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Abstract— Sequential rule mining is an important data mining task with wide applications. However, current algorithms 

for discovering sequential rules common to several sequences use very restrictive definitions of sequential rules, which 

make them unable to recognize that similar rules can describe a same phenomenon. This can have many undesirable 

effects such as (1) similar rules that are rated differently, (2) rules that are not found because they are considered 

uninteresting when taken individually, (3) and rules that are too specific, which makes them less likely to be used for 

making predictions. In this paper, we address these problems by proposing a more general form of sequential rules such 

that items in the antecedent and in the consequent of each rule are unordered. We propose an algorithm named 

CMRules, for mining them. The algorithm proceeds by first finding association rules to prune the search space for items 

that occur jointly in many sequences. Then it eliminates association rules that do not meet the minimum confidence and 

support thresholds according to the time ordering. We evaluate the performance of CMRules in three different ways. 

First, we provide an analysis of its time complexity. Second, we compare its performance (execution time, memory 

usage and scalability) with an adaptation of an algorithm from the literature that we name CMDeo. For this comparison, 

three real-life public datasets representing three types of data and having varied characteristics. Results show that for 

some datasets CMRules is faster and has a better scalability for low support thresholds. Lastly, we report a successful 

application of the algorithm in a tutoring agent.  

Keywords— Sequential rule mining, association rule mining, sequence database, temporal rules 

1 INTRODUCTION

Nowadays, huge amounts of temporal information are stored in databases (e.g. stock market data, biological data, 

patient hospital records and customer data). Discovering temporal relationships in such databases is important in 

many domains, as it provides a better understanding of the data, and sets a basis for making predictions. For example, 

in international trade, one could be interested in discovering relations between the appreciations of currencies to make 

trade decisions. Various methods have been proposed for mining temporal relations in temporal data (see for example 

[12], for a survey). 

In the field of data mining, one of the most popular techniques for discovering temporal relations in discrete time 

series is sequential pattern mining (SPM) [2, 20, 21, 22]. SPM algorithms find sequential patterns, subsequences that ap-

pear frequently in a sequence database (a set of sequences). However, knowing that a sequence appear frequently in a 

database is not sufficient for making prediction. For example, it is possible that an event c appears frequently after 

some events a and b but that there are also many cases where a and b are not followed by c. In this case, predicting that 

c will occur after ab according to a sequential pattern abc could be a huge mistake. Thus, to make predictions, it is de-

sirable to have patterns that indicate how many times c appears after ab and how many times it does not. But adding 

this information to sequential patterns cannot be done easily as sequential patterns are lists of events that can contain 

several events – not just three, as in the previous example– and current SPM algorithms have just not been designed for 

this.  

The alternative to sequential pattern mining that addresses the problem of prediction is sequential rule mining [4, 5, 

mailto:fournier-viger.philippe,%20nkambou.roger%7d@uqam.ca
ph
Typewriter
Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E. (2012). 
CMRules: Mining Sequential Rules Common to Several Sequences. 
Knowledge-based Systems, Elsevier, 25(1): 63-76.



2 ID 

 

8, 9, 11, 13, 34, 35, 36]. A sequential rule (also called episode rule, temporal rule or prediction rule) indicates that if 

some event(s) occurred, some other event(s) are likely to occur with a given confidence or probability. Sequential rule 

mining has been applied in several domains such as stock market analysis [4, 11], weather observation [8], e-learning 

[6, 16] and drought management [5, 9]. 

The most famous approach to sequential rule mining is that of Mannila et al. [13] and other researchers afterward 

that aim to discover partially ordered sets of events appearing frequently within a time window in a sequence of 

events. Given these “frequent episodes”, a trivial algorithm can derive all sequential rules respecting a minimal confi-

dence and support [13]. These rules are of the form X⇒Y, where X and Y are two sets of events, and are interpreted as 

“if event(s) X appears, event(s) Y are likely to occur with a given confidence afterward”. However, this approach can 

only discover rules in a single sequence of events. Other works that extract sequential rules from a single sequence of 

events are the algorithms of Hamilton & Karimi [8], Hsieh et al. [11] and Deogun & Jiang [5], which respectively dis-

cover rules between several events and a single event, between two events, and between several events.  

Contrarily to these works that discover rules in a single sequence of events, a few algorithms have been designed to 

mine sequential rules in several sequences [4, 9, 14, 34, 35, 36]. For example, Das et al. [4] proposed an algorithm to 

discover rules where the left part of a rule can have multiple events, yet the right part contains a single event. This is an 

important limitation, as in real-life applications, sequential relationships can involve several events. Moreover, the 

algorithm of Das et al. [4] is highly inefficient as it tests all possible rules, without any strategy for pruning the search 

space.  

The algorithm of Harms et al. [9] discovers sequential rules from sequence databases, and does not restrict the num-

ber of events contained in each rule. It searches for rules with a confidence and a support higher or equal to a user-

specified threshold. The support of a rule is defined as the number of times that the right part occurs after the left part 

within user-defined time windows.  

The algorithms of Das et al. [4] and Harms et al. [9] have been designed for mining rules occurring frequently in se-

quences. For this reason, these algorithms are inadequate for discovering rules common to many sequences. We illus-

trate this with an example. Consider a sequence database where each sequence corresponds to a customer and each 

event represents item(s) bought during a particular day. Suppose that one wishes to mine sequential rules that are 

common to many customers. The algorithms of Das et al. [4] and Harms et al. [9] are inappropriate for this task since a 

rule that appears many times in the same sequence could have a high support even if it does not appear in any other 

sequences.  

Up to now, only Lo et al. [14], Pitman and Zanker [36] and Zhao et al. [34, 35] have proposed algorithms for extract-

ing rules common to several sequences. Their algorithms discover rules such that their left and right parts are sequenc-

es of itemsets (sets of items). For instance, consider the rule {Paganini},{Beethoven, Mozart},{Vivaldi}⇒{Berlioz}, which 

means that customers who bought the music of Paganini, the music of Beethoven and Mozart together, and Vivaldi, 

have then bought the music of Berlioz. According to the definitions of Lo et al, Pitman and Zanker and Zhao et al., this 

rule is distinct from all its variations such as: 
 {Paganini}, {Beethoven, Vivaldi}, {Mozart}⇒{Berlioz},  
 {Paganini, Beethoven, Vivaldi}, {Mozart}⇒{Berlioz},  
 {Mozart}, {Paganini}, {Beethoven}, {Vivaldi}⇒{Berlioz} and 
  {Vivaldi, Mozart, Paganini, Beethoven}⇒{Berlioz}.  

Therefore, if several of these rules appear in a database, the algorithms of Lo et al., Pitman and Zanker and Zhao et 

al. will fail to recognize that they describe a similar situation, which is that customers bought music from Paganini, 

Mozart, Beethoven and Vivaldi followed by music from Berlioz. This restrictive definition of what is a sequential rule 

can be an important problem because the measures that are used to determine if a rule is interesting (the support and 

the confidence) are based on the number of times that a rule and its left part appear in a database. As a consequence, 

the algorithms of Lo et al., Pitman and Zanker and Zhao et al. would not output any of the previous rules if each one 

taken individually does not meet the minimum interestingness criteria even if taken as a whole they represent an in-

teresting pattern.  

A second related concern with the algorithms of Lo et al., Pitman and Zanker and Zhao et al. is that because a rule 

and its variations may have important differences in their interestingness values, it can give a wrong impression of the 

relationships between items in the database to the user. For example, it is possible that the rule {Paganini}, {Beethoven, 

Mozart}, {Vivaldi} ⇒ {Berlioz} could have a high confidence, whereas one of its variation (e.g. {Paganini}, {Beethoven, Mo-

zart}, {Vivaldi}⇒{Berlioz}) may have a low confidence.  

A third concern is that because rules are very specific, they are less likely to match with a novel sequence of events 



 

 

to make predictions. For example, consider the rule {Mozart}, {Paganini}, {Beethoven}, {Vivaldi} ⇒ {Berlioz}. This rule can 

be used to predict that a customer will buy the music of Berlioz if he bought Mozart, Paganini, Beethoven and Vivaldi, 

in that order. However, if the customer bought the items in a different order, the rule does not match and therefore 

cannot be used for making predictions.  

For all of these reasons, we consider this form of rules to be too restrictive. As an alternative, we suggest discovering 

a more general form of sequential rules such that the order of the events in the left part and the right part are unor-

dered. To mine these rules, we propose a new algorithm that we name CMRules [17]. 

 CMRules in the contrary of the Manila et al. [13] and Harms et al.’ algorithms [9] does not rely on a sliding-window 

approach. Instead, it is based on association rule mining. It first finds associations rules between items to prune the 

search space to items that occur jointly in many sequences. It then eliminates association rules that do not meet the 

minimum confidence and minimum support thresholds according to the time ordering. In this paper, we prove that 

this procedure discovers all sequential rules. The reason of using association rule mining is that for some datasets, 

many sequential rules are association rules (this is confirmed in our experiments). 

The paper is organized as follows. The next section describes the problem of mining association rules, the problem 

of mining sequential rules common to several sequences, and analyzes the relation between sequential rules and asso-

ciation rules. The third section presents CMRules, proofs of correctness and completeness, and an analysis of its time 

complexity. The fourth section compares the performance of CMRules with an algorithm from the literature. The fifth 

section describes the application of CMRules in an intelligent tutoring agent that assists learners during learning activi-

ties. Finally, the last section draws a conclusion and discusses extensions and future work. 

2 BACKGROUND AND PROBLEM DEFINITION 

Association rule mining [1] is a popular knowledge discovery technique for discovering associations between items 
from a transaction database. Formally, a transaction database D is defined as a set of transactions T={t1,t2…tn} and a set 
of items I={i1, i2, …im}, where t1, t2,…, tn ⊆ I. The support of an itemset X ⊆ I for a database is denoted as sup(X) and is 
calculated as the number of transactions that contains X. The problem of mining association rules from a transaction 
database is to find all association rules X→Y, such that X, Y ⊆ I, X∩Y=Ø, and that the rules respect some minimal in-
terestingness criteria. The two interestingness criteria initially proposed [1] are that mined rules have a support greater 
or equal to a user-defined threshold minsup and a confidence greater or equal to a user-defined threshold minconf. The 
support of a rule X→Y is defined as sup(X∪Y) / |T|. The confidence of a rule is defined as conf(X→Y) = sup(X∪Y) / 
sup(X). The following property holds for any association rule:  
 

Property 1: For any association rule r:X→Y in a transaction database T, the relation conf(r) ≥ sup(r) holds.  
Proof. By definition, sup(X→Y) = sup(X∪Y) / |T| and seqConf(X⇒Y) = sup(X∪Y) / sup(X). Because, |T| ≥ sup(X), 

the property is true. 
 

Association rules are mined from transaction databases. A generalization of a transaction database that contains 
time information about the occurrence of items is a sequence database [2]. A sequence database SD is defined as a set 
of sequences S={s1, s2…sn} and a set of items I={i1, i2,…in}, where each sequence sx is an ordered list of transactions 
(itemsets) sx={X1, X2, … Xm} such that X1, X2, …Xn ⊆ I .  

We propose the following definition of a sequential rule to be discovered in a sequence database. A sequential rule 
X⇒Y is a relationship between two itemsets X,Y such that X,Y ⊆ I and X∩Y = Ø. The interpretation of a rule X⇒Y is 
that if the items of X occur in some transactions of a sequence, the items in Y will occur in some transactions afterward 
from the same sequence. Note that there is no ordering restriction between items in X and between items in Y (they are 
not required to occur in the same itemset of a sequence). To evaluate the interestingness of sequential rules, we define 
two measures, which are an adaptation for multiple sequences of the measures used by other sequential rule mining 
algorithms [4, 9, 13]. The first measure is the rule’s sequential support and is defined as seqSup(X⇒Y) = sup(X■Y) / 
|S|. The second measure is the rule’s sequential confidence and is defined as seqConf(X⇒Y) = sup(X■Y) / sup(X). The 
notation sup(X■Y) denotes the number of sequences from a sequence database where all the items of X appear before 
all the items of Y (note that items from X or from Y do not need to be in the same transaction). The notation sup(X) 
denotes the number of sequences that contains X. The following property holds for any sequential rule. 

 
Property 2: For any sequential rule r: X ⇒ Y in a database S, the relation seqConf(r) ≥ seqSup(r) holds.  
Proof. By definition, seqSup(X⇒Y) = sup(X■Y) / |S| and seqConf(X⇒Y) = sup(X■Y) / sup(X). Because, |S| ≥ 

sup(X), the property is true. 
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We define the problem of mining sequential rules common to multiple sequences as the problem of finding all valid rules in 

a sequence database. A valid rule is a rule having a sequential support and a sequential confidence respectively no less 
than user-defined thresholds minSeqSup and minSeqConf. As an example, consider the sequence database shown in the 
left part of figure 1. The right part of figure 1 illustrates some valid rules found in this database for minSeqSup = 0.5 and 
minSeqConf = 0.5. Consider the rule {a, b, c} ⇒ {e}. Its sequential support is sup({a, b, c}■{e}) / |S| = 2 / 4 = 0.5 and its 
sequential confidence is sup({a, b, c}■{e}) / sup(X) = 2 / 2 = 1. Because those values are no less than minSeqSup and 
minSeqConf, the rule is valid. 

Note that the problem of mining sequential rules as defined here is largely different from the one of mining sequen-
tial patterns, since items from the left and the right part of a sequential rule are unordered. Therefore it is not possible 
to simply adapt a sequential pattern mining algorithm to generate these rules. 

The CMRules algorithm that we propose in this paper is based on the observation that if we ignore or remove the 
time information of a sequence database SD, we obtain a transaction database SD’. For each sequence database SD and 
its corresponding transaction database SD’, each sequential rule r: X⇒Y of S has a corresponding association rule r’: 
X→Y in S’. Two properties are proven for all such rule r and r’. 
 

Property 3: For any sequential rule r: X⇒Y in a sequence database SD, the relation sup(r’) ≥ seqSup(r) holds.  
Proof. By definition the sequential support of r and the support of r’ are respectively sup(X■Y) / |SD| and 

sup(X∪Y) / |SD’|. Because |SD| = |SD’| and sup(X∪Y) ≥ sup(X■Y) the relation sup(r’) ≥ seqSup(r) holds. 
 
Property 4: For any sequential rule r: X⇒Y in a sequence database SD, the relation conf(r’) ≥ seqConf(r) holds. Proof. 

By definition the sequential confidence of r and the confidence of r’ are respectively sup(X■Y) / sup(X) and sup(X∪Y) 
/ sup(X). Because sup(X∪Y) ≥ sup(X■Y), the relation conf(r’) ≥ seqConf(r) holds. 
 

 
ID Sequences  ID Rule S-Support S-Confidence 

1 

2 

3 

4 

{a, b},{c},{f},{g},{e} 

{a, d},{c},{b},{ e, f} 

{a},{b},{f},{e} 

{b},{f, g} 

 

 

    
 

r1 

r2 

r3 

r4 

r5 

r6 

r7 

… 

{a, b, c} ⇒ {e} 

{a} ⇒ {c, e, f} 

{a, b} ⇒ {e, f} 

{b} ⇒ {e, f} 

{a} ⇒ {e, f} 

{c} ⇒ {f} 

{a} ⇒ {b} 

… 

0.5 

0.5 

0.5 

0.75 

0.75 

0.5 

0.5 

… 

1.0 

0.66 

1.0 

0.75 

1.0 

1.0 

0.66 

… 

  

Figure 1: A sequence database (left) and sequential rules found (right). 

3 THE CMRULES ALGORITHM FOR MINING SEQUENTIAL RULES 

Based on the previous observations of the relationship between sequential rules and association rules, we propose the 
CMRules algorithm for mining sequential rules. The algorithm is presented in figure 2. Figure 3 shows a sample execu-
tion with a sequence database containing four sequences.  

The algorithm takes as input a sequence database and the minSeqSup and minSeqConf thresholds and outputs the set 
of all sequential rules in the database respecting these thresholds. CMRules starts by ignoring the sequential infor-
mation from the sequence database to obtain a transaction database (fig. 2 and 3. Step 1). It then applies an association 
rule mining algorithm to discover all association rules from this transaction database with minsup = minSeqSup and 
minconf = minSeqConf (fig. 2 and 3. Step 2). The algorithm then calculates the sequential support and sequential confi-
dence of each association rule by scanning the sequence database, and then it eliminates the rules that do not meet the 
minSeqSup and minSeqConf minimum thresholds (fig. 2 and 3. Step 3). The set of rules that is kept is the set of all se-
quential rules.  



 

 

 
 

Figure 2: The CMRules algorithm 
 

 
 
 

 
Figure 3: A Sample execution of the CMRules algorithm 

 

3.1 Proof of Completeness 

To prove that CMRules can find all sequential rules, we have to demonstrate that the set of all sequential rules is a 
subset of the set of all association rules. This is proven next. 
 

Theorem 1. The algorithm discovers all sequential rules for a given minSeqConf and minSeqSup, if we choose minconf 
≤ minSeqConf and minsup ≤ minSeqSup. Proof. To prove this, we can consider the sequential support and the sequential 
confidence separately, without loss of generality. 

 
Let’s first consider the sequential support. Suppose there is a sequential rule r such that seqSup(r) ≥ minSeqSup and 

minsup > sup(r’) (we suppose that the corresponding association rule r  is not frequent). Property 3 states that sup(r’) ≥ 
seqSup(r). Therefore, it follows that minsup > sup(r’) ≥ seqSup(r) ≥ minSeqSup. Thus, minsup > minSeqSup. Therefore, if 
we choose minSeqSup ≥ minsup there will be no such rule r. 

Now consider the sequential confidence. Suppose there is a sequential rule r such that seqConf(r) ≥ minSeqConf and 
that minconf > conf(r’). Property 4 states that conf(r’) ≥ seqConf(r). Therefore minconf > conf(r’) > seqConf(r) ≥ minSe-

The corresponding transaction database 

Association rules 

(2) Association rule mining 

(3) Association rules filtering 

Sequential rules 

(1) Ignoring 

temporal 

information 

ID Sequences 

1 

2 

3 

4 

{a, b},{c},{f},{g},{e} 

{a, d},{c},{b},{ e, f} 

{a},{b},{f},{e} 

{b},{f, g} 

A sequence database 

ID Rule S-Support S-Confidence 

1 

2 

3 

4 

5 

6 

7 

… 

{a, b, c} ⇒ {e} 

{a} ⇒ {c, e, f} 

{a, b} ⇒ {e, f} 

{b} ⇒ {e, f} 

{a} ⇒ {e, f} 

{c} ⇒ {f} 

{a} ⇒ {b} 

… 

0.5 

0.5 

0.5 

0.75 

0.75 

0.5 

0.5 

… 

1.0 

0.66 

1.0 

0.75 

1.0 

1.0 

0.66 

… 

ID Transactions 

1 

2 

3 

4 

a b c e f g 

a b c d e f 

a b e f 

b f g 

ID Rule Support Conf. 

1 

2 

3 

4 

5 

6 

7 

8 

… 

{c} ⇒ {a, b, e, f} 

{a, b, c} ⇒ {e} 

{a} ⇒ {c, e, f} 

{a, b} ⇒ {e, f} 

{b} ⇒ {e, f} 

{a} ⇒ {e, f} 

{c} ⇒ {f} 

{a} ⇒ {b} 

… 

0.5 

0.5 

0.5 

0.75 

0.75 

0.75 

0.5 

0.75 

… 

1.0 

1.0 

0.66 

1.0 

0.75 

1.0 

1.0 

1.0 

… 

INPUT: a sequence database, minSeqSup, minSeqConf 

OUTPUT: the set of all sequential rules 

PROCEDURE:  

1. Consider the sequence database as a transaction database. 

2. Find all association rules from the transaction database by 

applying an association rule mining algorithm such as 

Apriori [1]. Select minsup = minSeqSup and minconf = 

minSeqConf. 

3. Scan the original sequence database to calculate the se-

quential support and sequential confidence of each associa-

tion rule found in the previous step. Eliminate each rule r 

such that: 

a. seqSup(r) < minSeqSup 

b. seqConf(r) < minSeqConf 

4. Return the set of rules. 
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qConf. Thus, minconf > minSeqConf. Therefore, if we choose minSeqConf ≥ minconf there will be no such rule r. 
 
Corollary 1. The algorithm is more effective if we choose minconf = minSeqConf and minsup = minSeqSup. Proof: In 

association rules mining, the lower minsup or minconf is, the more rules can be found, and the more computation can be 
required. Therefore, for our algorithm it is best to select the highest possible value for minsup and minconf that will 
discover association rules containing all desired sequential rules. In Theorem 1, we found that these values are bound 
by minSeqConf and minSeqSup, to have a guarantee that all sequential rules will be found. Therefore, the highest value 
that one can give to minconf and minsup are respectively minSeqConf and minSeqSup. 

3.2 Proof of Correctness 

We now demonstrate that CMRules is a correct algorithm. To do this, we have to show that it does not generate invalid 
sequential rules.  

 
Theorem 2. The CMRules algorithm (fig.2) does not generate invalid rules. Proof. We know from Theorem 1 that if 

we choose minconf ≤ minSeqConf and minsup ≤ minSeqSup for association rule mining, the resulting set of association 
rules contains all valid sequential rules respecting minSeqSup and minSeqConf. But because the relations sup(r’) ≥ se-
qSup(r) and conf(r’) ≥ seqconf(r) hold for any rule sequential rule r (cf. Property 3 and Property 4), the set of associa-
tion rules can also contains invalid sequential rules. However, the CMRules does not output invalid rules because Step 
3 of the algorithm will filter them out. Therefore, the algorithm is correct. 

3.3 Implementing Step 3 Efficiently  

We now describe how to implement Step 3 of the CMRules algorithm efficiently. The naive approach would be to take 
each sequence and check if each association rule X→Y is contained in it to calculate the sup(X■Y) value that is neces-
sary for calculating the sequential confidence and sequential support. Checking if a rule is included in a sequence is 
done in linear time (a sequence can be scanned one time from left to right to see if X occurs, and Y occurs afterward). 
However, performing this check for all sequences of a sequence database is inefficient because not all sequences con-
tain the itemsets of each rule. We describe next how to minimize the number of sequences to be checked for each rule. 
But we first need to explain how association rule mining is performed. 

To mine association rules, one needs to apply an algorithm such as Apriori [1]. Algorithms for association rule min-
ing proceed in two steps[1]. They first discover frequent itemsets, and then use them to generate association rules. A 
frequent itemset is an itemset that appear more than minsup times in a transaction database. The support of an itemset 
is defined as the number of transactions that contains it. Generating association rules is then done by selecting pairs of 
frequent itemsets X and Y such that X⊆ Y, to generate rules of the form X→Y-X (see [1] for a fast algorithm).  

Now, to implement efficiently step 3 of CMRules, we need to modify the frequent itemset mining algorithm so that 
each itemset X found is annotated with the set of transactions that contains it. This is a trivial modification for an algo-
rithm such as Apriori [1] (in the case of Apriori, this variation is known as Apriori-TID [1]). Having this extra infor-
mation about frequent itemsets, Step 3 can be performed efficiently by checking each rule X→Y only against the se-
quences that contain its left itemset X. This will allow calculating correctly the sequential support and sequential confi-
dence of the rule, since sup(X■Y) can be calculated by checking only with the sequences containing X (by the definition 
of sup(X■Y)), and the other terms required for calculating the sequential support and confidence are known (sup(X) 
and |S|). In our tests, this simple optimization improved the performance of Step 3 by up to 50%. 

3.4 Reducing Memory Consumption 

To reduce memory consumption, it is possible to merge Step 2 and Step 3 of CMRules so that each association rule is 
immediately checked for its sequential support and confidence. This allows having only one association rule at a time 
in central memory. Therefore, there is no need to store the set of all association rules. This greatly reduces memory 
consumption and also makes the algorithm faster. Moreover, sequential rules can be saved to disk immediately after 
being found, and if one wish to keep association rules, these latter can be saved to the disk at the same time. This im-
plementation strategy greatly reduces the memory requirement of the algorithm. 

3.5 Analysis of the Time complexity 

We here provide a brief analysis of the time complexity of CMRules. First, the time complexity of converting a se-
quence database in a transaction database (Step 1) is linear with respect to the number of sequences and their sizes.  

 The time complexity of Step 2 is more difficult to establish. It depends on which association rule mining algorithm 
is used. As explained previously, mining association rule is done in two phases: mining frequent itemsets and generat-
ing rules. The first phase is the most costly [1], so it is adequate to ignore the second phase for estimating the time 
complexity. If we use the Apriori algorithm for mining frequent itemsets, the time complexity is Ο(d2n) where d is the 
number of different items and n is the number of transactions in the database (see [10] for a proof). In our implementa-
tion, we used Apriori-TID a variation that performs slightly better for some datasets [1] and has a similar time com-



 

 

plexity [10].  
Step 3 of CMRules checks each candidate rule against the set of sequences that contains its antecedent (as ex-

plained). In the best case and worst case, there are respectively |S| × minsup sequences, and |S| sequences to be con-
sidered for each rule. Checking if a rule appear in a sequence is done in linear time. Thus, the time complexity of step 3 
is linear with respect to the number of sequences that contain the antecedent of each rule, the size of each sequence and 
the total number of rules. 

4 EVALUATION OF THE ALGORITHM 

We have implemented CMRules in Java. We next compare its performance with an adaptation of the Deogun et al. [5] 
algorithm on real-life datasets. We chose the Deogun et al. algorithm as baseline algorithm for evaluating CMRules 
because it can be adapted to produce the same result as CMRules. We did not compare with other algorithms such as 
the algorithm of Lo et al., Zhao et al. and Pitman and Zanker because they do not produce the same results and use 

very different process for finding rules. Experiments were performed on a notebook computer with a 2.53 Ghz 
P8700 Core 2 Duo processor running Windows XP and 1 GB of free RAM. 

4.1 The CMDeo algorithm 

 Although the Deogun et al. algorithm was proposed for mining sequential rules in a single sequence of events, it is 

easy to adapt it for mining rules common to multiple sequences, as defined in this article. We name this adaptation 

CMDeo and have implemented it in Java. Since this is not the main subject of this article, we will briefly describe the 

main idea of this algorithm. Before this explanation, we give two definitions. We say that the size of a sequential rule is 

k*n, if the left part and right part contain respectively k and n items. For example, the rules {a, b, c}⇒{e, f, g} and {a}⇒{e, 

f} are of size 3*3 and 1*2, respectively. Furthermore, a rule of size f*g is said to be larger than another rule of size h*i if f 

> h and g ≥ i, or alternatively if f ≥ h and g > i. 

The CMDeo algorithm works as follows. It first finds all valid rules of size 1*1. This is done in three steps. First, the 

CMDeo counts the support of single items by scanning the sequence database once. Then, for each pair of frequent 

items x,y appearing in at least minSeqSup same sequences, the algorithm generates candidates rules {x}⇒{y} and 

{y}⇒{x}. Then, the sequential support and sequential confidence of each rule is calculated as in Step 3 of CMRules. Each 

rule respecting minSeqSup and minSeqConf is noted as being a valid rule of size 1*1.  

Then, CMDeo discovers larger valid rules in a level-wise manner (similar to Apriori [1]) by recursively applying two 

processes: a) left expansion, and b) right expansion. Their role is to combine pair of rules with the same size to obtain 

larger candidate rules.  

Left-side expansion is the process of taking two rules X⇒Y and Z⇒Y, where X and Z are itemsets of size n sharing n-

1 items, to generate a larger ruleX∪Z ⇒Y. Right-side expansion is the process of taking two rules Y⇒X and Y⇒Z, where 

X and Z are itemsets of size n sharing n-1 items, to generate a larger rule Y⇒X∪Z. These two processes can be applied 

recursively to find all rules starting from rule of size 1*1 (for example, rules of size 1*1 allows finding rules of size 1*2 

and rule of size 2*1). Two properties are proven for left and right expansions regarding their effect on sequential sup-

port: 
 
Property 5 (left expansion, effect on sequential support): If an item i is added to the left side of a rule r:X⇒Y, the 

sequential support of the resulting rule r° is lower or equal to the sequential support of r. Proof: The sequential sup-
port of r and r° are respectively sup(X■Y)/|S| and sup (X∪{i}■Y)/|S|. Since sup (X■Y) ≥ sup (X∪{i}■Y), seqSup (r) ≥ 
seqSup(r°). 

 
Property 6 (right expansion, effect on sequential support): If an item i is added to the right side of a rule r:X⇒Y, the 

sequential support of the resulting rule r° can be lower or equal to the sequential support of r. Proof: The sequential 
support of r and r° are respectively sup(X■Y)/|S| and sup(X■Y∪{i})/|S|. Since sup(X■Y) ≥ sup(X■Y∪{i}), seqSup(r) ≥ 
seqSup(r°). 

 
The two previous properties imply that the sequential support is monotonic with respect to left and right expan-

sions. In other words, performing left/right expansions will always results in rules having a sequential support that is 
lower or equal to the sequential support of the original rules. Therefore, all rules having a sequential support higher or 
equal to minSeqSup can be found by recursively performing expansions starting from rules of size 1*1 that have a se-
quential support higher or equal to minSeqSup. Moreover, properties 5 and 6 guarantee that expanding a rule having a 
sequential support less than minSeqSup will not result in a rule having a sequential support higher or equal to minSe-
qSup. This is very important because it allows pruning the search space. For the sequential confidence, however, the 
situation is different as it is explained in the next two next properties. 
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Property 7 (left expansion, effect on sequential confidence): If an item i is added to the left side of a rule r:X⇒Y, 

the sequential confidence of the resulting rule r° can be lower, higher or equal to the sequential confidence of r. Proof: 
The sequential confidence of r and r° are respectively sup(X■Y)/|sup(x)| and sup(X∪{i}■Y)/sup(X∪{i}). Because 
sup(X■Y) ≥ sup(X∪{i}■Y) and sup(X) ≥ sup(X∪{i}), seqConf(r) can be lower, higher or equal to seqConf(r°). 

 
Property 8 (right expansion, effect on sequential confidence): If an item i is added to the right side of a rule r:X⇒Y, 

the sequential confidence of the resulting rule r° can be lower or equal to the sequential confidence of r. Proof: The 
sequential confidence of r and r° are respectively sup(X■Y)/|sup(x)| and sup(X■Y∪{i})/sup(X). Since sup(X■Y) ≥ 
sup(X■Y∪{i}), seqConf(r) ≥ seqConf(r°). 

 
Because of property 7, the sequential confidence is not monotonic with respect to left and right expansions and 

therefore it cannot be used to prune the search space. Therefore, CMDeo only use the sequential support to prune the 
search space.  

CMDeo proceeds as follows. First, it finds all valid rules of size 1*1, as we have explained. Then it takes all pairs of 
rule of size 1*1 having the minimal support and it performs left/right expansions to generate candidate rules of size 
2*1 and 1*2. For each candidate rule that is generated, CMDeo calculates the sequential support and sequential confi-
dence by scanning the sequence(s) containing the left and right itemsets of the rule. If a rule is valid, CMDeo noted it as 
being valid. Then CMDeo recursively performs expansions with candidates of size 2*1 and 1*2 to find candidate rules 
of size 3*1, 2*2 and 1*3. Then CMDeo evaluates these rules to see if they are valid, and this process continues recursive-
ly until no pair or rules having the minimum support can be expanded. 

This is the basic principle by which CMDeo finds all valid rules. However, two further problems have to be solved 
to ensure that CMDeo does not find some rules twice. 

The first problem is that some rules can be found by different combinations of left/right expansions. For example, 
consider the rule {a, b}⇒{c, d}. By performing, a left and then a right expansion of {a}⇒{c}, one can obtain the rule {a, 
b}⇒{c, d}. However, the aforementioned rule can also be obtained by performing a right and then a left expansion of 

the rule {a}⇒{c}. This problem is illustrated in Figure 4(A). For example, rules of size 2*2 can be found respectively by 
expanding the left part of rules of size 1*2 and by expanding the right part of rules of size 2*1. A simple solution to this 
problem is to not allow performing a right expansion after a left expansion. By applying this solution, rules will be 
discovered according to the order presented on Figure 4(B). Note that an alternative solution would be to not allow a 
left expansion after a right expansion. 

The second problem is that rules can be found several times by performing left/right expansions with different 
items. For example, consider the rule {b, c}⇒{d}. A left expansion of {b}⇒{d} with item c results in the rule {b, c}⇒{d}. 
But the latter rule can also be found by performing a left expansion of {c}⇒{d} with b. To solve this problem, CMDeo 
only add an item to a rule’s itemset if the item is greater than all items in the itemset according to the lexicographic 
ordering. In the previous example, this means that item c will be added to the left side of {b}⇒{d} (because c is greater 
than b). However, item b will not be added to the left side of {c}⇒{d} (because b is smaller than c). By using this strate-
gy and the previous one, no rule is found twice. 

 

 
Figure 4: How rules are discovered by left/right expansions with CMDeo 

 
It is important to note that the original algorithm of Deogun et al. is designed to find a subset of all valid sequential 

rules. Therefore, there is no guarantee that it finds all the valid rules. In this paper, we have adapted the algorithm of 
Deogun et al. so that it finds all valid sequential rules. Moreover, we have adapted the algorithm of Deogun et al. for 
the case of multiple sequences (the original algorithm mines rules from a single sequence). Our implementations of 
CMRules and CMDeo can be downloaded from http://www.philippe-fournier-viger.com/spmf/. 

  
Table 1. Datasets characteristics 



 

 

 Kosarak-1  Kosarak-2 BMS-Webview1 Toxin-Snake 

Number of sequences 70,000 41,582 59,601 163 

Number of items 21,144 25,257 497 20 

Number of items by itemset 1 3 1 1 

Average number of items by sequence 7.97 (σ =21.14) 26.51 (σ = 28.25) 2.51 (σ =4.85) 60.61 (σ =0.598) 

Average number of different items by sequence 7.97 (σ =21.14) 26.51 (σ =28.25) 2.51 (σ =4.85) 17.84 (σ =1.09) 

 

4.2 Description of the datasets 

To compare the performance of CMRules and CMDeo, we have performed a series of experiments with real datasets 
used in the data mining literature. The characteristics of these datasets are presented in table 1. 

The two first datasets are derived from Kosarak, a public dataset available from http://fimi.cs.helsinki.fi/data/. 
This latter contains 990,000 click-stream data from the logs of an online news portal. Kosarak-1 is a smaller version of 
Kosarak that contains only the 70,000 first sequences of Kosarak. We have kept only the first 70,000 sequences to make 
the experiment faster. These sequences have 7.97 items on average. Kosarak-2 is a second variation of the Kosarak 
dataset that we have created to test the algorithms on longer sequences. In Kosarak-2, only sequences from Kosarak 
that have more than 9 items are used. This results in 41,582 long sequences with an average of 26.51 items by sequence. 
Moreover, because Kosarak only contains 1 item by itemset, in Kosarak-2, it was decided to group consecutive items 
three by three into itemsets.  

The third dataset is BMS-Webview1, a sequence database containing several months of click-stream from an e-
commerce website. It was used for the KDD-Cup 2001 competition and can be downloaded from 
http://www.ecn.purdue.edu/KDDCUP/. BMS-Webview1 differs from Kosarak-1 and Kosarak-2 principally in that it 
contains shorter sequences and the set of different items is much smaller than those of Kosarak1 and Kosarak2. 

The fourth dataset is Toxin-Snake [19], a sequence database from the domain of biology. It contains 192 protein se-
quences. For our experiments, only sequences containing more than 50 items were kept. Keeping only these sequences 
has been done to make the dataset more uniform (because the original Snake dataset contains a few sequences that are 
very short and many long sequences). This resulted in 163 long sequences containing an average of 60.61 items. Besides 
having longer sequences than those from the three other datasets, Toxin-Snake is a very dense dataset. Each item oc-
curs in almost every sequence (there is on average 17.84 different items in each sequence and only 20 different items 
for the whole dataset) and each item appearing in a sequence appears on average 3.39 times in the sequence (σ =2.24). 

4.3 Experiment to assess the influence of minSeqSup 

The first experiment consists of running CMRules and CMDeo on the four datasets with different values for minSeqSup 
and a fixed value for minSeqConf, to assess the influence of minSeqSup on the performance of CMRules and CMDeo.  

For Kosarak-1, CMRules and CMDeo were run with with minSeqConf = 0.3 and minSeqSup = 0.004, 0.00375… 0.002. 
For this experiment, a time limit of 1200 seconds and a memory limit of one gigabyte of memory were used. Figure 5 
shows the execution times and maximum memory usage of each algorithm for each minSeqSup value, as well as the 
number of sequential rules and association rules found. Note that no result are shown for CMDeo for minSeqSup < 
0.0025 because CMDeo exceeds the memory limit, and no result are shown for CMRules for minSeqSup < 0.002 because 
CMRules exceeds the time limit. During this experiment, CMRules remained on average two times faster than CMDeo 
for all minSeqSup values and used up to five times less memory. The number of sequential rules found ranged from 
five to eleven percent of all association rules. This shows that the percentage of sequential rules can be quite high in 
real datasets. We also observed that the execution time of CMRules seems to grow proportionally to the number of 
association rules. For the lowest minSeqSup value, valid sequential rules contained on average 3.72 items with a maxi-
mum of six. 

For Kosarak-2, we applied both algorithms with minSeqConf = 0.3 and minSeqSup = 0.15, 0.145… 0.065. We set a 
memory limit of one gigabyte and a time limit of 1200 seconds. Results of this experiments are shown on figure 6. For 
high minSeqSup values, CMDeo was slightly faster than CMRules, but as minSeqSup got lower, CMRules became up to 
two times faster. The maximum memory usage of each algorithm was similar. For this dataset, results are not shown 
for minSeqSup < 0.065 because both algorithms exceeded the time limit. The percentage of association rules that were 
sequential rules varied between nine and fourteen percent. Sequential rules contained 3.62 items on average, with a 
maximum of seven items. As for previous datasets, it was observed that the performance of CMRules grows propor-
tionally to the number of association rules. 

For BMS-Webview1, we applied both algorithms with minSeqConf = 0.3 and minSeqSup = 0.00085, 0.000825, …, 
0.00065. Figure 7 illustrates the results. A time limit of 1000 seconds and a memory limit of 1GB were used. For this 
reason, no result is shown for CMRules and CMDeo for minSeqSup < 0.000725 and minSeqSup < 0.00065, respectively. 
Overall, CMDeo was up to 3.87 times faster than CMRules. The percentage of association rules that were sequential 
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rules varied from eleven to seventeen percent of all association rules. By looking at figure 7, it is again clear that 
CMRules execution time varied proportionally to the number of association rules. For minSeqSup = 0.00065, sequential 
rules contained on average 5.25 items with a maximum of eleven items.  

For Toxin-Snake, we applied both algorithms with minSeqConf = 0.3 and minSeqSup = 0.985, 0.98…, 0.93. Figure 8 il-
lustrates the results. A time limit of 400 seconds and a memory limit of 1GB were set. For this reason, no result are 
shown for CMRules for minSeqSup < 0.93. Furthermore, we did not run CMDeo for values lower than minSeqSup = 0.93 
because the trend clearly indicates that CMDeo performs better and has a better scalability than CMRules in terms of 
execution time for this dataset. The performance gap between the algorithms was the highest among all the experi-
ments, CMDeo being 27 times faster than CMRules for minSeqSup = 0.93. In terms of memory usage, CMDeo per-
formed slightly better than CMRules for this dataset. The percentage of association rules that are sequential rules var-
ied from two to eleven percent. Sequential rules contained 5.06 items on average with a maximum of ten items.  

 
Figure 5. Influence of minSeqSup for the Kosarak-1 dataset 

 
Figure 6. Influence of minSeqSup for the Kosarak-2 dataset 

 

 
Figure 7. Influence of minSeqSup for the BMS-WebView1 dataset 

0

200

400

600

800

1000

1200

1400

Ex
e

cu
ti

o
n

 t
im

e
 (

s)
 

minSeqSup 

CMRules
CMDeo

0

200

400

600

800

1 000

0
.0

0
4

0
.0

0
3

7
5

0
.0

0
3

5

0
.0

0
3

2
5

0
.0

0
3

0
.0

0
2

7
5

0
.0

0
2

5

0
.0

0
2

2
5

0
.0

0
2

M
e

m
o

ry
 (m

b
) 

minSeqSup 

CMRules
CMDeo

0K

50K

100K

150K

200K

250K

300K

0
.0

0
4

0
.0

0
3

7
5

0
.0

0
3

5

0
.0

0
3

2
5

0
.0

0
3

0
.0

0
2

7
5

0
.0

0
2

5

0
.0

0
2

2
5

0
.0

0
2

R
u

le
 c

o
u

n
t 

minSeqSup 

association rules
sequential rules

0

200

400

600

800

1000

1200

Ex
e

cu
ti

o
n

 t
im

e
 (

s)
 

minSeqSup 

CMRules

400

500

600

700

800

900

0
.1

5

0
.1

4

0
.1

3

0
.1

2

0
.1

1

0
.1

0
.0

9

0
.0

8

0
.0

7

M
e

m
o

ry
 (m

b
) 

minSeqSup 

CMRules

0

2

4

6

8

10

12

0
.1

5

0
.1

4

0
.1

3

0
.1

2

0
.1

1

0
.1

0
.0

9

0
.0

8

0
.0

7

R
u

le
 c

o
u

n
t 

minSeqSup 

association rules
sequential rules

0

200

400

600

800

1000

0.000650.00070.000750.00080.00085

Ex
e

cu
ti

o
n

 t
im

e
 (

s)
 

minSeqSup 

CMRules

100

150

200

250

300

350

400

0.000650.00070.000750.00080.00085

M
e

m
o

ry
 (m

b
) 

minSeqSup 

CMRules
CMDeo

0K

200K

400K

600K

0.000650.00070.000750.00080.00085

R
u

le
 c

o
u

n
t 

minSeqSup 

association rules

sequential rules



 

 

 
Figure 8. Influence of minSeqSup for the Toxin-Snake dataset 

4.4 Experiment to assess the influence of minSeqConf 

The second experiment compare the performance of CMDeo and CMRules for different minSeqConf values given the 
same four datasets. For this experiment, minSeqSup was set to the same values as in the previous experiment and 
minSeqConf was set to 0.3 and 0.8.  

Figures 9, 10, 11 and 12 show execution times, numbers of association rules and number of sequential rules. The 
maximum memory use is not shown for this experiment because minSeqConf did not produce any significant difference 
on it. From the figures, it can be observed that the execution time of CMDeo did not vary much between minSeqConf = 
0,3 and minSeqConf = 0,8. The reason is that CMDeo does not use the confidence to prune the search space. On the oth-
er hand, CMRules benefited from a higher minSeqConf threshold because it uses the confidence to prune the search 
space (CMRules can prune the search space based on the confidence because it is based on association rule mining). 
The execution time of CMRules decreased by up to 42%, 46 % and 55 % respectively for Kosarak-1, Kosarak-2 and 
BMS-WebView1. For Toxin-Snake however, minSeqConf did not had a big influence on the execution time of CMRules 
because it is a very dense dataset. Thus, extracted association rules and sequential rules have a very high sequential 
confidence (for example, for minSeqSup = 0.93, valid sequential rules have on average a confidence of 98 %).  

 
Figure 9. Influence of minSeqConf on execution time and rule count for the Kosarak-1 dataset 

 
Figure 10. Influence of minSeqConf on execution time and rule count for the Kosarak-2 dataset 
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Figure 11. Influence of minSeqConf on execution time and rule count for the BMS-WebView1 dataset 

 

 
Figure 12. Influence of minSeqConf on execution time and rule count for the Toxin-Snake dataset 

 

4.5 Experiment to assess the influence of |S| 

A third experiment was performed to assess the scalability of CMRules and CMDeo with respect to |S|- the number of 

sequences contained in the sequence database. For this experiment, the original Kosarak dataset was used because it is 

a very large real-life dataset containing 990,000 sequences, which is convenient for varying the size of the dataset. Note 

that we also tried this experiment with Toxin-Snake and BMS-WebView1. But because Toxin-Snake is very small (only 

163 sequences) and because we need to use a very low minSeqSup threshold for BMS-WebView1 to discover sequential 

rules (in the range of 0.0008 and 0.00065), the number of rules found and execution times varied too much with |S|, 

which made the results impossible to use for analyzing the scalability of the algorithms. For this reason, we only report 

the results for Kosarak. 

For this experiment, CMRules and CMDeo were run with minSeqSup = 0.003 and minSeqConf = 0.5, while |S| was 

varied from 10,000 to 200,000 sequences with an increment of 10,000 sequences. The values for minSeqSup and minSe-

qConf were chosen so that both algorithms could be run until at least 100,000 sequences under a one gigabyte memory 

limit. 

A time limit of 1,000 seconds was set. Figure 13 shows the results of the experiment (execution times, maximum 

memory usage and number of rules found). As it can be seen, CMRules’s execution time and maximum memory usage 

grows linearly with the size of |S|. CMDeo shown a similar trend. However, as it approached the memory limit of one 

gigabyte, its performance was negatively affected by the Java garbage collection mechanism. No results are shown for 

|S|>100,000 and |S|>200,000 for CMDeo and CMRules respectively, because of the memory limit. 

  
Figure 13. Result of the scalability experiment with Kosarak 
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4.5 Discussion of the results 

In previous experiments, CMRules and CMDeo were both faster for certain datasets. CMRules performed better than 
CMDeo for Kosarak-1 and Kosarak-2, and CMDeo outperformed CMRules for BMS-Webview1 and Toxin-Snake. 
 

Table2. Analysis of the results 

 Kosarak-1  Kosarak-2 BMS-Webview1 Toxin-Snake 

percentage of association rules that are sequential rules (CMRules) 5% to 11% 9 to 14 % 11 to 17 % 2 to 11 % 

percentage of expansions resulting in valid rules (CMDeo) 2.7 %  1.44 %  10.05 % 43.56 % 

average sequential rule support 0.37 % 10.51 % 0.08 % 95 % 

average sequential rule confidence 75 % 68 % 73.8 % 98 % 

 
To explain why CMRules and CMDeo performed better on some datasets, we took additional measurements. These 

measurements are shown in Table 2. The first row indicates the percentage of association rules that were sequential 
rules. The second row indicates the percentage of rule expansions in CMDeo that resulted in valid rules for the lowest 
minSeqSup value. The third and fourth lines respectively indicate the average sequential support and the average se-
quential confidence of the sequential rules found for the lowest minSeqSup value. 

We found that the good performance of CMDeo for BMS-Webview1 and Toxin-Snake can be largely attributed to 
the fact that rule expansions done by CMDeo resulted in a larger proportion of valid rules than for Kosarak-1 and 
Kosarak-2 (line 2 of Table 2). For example, up to 43.56 % of rule expansions for Toxin-Snake resulted in valid rules, but 
less than three percent for Kosarak-1.  

For CMRules, it was globally observed that the execution time grows proportionally to the number of association 
rules. Another observation is that the time for converting a sequence database in a transaction database (Step 1 of the 
CMRules algorithm) remained negligible during all experiments. CMRules’ worst performance was for Toxin-Snake. 
CMRules did not perform well on Toxin-Snake because each item appears in almost every sequence and generally 
many times in the same sequence. Because of this and because of the relative positions of items in sequences, the per-
centage of association rules that are sequential rules was very low for this datasets. For example, for minSeqSup = 0.93, 
204,986 association rules were found, and only 4,626 of those were valid sequential rules (about 2 % of all association 
rules). This means that CMRules had to check many sequential rules that are not sequential rules. This is very time-
consuming because sup(X■Y) has to be computed for each of them. In the case of Toxin-Snake, calculating sup(X■Y) is 
particularly costly because the average sequential support of each sequential rule is high (e.g. the average sequential 
support is 95% for minSeqSup = 0.93). Therefore, for each association rule, CMRules had to check almost all sequences 
to calculate sup(X■Y). 

In conclusion, we have noticed that the principal weakness of CMRules is its dependency on the number of associa-
tion rules, while the main weakness of CMDeo is that for some datasets, rule expansions generate a large amount of 
invalid candidate rules. Also, it was shown that CMRules can benefit more from a high minSeqConf than CMDeo, and 
that both algorithms exhibited a linear scalability in terms of execution time with respect to the number of sequences 
|S|. The conclusion that we draw from these experiments is that both algorithms are more appropriate for certain 
datasets depending on their characteristics. 

4.6 Choosing between CMRules and CMDeo 

Because both algorithms perform better in some situations, an important question arises: “How to choose between the 
two algorithms?”. To choose between the two algorithms several aspects should be considered.  

The first aspect is how difficult it is to implement the algorithms. For implementation, one may prefer CMRules be-
cause it is an extension of existing association rule mining algorithms. Therefore, if one possesses an implementation of 
an association rule mining algorithm, it is probably easier to implement CMRules than implementing CMDeo from 
scratch. Also, if for a given application, a user wishes to discover both association rules and sequential rules, CMRules 
should be preferred because it can output both at the same time, whereas CMDeo only generates sequential rules.  

The second aspect that has to be considered is the performance. If the performance is not an issue or a high minSe-
qSup threshold is used, then any algorithm could be used (both algorithms have similar performance under high 
minSeqSup thresholds). If performance is an issue, then the dataset’s characteristics should be considered. We identified 
three main characteristics that influence the performance: (1) how dense a dataset is, (2) the percentage of association 
rules that are sequential rules and (3) the percentage of rule expansions that result in valid rules. Because the two last 
characteristics are hard to estimate without running the algorithms, we suggest to mainly consider if a dataset is sparse 
or dense for choosing between CMRules and CMDeo. To determine if a dataset is sparse or dense, one could look at 
the dataset’s basic characteristics such as the number of sequences, number of items, average sequence length and the 
average number of items per sequence. For example, if a dataset contains many long sequences and the number of 
items is small, one may prefer CMDeo, while if the dataset contains many items and each one do not occur often in 
each sequence, one may prefer CMRules. The type of data contained in a dataset (e.g. customer data from a webstore) 
may also give indications about whether a dataset is dense or if it contains a large amount of association rules.  
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However, it would undoubtedly be preferable to have an automatic way of analyzing a dataset’s characteristics to 
choose between CMDeo and CMRules. This is however a difficult research problem. In the literature, several research-
ers have worked on measures and formal methods for characterizing datasets (including for measuring their density) 
[25, 26, 27, 28], predicting the number of patterns that will be found by specific data mining algorithms [29] and under-
standing their distribution [23, 24]. However, these works mostly concerns transaction databases and the task of fre-
quent itemset mining. To our knowledge, no such works have been done for sequence databases and sequential rule 
mining. Characterizing sequence databases and developing methods for predicting the number of rules found by dif-
ferent sequential rule mining algorithms is an open research problem.  

Lastly, for applications where performance matters and where the selected algorithm will be run periodically on the 
same kind of data (for example, consider a system where the algorithm is applied everyday on customer data to gener-
ate a daily report), a reasonable approach is to run both algorithms once to choose the fastest. However, the disad-
vantage of this approach is that it requires implementing both algorithms. 

5 APPLICATION OF THE ALGORITHM IN AN INTELLIGENT TUTORING AGENT 

To illustrate the utility of CMRules, we briefly report its use in a real application (for more details, the reader is re-
ferred to [6]). The application is an intelligent tutoring agent named CTS [6], which assists learners during training 
sessions in virtual learning environments. CTS is integrated in CanadarmTutor [7] (cf. figure 12), a simulator-based 
tutoring system for learning to operate the Canadarm2 robotic arm, installed on the international space station. During 
training sessions, CTS interacts with the learner by offering hints, questions, encouragements and explanations.  

CTS select interactions according to scenarios specified by domain experts into a structure called the “Behavior 
Network” [6]. To generate custom interactions adapted to each learner based on the predefined scenarios, CTS is 
equipped with different types of learning mechanisms (e.g., episodic and causal). These mechanisms allow CTS to 
adapt its behavior to each learner. We refer the reader to articles describing CTS [6, 30] for full details about its archi-
tecture and its learning mechanisms.  

 

 
Figure 12. The CanadarmTutor training system 

 
We have integrated the CMRules algorithm in CTS to give it the capability of finding the cause of learners’ mistakes 

(the ability of finding causes is referred as “causal learning” in the cognitive science literature [31, 32, 33]). To do so, we 
have modified CTS so that it records each of its executions (interactions with learners during a training session) as a 
sequence in a sequence database. Sequences are ordered by time and each sequence’s itemset contains a single item 
representing an event. An event represents the perception of a specific situation in the virtual world (e.g., a collision 
between Canadarm2 and the space station) or an interaction with the learner. Sequences usually contains from 20 to 40 
itemsets depending on the length of interactions with learners. 

To discover rules from these sequences, we have modified CTS so that it applies CMRules after each execution to 
discover sequential rules common to all the executions. In our implementation, we set minSeqConf =0.3 and minSeqSup 
=0.3 to find rules. We choose low support thresholds so that more rules are found. Example of rules that have been 
found are “the learner makes the robotic arm pass too close to the space station ⇒ the learner move the wrong joint, the 
learner is not aware of the distance” and “the learner is inactive ⇒ the learner lacks motivation”. 

Once rules have been extracted, CTS uses them in its next executions to guess the cause(s) of the learner’s mistakes 
and the reason(s) of the learner behavior in general. To do this, we have integrated in CTS a mechanism that works as 
follows. To find the cause(s) of learner’s mistakes, CTS compares the sequence of events from its current execution 
with the sequential rules found in its previous executions. CTS notes each rule that matches with the current execution. 
A rule is said to match if all items from its left part appears in the current execution and at least one item from its right 
part correspond to cause(s) that CTS want to guess in the current situation. For example, if a learner moves Canadarm2 



 

 

too close to the space station (which is a dangerous situation, because of collision risks), CTS must determine the 
cause(s) of this situation to take an action. In this example, several causes are possible. One of them is that the learner 
did not select the correct joint of Canadarm2. This could be represented by the following rule “the learner makes 
Canadarm2 pass too close to the space station ⇒ the learner selected the wrong joint “.  

Another possible cause is that the learner did not adjust a camera correctly, thus resulting in a poor vision, which 
could be represented by the following rule “the learner makes Canadarm2 pass too close to the space station ⇒ the 
learner did not adjust a camera correctly“. If several such rules matches with the current execution, CTS has to choose 
one. In our implementation, we have programmed CTS to choose the rule with the highest strength. We define the 
strength of a rule X⇒Y as Strength(X⇒Y) = seqConf(X⇒Y) × seqSup(X⇒Y). We chose this measure as it seems to be a 
good way of taking into account both the sequential confidence and the sequential support (note that other criteria 
could be used). Then, according to the cause(s) of the mistake indicated by the selected rule, CTS will intervene to help 
learners to prevent future mistakes. For example, if the selected rule indicates that the cause is that the learner selected 
the wrong joint, CTS will invite the learner to justify why s/he chose that joint. If the learner answers with a proper 
justification, then CTS will consider that this is not the cause and select the next rule having the most strength. The 
aforementioned process continue until the cause(s) are found. If the cause(s) are successfully identified, CTS will rec-
ord them in its current execution. In this way, CTS can learn to predict the causes of learners’ mistakes and the reasons 
of their behavior in particular situations. Note that when no rule matches with the current execution, CTS makes ran-
dom choices to guess the causes. 

5.1 Evaluation 

To evaluate the performance of CMRules in this application and assess how the new learning mechanism influences 
the performance of learners, we did an empirical evaluation. We asked eight users to test CTS with the new learning 
mechanism (version A) and CTS without the new learning mechanism (version B). Learners were invited to manipu-
late Canadarm2 for approximately 1 hour, using both versions A and B of the system. The first four students (Group 1) 
used version A, and then version B. The second four learners (Group 2), first used version B and then version A. Dur-
ing the experiments with version B, CTS recorded 363 sequences with an average length of 23 itemsets. CMRules algo-
rithm was executed after each execution starting from the fourth execution. On average, sequential rules represented 
31.05 % of all association rules, and the average number of sequential rules was 27. The execution time of the algorithm 
was short (less than 80 ms). After the experiment, we also applied CMDeo on the same sequence database to compare 
its performance with CMRules. CMDeo was about 10 ms slower and the memory usage was similar (about 20 mega-
bytes). The reason why CMRules performed slightly better is that although sequences are long, the sequence database 
is not dense, and the percentage of association rules that are sequential rules is high. Totally, more than 2,400 rules 
were found from interactions with learners. To verify the quality of the rules found by CTS, we asked a domain expert 
to evaluate them. Given that checking all rules one by one would be tedious, the expert examined 150 rules from the 
2,400+ recorded rules. Overall, the expert confirmed the correctness of about 85 % of the rules.  

To evaluate how the new version of CTS influences the performance of learners using CanadarmTutor, we meas-
ured four performance criteria during the empirical evaluation for Group 1 and Group 2. Those are (1) the percentage 
of questions answered correctly (2) the average time to complete an exercise (3) the average number of collision risks 
provoked by learners, and (4) the average number of protocol violations. Overall, Group 1 performed better than 
Group 2 on all four criteria. For criterion 1, the percentage for Group 1 was 30 %, whereas it was 50% for Group 2. For 
criterion 2, the average time to complete an exercise was 1.4 and 2.2 minutes for Group 1 and Group 2, respectively. 
For criterion 3, the average number of collision risks was 3 and 5 for Group 1 and Group 2, respectively. For criterion 4, 
the protocol violation counts were 10 and 18, respectively. Although the number of learners who participated in this 
experiment is not very large, from these results, we can see that the version of CTS integrating CMRules improved 
their performance.  

Furthermore, we analyzed the correctness of the CTS hints and messages to the learners during tasks. To determine 
if an intervention was correct, we asked learners to rate each CTS interventions as being appropriate or inappropriate. 
Because learners could incorrectly rate the tutor’s interventions, we also observed the training sessions and verified the 
ratings given by each learner, subsequently. Results show that the average number of appropriate interventions was 
about 83 % using version 1 and 58 % using version 2. This is a notable improvement in CTS performance. 

We also assessed the user satisfaction by performing a 10 minute post-experiment interview with each user. We 
asked each participant to tell us which version of CTS they preferred, to explain why, and to tell us what should be 
improved. Users unanimously preferred the new version. Some comments given by users were: 1) the tutoring agent 
“exhibited a more intelligent and natural behavior”; 2) the “interactions were more varied”; 3) the “tutoring agent 
seems more flexible”; 4) “in general, it gives a more appropriate feed-back”. There were also several comments on how 
CTS could be improved. In particular, many users expressed the need to give CTS a larger knowledge base for generat-
ing dialogues. We plan to address this issue in future work. 
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5.2 Why using CMRules or CMDeo instead of another sequential rule mining algorithm? 

An important question is: “Why using CMRules or CMDeo in CTS instead of another sequential rule mining algo-
rithm?”. First, as mentioned in the introduction, most sequential rule mining algorithms discover rules in a single se-
quence. In CTS, we aimed at discovering rules common to several executions. For this reason, algorithms that mine 
rules from a single sequence (e.g. [5, 8, 11]) and algorithms that do not discover rules common to several sequences 
(e.g. [4, 9]) could not be applied.  

To our knowledge, the only algorithms from the literature that meets the requirement of mining sequential rules 
common to several sequences are the algorithms of Lo et al. [14], Pitman and Zanker [36] and Zhao et al. [34, 35]. They 
discover rules of the form X⇒Y, where X and Y are sequential patterns (ordered lists of itemsets). However, as we have 
explained in the introduction, this form of rules is too restrictive because if the items in X or in Y are not ordered in the 
same way in a sequence, it will be counted as an occurrence of a distinct rule. This can cause several problem. First, 
some similar rules may have important differences in how they are ranked according to interestingness measures (e.g. 
confidence and support. Second, some rules may not be discovered because they are considered uninteresting unless 
they would be merged with other rules. Third, because the rules are very specific, they are less likely to match with the 
sequences of actions in CTS, and therefore to be used for prediction.  

In the case of CTS, the order of elements in X or Y is not considered important. We only wish to know what is the 
cause(s) of events, without considering the relative ordering of the cause(s) and of the events. Those are the reasons 
why we have not applied algorithms of Lo et al., Pitman and Zanker or Zhao et al. in CTS. We instead decided to de-
fine a more general form of sequential rules where items in the left part and in the right part of each rule are unor-
dered.  

6 CONCLUSION 

 
This article presented CMRules, a correct and complete algorithm for mining sequential rules common to several 

sequences in sequence databases. The algorithm is designed to mine a less restrictive form of rule than the one discov-
ered by the algorithms of Lo et al. [14], Pitman and Zanker [36] and Zhao et al. [34, 35]. CMRules is based on associa-
tion rule mining because it was observed that for some datasets, the number of association rules that are sequential 
rules is high (this was confirmed in the experiments). Because CMRules is based on association rule mining, it is very 
efficient for discovering both association rules and sequential rules at the same time.  

CMRules can be extended in several ways. First, it is possible to give additional capabilities to CMRules by imple-
menting it based on an association rule mining algorithm having these capabilities. For instance, if one implements 
CMRules by using an incremental association rule mining algorithm such as the one of Cheung et al. [3], the result 
would be an incremental algorithm for mining sequential rules. A second example is to use a parallel algorithm for 
mining association rules such as the one of Agrawal & Shafer [15] to obtain a parallel algorithm for mining sequential 
rules.  

Besides this type of extensions, it is also possible to extend CMRules by modifying the code for checking if a rule is 
included in a sequence. For example, one could easily modify the definition of sup(X■Y) so that the antecedent and 
consequent of a rule have to occur within a given time frame, as it is proposed in the works of Mannila et al. [13], Das 
et al. [4] and Harms et als. [9]. Another simple extension of CMRules would be to mine rules respecting constraints on 
the minimal and maximal size of antecedents and consequents (minAntecedentSize, maxAntecedentSize, minConsequent-
Size, maxConsequentSize). To do this extension, two simple changes needs to be done. The first change is to mine only 
itemsets of size maxAntecedentSize + maxConsequentSize during Step 2 of the algorithm. Mining only these itemsets is 
sufficient for finding all sequential rules because association rules are generated by combining pair of frequent itemsets 
X ⊆ Y to get rule of the form X→Y-X [1]. The second change that needs to be done is to how the rules are generated 
from frequent itemsets that are discovered. In the Agrawal et al.algorithm [1], rules are constructed recursively, each 
recursion growing or shrinking the left or right part of a rule, one item at a time. It is easy to incorporate a check in this 
process to stop growing/shrinking rules if it will not respect size constraints. For CMDeo, similar extensions can also 
be done. For example, it is easy to add rule size constraints, because rules are also expanded one item at a time. How-
ever, only CMRules can benefit from extensions by the reuse of existing association rule mining algorithms with par-
ticular capabilities. 

In this article, we evaluated the performance of CMRules in three different ways. We first analyzed its time com-
plexity. Second, we compared its performance on real datasets with an adaptation of the Deogun et al.’s algorithm [5] 
that we named CMDeo. For this comparison, we chose datasets that are commonly used in the data mining literature 
and have different properties. These experiments have shown that both CMRules and CMDeo perform better depend-
ing on each dataset’s characteristics. In particular, CMRules was shown to be faster for datasets where the percentage 
of association rules that are sequential rules is high, whereas CMDeo is faster for dense datasets where rule expansions 
generate a large proportion of valid rules.  

Thirdly, we have described how the algorithm is used in an intelligent tutoring agent that assist learners during 



 

 

training sessions with the Canadarm2 robotic arm installed on the International Space Station [6]. Thanks to the algo-
rithm, the agent can now learn sequential relationships between events common to several of its executions. The agent 
exploits this information, to guess the cause(s) of the learner’s mistakes. Note that we have also applied the CMRules 
algorithm in another tutoring agent for procedural knowledge learning [16].  
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