-bin arrays;
6 if sup(B) = sup(BU{z})Vz > i A z € E(c) then
7 ‘ Output BUU., . jn.cma {7} if it is a HUL // closure jumping
8 else
9 Primary(B) = {z € Secondary(a)|su(B, z) > minutil};
10 Secondary(B) = {z € Secondary(a)|lu(B, z) > minutil};
11 Search (8, 8-D, Primary(B), Secondary(B), minutil);
12 if B has no forward extension and u(B) > minutil then output S;
13 end
14 end
15 end

Closed, we also compared with a version of EFIM-Closed named EFIM(nop),
where transaction merging (HTM), closure jumping, and search space pruning
using the sub-tree utility were respectively deactivated, and a version named
EFIM(Iu), where only the sub-tree utility is desactivated. Algorithms were im-
plemented in Java. Experiments were performed using standard datasets used in
the HUIM literature for evaluating HUIM algorithms, namely Accident, BMS,
Chess, Connect, Foodmart and Mushroom. These datasets have varied character-
istics representing the main types of databases (sparse, dense, long transactions).
For these datasets, the number of transactions/number of distinct items/average
transaction length are: Accident (340,183 / 468 / 33.8), BMS (59,601 / 497 /
4.8), Chess (3,196 / 75 / 37.0), Connect (67,557 / 129 / 43.0), Foodmart (4,141
/ 1,559 / 4.4), Mushroom (8,124 / 119 / 23.0). Foodmart contains real exter-
nal/internal utility values. For other datasets, external and internal utility values
have been generated in the [1,000] and [1, 5] intervals using a log-normal distri-
bution, as done in previous work [2, 3, 8,10, 11]. The datasets and the source code
of the compared algorithms can be downloaded at https://goo.gl/ZaeD60.

Influence of the minutil threshold on execution time. We ran the algo-
rithms on each dataset while decreasing the minutil threshold until algorithms
were too slow, ran out of memory or a clear winner was observed. Results are
shown in Fig. 2. It can be seen that EFIM-Closed clearly outperforms CHUD
on all datasets. For Accident, BMS, Chess, Connect, Foodmart and Mushroom,
EFIM-Closed is respectively up to 71 times, 3 times, 36 times, 2 times, 69 times

and 9 times faster than CHUD. The main reasons why EFIM-Closed performs
so well are, as we will show in the following experiments, that (1) the proposed
sub-tree utility and local-utility upper-bounds allows EFIM-Closed to prune a
larger part of the search space compared to CHUD, and that (2) the proposed
HTM transaction merging technique greatly reduce the cost of database scans.
Beside, the efficient calculation of the proposed upper-bounds and support in
linear time using utility-bins also contribute to the time efficiency of EFIM-
Closed. A reason why EFIM-Closed is so memory efficient is that it uses a simple
database representation, which does not requires to maintain much information
in memory (only pointers for pseudo-projections). Moreover, EFIM-Closed is also
more efficient because it is a one-phase algorithm (it does not need to maintain
candidates in memory), while CHUD is a two-phase algorithm. Lastly, another
important characteristic of EFIM-Closed in terms of memory efficiency is that
it reuses some of its data structures. As explained in section 4.3, EFIM-Closed
uses a very efficient mechanism called Fast Array Counting for calculating upper-
bounds. FAC only requires to create four arrays that are then reused to calculate
the upper-bounds and support of each itemset considered during the depth-first
search.

i BMS Chess
70000 Accident 1000

60000 [
50000 [

S 40000 |

Runtime (s)

£ 30000 |- 100 1
S 20000 |
o« 4
10000
p! otE——e——e—@¢—¢ -
28500K 28000K 27500K 25000K 22500K 2280K 2270K 2260K 2250K 2240K 600K 550K 500K 400K 350K
Minimum Utility Threshold Minimum Utility Threshold Minimum Utility Threshold
Foodmart Mushroom
25000 Connect 50 1000 ushroo

20000 40 _///—\

_15000 f 30 —
/ 100
£ 10000 | 20 \+—__*—/ |
5000 | 10 | 1
1 A’/'/{b

- - -

Runtime (s)

Runtime(s
Runtime (s)

10

16000K 15000K 14000K 13000K 3000 2500 2000 1000 1 100K 95K 90K 85K 80K
Minimum Utility Threshold Minimum Utility Threshold Minimum Utility Threshold
—&— EFIM-Closed —+— EFIM-Closed(lu) —— EFIM-Closed(nop) ——— CHUD

Fig. 2: Execution times on different datasets

Influence of the minutil threshold on memory usage. In terms of mem-
ory usage, EFIM-Closed clearly outperforms CHUD. The maximum memory us-
age for EFIM-Closed/CHUD on each dataset are (in megabytes): Accident (895
/ 2,603), BMS (64 / 707), Chess (65 / 327), Connect (385 / 1,504), Foodmart
(64 / 215) and Mushroom (71 / 1,308). It is also interesting that EFIM-Closed

utilizes less than 100 MB on four out of the six datasets, and never more than
1 GB, while CHUD often exceeds 1 GB.

Influence of transaction merging on execution time. In terms of op-
timizations, the proposed transaction merging and closure jumping techniques
used in EFIM-Closed sometimes greatly increases its performance in terms of
execution time. This allows EFIM-Closed to perform very well on dense or large
datasets such as Accidents, Chess,Chess, Connect and Mushroom). For exam-
ple, for Accidents and minutil = 22500K, EFIM-Closed terminates in 6 minutes
while CHUD terminates in almost 7 hours. On dense datasets or datasets hav-
ing long transactions, transaction merging and closure jumping is very effective
as projected transactions are more likely to be identical. This can be clearly
seen by comparing the runtime of EFIM-Closed and EFIM(nop). On Accidents,
Chess, Connect and Mushroom, EFIM-Closed is up to 183, 90, 9 and 5 times
faster than EFIM(nop). For other datasets, transaction merging also reduces
execution times but usually by a lesser amount (EFIM-Closed is up to 19, 10
times faster than EFIM(nop) on BMS and Foodmart). It is also interesting to
note that transaction merging could not be implemented efficiently in CHUD
because it uses a vertical database representation.

Comparison of the number of visited nodes. We also performed an
experiment to compare the ability at pruning the search space of EFIM-Closed
to CHUD. For the same datasets and the lowest minutil values, the EFIM-
Closed / CHUD algorithms visited the following number of nodes: Accident (
1,341 / 29,932), BMS (7 / 27), Chess (348,633 / 7,759,252), Connect (19,336 /
218,059), Foodmart (6,680 / 6,680) and Mushroom (8,017 / 17,621). It can be
observed that EFIM-Closed is much more effective at pruning the search space
than CHUD, thanks to its proposed sub-tree utility and local utility upper-
bounds. For example, on Chess, EFIM-Closed visits 22 times less nodes.

6 Conclusion

We have presented an efficient algorithm named EFIM-Closed for closed high-
utility itemset mining. It relies on two new upper-bounds named sub-tree utility
and local utility, and an array-based utility counting approach named Fast Utility
Counting. Moreover, to reduce the cost of database scans, EFIM-Closed proposes
two efficient techniques named High-utility Database Projection and High-utility
Transaction Merging. Lastly, to discover only closed HUIs, three mechanisms are
proposed: (1) forward closure checking, (2) backward closure checking, and (3)
closure jumping. Experimental results shows that EFIM-Closed can be up to 71
times faster and consumes up to 18 times less memory than the state-of-the-art
CHUD algorithm. Source code and datasets are available as part of the SPMF
data mining library [5] at http://www.philippe-fournier-viger.com/spmf/.
For future work, we will consider extending ideas introduced in EFIM-closed
for top-k HUI mining [4], and high-utility sequent pattern and sequential rule
mining [15].

Acknowledgement This research was partially supported by National Natural
Science Foundation of China (NSFC) under grant No.61503092.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. Int. Conf. Very Large Databases, pp. 487499, (1994)

2. Ahmed, C. F., Tanbeer, S. K., Jeong, B.-S., Lee, Y.-K.: Efficient tree structures
for high-utility pattern mining in incremental databases. IEEE Trans. Knowl. Data
Eng. 21(12), 1708-1721 (2009)

3. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V. S.: FHM: Faster high-utility
itemset mining using estimated utility co-occurrence pruning. In: Proc. 21st Intern.
Symp. on Methodologies for Intell. Syst., pp. 83-92 (2014)

4. Fournier-Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E., Thomas, R.: Efficient
Mining of Top-K Sequential Patterns. In: Proc. 9th Intern. Conf. on Advanced Data
Mining and Applications Part I, pp. 109-120, Springer (2013)

5. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu., C., Tseng, V. S.:
SPMF: a Java Open-Source Pattern Mining Library. Journal of Machine Learning
Research (JMLR), 15, pp. 3389-3393 (2014)

6. Lan, G. C., Hong, T. P., Tseng, V. S.: An efficient projection-based indexing ap-
proach for mining high utility itemsets. Knowl. and Inform. Syst. 38(1), 85-107
2014

7. éong,)W., Liu, Y., Li, J.: BAHUI: Fast and memory efficient mining of high utility
itemsets based on bitmap. Intern. Journal of Data Warehousing and Mining. 10(1),
1-15 (2014)

8. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proc.
22nd ACM Intern. Conf. Info. and Know. Management, pp. 55-64 (2012)

9. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Proc. 9th Pacific-Asia Conf. on Knowl. Discovery and Data
Mining, pp. 689-695 (2005)

Shie, B.-E., Yu, P.S., Tseng, V.S.: Efficient algorithms for mining maximal high
utility itemsets from data streams with different models. Expert Syst. Appl. 39(17),
pp. 12947-12960 (2012)

10. Tseng, V. S., Shie, B.-E., Wu, C.-W., Yu., P. S.: Efficient algorithms for mining
high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng.
25(8), 1772-1786 (2013)

11. Tseng, V., Wu, C., Fournier-Viger, P., Yu, P.: Efficient algorithms for mining the
concise and lossless representation of closed+ high utility itemsets. IEEE Trans.
Knowl. Data Eng. 27(3), 726-739 (2015)

12. T. Uno, M. Kiyomi, H. Arimura, "LCM ver. 2: Efficient mining algorithms for
frequent /closed/maximal itemsets,” Proc. ICDM’04 Workshop on Frequent Itemset
Mining Implementations, CEUR, 2004.

13. Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate
maintenance. IEEE Trans. on Knowledge Data Engineering 19(8), 10421056 (2007)

14. Yun, U., Ryang, H., Ryu, K. H.: High utility itemset mining with techniques for
reducing overestimated utilities and pruning candidates. Expert Syst. with Appl.
41(8), 3861-3878 (2014)

15. Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J. C. W., Tseng, V.S.: Efficient mining
of high utility sequential rules. In: Proc. 11th Intern. Conf. Machine Learning and
Data Mining (MLDM 2015), pp. 1-15 (2015)

