
Mining Cost-Effective Patterns in Event Logs

Philippe Fournier-Vigera,∗, Jiaxuan Lib, Jerry Chun-Wei Linc, Tin Truong Chid, R. Uday Kirane

aSchool of Humanities and Social Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China, 518055
bSchool of Computer Sciences and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China, 518055

cDepartment of Computing, Mathematics and Physics, Western Norway University of Applied Sciences (HVL), Bergen, Norway, 5020
dDivision of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City,

Vietnam, 700000
eNational Institute of Informatics, Tokyo, Japan, 101-8430

Abstract

High Utility Pattern Mining is a popular task for analyzing data. It consists of discovering patterns having a high
importance in databases. A popular application of high utility pattern mining is to identify high utility (profitable)
patterns in customer transaction data. Though such analysis can be useful to understand data, it does not consider the
cost (e.g. effort, resources, money or time) required for obtaining the utility (benefits). In this paper, we argue that
to discover interesting patterns in event sequences, it is useful to consider both a utility model and a cost model. For
example, to identify cost-effective ways of treating patients from medical pathways data, it is desirable to consider
not only the ability of treatments to inhibit symptoms or cure a disease (utility) but also the resources consumed
and the time spent (cost) to provide these treatments. Based on this perspective, this paper defines a novel task
of discovering Cost-Effective Event Sequences in event logs. In this task, cost is modeled as numeric values, while
utility is represented either as binary or numeric values. Measures are proposed to evaluate the trade-off and correlation
between cost and utility of patterns to identify cost-effective patterns (patterns having a low cost but providing a high
utility). Three efficient algorithms called CEPB, corCEPB and CEPN are designed to extract these patterns. They
rely on a tight lower-bound on the cost and a memory buffering technique to find patterns efficiently. Experiments
show that the proposed algorithms achieve high efficiency, that proposed optimizations improve efficiency, and that
insightful cost-effective patterns are found in real-life e-learning data.

Keywords: Event logs, sequences, pattern mining, sequential patterns, cost-effective patterns, utility, cost

1. Introduction

Discovering patterns in symbolic data is an important research area in data mining. Early studies in this area
have mainly focused on discovering frequent patterns. For instance, in frequent itemset mining [1, 2], the goal is
to identify sets of items that appear at least a minimum number of times in a transaction database. For numerous
applications, frequent patterns reveal important information that can help to understand the data or take decisions. For
instance, discovering frequent itemsets in medical data can reveal that some symptoms frequently appear together,
which provide useful information for disease diagnosis. However, a key limitation of frequent itemset mining is that
the time dimension is ignored. To address this limitation, a more general problem called sequential pattern mining
was proposed [3, 4, 5], which consists of identifying subsequences that appear frequently in a sequence database. A
sequence is an ordered list of itemsets and can be used to represent various types of data such as protein sequences,
text, click streams and event logs. Many studies have been devoted to SPM. The first SPM algorithms are AprioriAll
and GSP [4, 5]. These latter apply a breadth-first search to count the support of sequences in a database and output all
frequent sequences. Recently, more efficient sequential pattern mining algorithms were designed such as SPADE [6],

∗Corresponding author
Email addresses: philfv8@yahoo.com (Philippe Fournier-Viger), jiaxuanliniki@gmail.com (Jiaxuan Li), jerrylin@ieee.org (Jerry

Chun-Wei Lin), truongchitin@tdtu.edu.vn (Tin Truong Chi), uday_rage@tkl.iis.u-tokyo.ac.jp (R. Uday Kiran)

Preprint submitted to Information Science November 8, 2019

FreeSpan [7], PrefixSpan [8], CM-SPADE [9], VMSP [10] and FCloSM [11]. These latter adopt various strategies
such as using a vertical database representation or a pattern-growth approach to find frequent sequences efficiently.
To meet requirements of various domains, several sequential pattern mining extensions have been proposed, which
allow to take into account constraints and more complex data types [3]. One of the most popular SPM extensions in
recent years is High Utility Sequential Pattern Mining (HUSPM) [12, 13, 14, 15]. It consists of finding sequences
having a high utility (e.g. sequences of purchases that yield a high profit). HUSPM generalizes SPM and is a much
more difficult problem than SPM because the utility measure is not anti-monotonic nor monotonic. That is, the utility
of a sequence may be equal to, greater or smaller than those of its supersequences or subsequences. For this reason,
HUSPM cannot be performed using traditional SPM techniques, which requires using anti-monotonic or monotonic
measures to reduce the search space [12]. HUSPM allows to find important patterns in data, where importance is
assessed using a numerical utility measure. For example, in customer transaction analysis, the utility measure can
model the profit yield by sequences of purchases to identify profitable patterns. Another example is website click-
stream analysis, where the utility can model the time spent to find sequences of webpages where people spend a lot of
time. Identifying such patterns can be useful for decision-making [12, 13, 14].

Albeit HUSPM is an emerging research problem with several applications, a major limitation is that utility is
often insufficient to truly evaluate the usefulness of a pattern. In fact, traditional HUSPM algorithms assess the
utility or benefits that each pattern provides, but ignores the resources, effort, time or cost required to apply these
patterns. This problem is illustrated with an example. Consider medical pathway data indicating the various treat-
ments received by patients of a hospital. Applying HUSPM on this data allows to discover high utility patterns,
where the utility can represent whether patients are cured or not after receiving treatments. For example a pat-
tern 〈treatmentA, treamentB, treatmentC, cured〉may be discovered by traditional HUSPM algorithms indicating that
many people who have received these treatments are cured, where cured is a high utility item. Although such patterns
may seem useful, a major problem is that HUSPM ignores the cost for applying these patterns, that is the money,
time or resources spent to cure each patient using these treatments. As a result, a HUSPM algorithm may find many
patterns that have a high utility but have a very high cost, which is undesirable. And similarly, a HUSPM algorithm
would miss all patterns that do not have a very high utility but are still useful because they provide a good trade-off

between cost and utility.
A second example of this issue can be found in the domain of e-learning. Consider the analysis of sequences of

learning activities performed by learners in an e-learning environment, to identify sequences of learning activities that
help obtain high scores. A HUSPM algorithm could find many sequences of activities leading to high scores (scores
would be modeled as the utility values of items). But HUSPM algorithms would ignore the time spent (cost) on these
activities to achieve these scores. Thus, many patterns could be found having a high utility but also a very high cost
(requiring to spend a lot of time), which may represent ineffective ways of studying. And patterns having a better
trade-off between cost and utility may be missed.

To address this limitation, this paper proposes to find patterns by not only considering a utility model indicating
the benefits provided by patterns, but also a cost model to assess the resources used or time spent to apply the patterns.
Combining the concept of cost and utility is desirable but challenging. A reason is that there are many ways of
measuring utility and cost. Cost can for example be measured in terms of time or money, while utility may represent
time, profit, evaluation scores or failure/success. Because utility and cost can be measured using different units, it is
not possible to simply combine the concepts of utility and cost by subtracting the cost from the utility, and then to
apply a traditional HUSPM algorithm. Another problem of this approach is that it would not allow to evaluate how
good the trade-off is between cost and utility for each pattern, and how strong the relationship is between resources
spent and utility. For applications such as analyzing medical pathways, it is generally desirable to find patterns that
not only have a high utility but also offer an excellent trade-off between utility and cost. Thus, cost and utility must
be modeled separately and a tailored solution needs to be designed.

This article addresses this challenge by defining the novel problem of extracting Cost-Effective Patterns (CEP).
The aim is to find patterns that provide a good trade-off between cost and utility from sequences containing utility and
cost information. The main contributions of this study are threefold.

• The task of discovering cost-effective patterns in sequences is defined. In particular, three variations of the
problem are defined to address the needs of different applications. In the first problem, information about the
utility is encoded as a binary label for each sequence. The utility represents a desirable or undesirable outcome

2

(e.g. passing or failing an exam, being cured or not after receiving some medical treatments). In the second
problem, utility is encoded as a positive number (e.g. a score obtained after completing a course). In the third
problem, the utility is a binary value and it is assumed that only records are available for the positive class.
Properties of the three proposed problems are studied. Moreover, statistical measures are designed to assess the
correlation between utility and cost for these three problems.

• Three pattern-growth algorithms are presented to find cost-effective patterns for the three problem variations.
The algorithms are named CEPB, corCEPB and CEPN, respectively. To efficiently find patterns, it is necessary
to design a strategy to avoid exploring all possible patterns. However, a challenge is that the average cost
measure cannot be used to reduce the search space because it is neither anti-monotonic nor monotonic. To
address this issue and prune the search space efficiently, two tight lower-bound on the average cost of patterns
are proposed named ASC and AMSC.

• Moreover, to reduce memory usage and speed up the algorithms, a technique called Projected Database Buffer
(PDB) is integrated into the designed algorithms.

Several experiments have been performed to assess the performance of the proposed algorithms on various bench-
mark datasets. Results indicate that the proposed optimizations and the pruning strategy based on the lower-bound
decrease runtimes of the proposed algorithms by up to 10 times. Moreover, an analysis of patterns found in real-life
e-learning data shows that insightful patterns are found using the proposed algorithms.

The following sections are organized as follows. Section 2 reviews related work. Section 3 defines the proposed
problems of discovering cost-effective patterns. Section 4 describes the proposed algorithms. Section 5 presents the
experimental evaluation. Finally, Section 6 draws the conclusion.

2. Related Work

This section is divided into five subsections. The first subsection introduces pattern mining and relevant concepts.
The second and third subsections discuss frequent and high utility sequential pattern mining, respectively. Finally, the
fourth and fifth subsections discuss early work toward the consideration of cost in pattern mining, and related work
on emerging pattern mining.

2.1. Pattern mining as a subfield of data mining

In general, data mining techniques are either used to extract patterns or models from data, which can be used
to make sense of the data [16, 17]. Data mining techniques can be generally categorized as predictive or descrip-
tive. Predictive techniques are typically used to predict the future or perform tasks such as classification. Several
predictive techniques such as neural networks are black box models, as they are designed to provide good predic-
tion/classification results rather than being interpretable. On the other hand, descriptive techniques are used to extract
interesting or meaningful patterns from data to explain the data. This includes clustering and pattern mining tech-
niques. Descriptive techniques such as pattern mining are glass-box techniques, as they extract patterns that are
interpretable by humans and can support decision-making.

Another useful categorization of data mining techniques is that of supervised versus unsupervised methods. Su-
pervised methods require labeled training data to build a model. Data is often represented as database records having
a target attribute providing class labels. For example, for the problem of classification, training consists of discovering
a model (function) to map attribute values to class labels to discover hidden relationships between attributes and class
labels [18, 19, 20]. Several supervised methods have been proposed for classification as well as clustering [21, 22, 23].
On the other hand, unsupervised techniques assume that the data is unlabeled. Generally, pattern mining techniques
are unsupervised as the goal is to extract hidden knowledge from data. But for some pattern mining tasks such as
mining association rules to build classifiers [24], and to discover patterns that are different for two classes (emerging
or contrast patterns) [25], class labels are considered for each database record.

3

2.2. Frequent sequential pattern mining
In the field of pattern mining, techniques have been proposed to extract various types of patterns from data such

as itemsets [2, 26, 27], episodes [28, 29], subgraphs [30, 31], and sequences (sequential patterns) [3, 4, 5]. Generally,
to find interesting patterns in data, various interestingness measures have been proposed. In early studies on pattern
mining, the frequency (support) measure was mainly used to extract frequent patterns [1, 2].

In frequent sequential pattern mining (SPM) [3, 4, 5], the goal is to extract all the subsequences that appear in at
least minsup sequences of a database, where minsup is a threshold set by users. For example, consider the database
of Table 1, which contains four sequences, representing customer data. The first sequence indicates that an item b
was purchased by a customer, followed by the purchase of item c, then f , and finally g. If minsup is set to 2, several
frequent sequential patterns are found in this database, including the pattern 〈a, f 〉 (meaning that a is followed by f),
which has a support (occurrence frequency) of 3 (since it appears in the first three sequences).

Table 1: A sequence database containing four sequences (considered in traditional SPM)

Sequences
〈(a), (c), (f), (g), (e)〉
〈(a), (c), (b), (f)〉
〈(a), (b), (f), (e)〉
〈(b), (f)〉

Numerous techniques were proposed for discovering sequential patterns in databases. The first SPM algorithms
are AprioriAll and GSP [4, 5]. To find all sequential patterns, GSP first scans the database to calculate the support of
each single item. Then, GSP combines these patterns to generate candidate patterns containing two items. Thereafter,
GSP scans the database again to calculate the support of these candidate patterns and keep only those that are frequent
sequential patterns. Then, GSP repeats this process to find sequential patterns containing three items, and so on until
all frequent patterns have been found. To avoid exploring all possible patterns, GSP applies a pruning property that
states that the support of a sequence cannot be greater than the support of its subsequences, or in other words that the
support measure is anti-monotonic. Although GSP is a correct and complete algorithm, it suffers from the drawback
that it can generate numerous candidates that do not exist in a database, and scans a database numerous times.

To address the drawback of time-consuming database scans, several algorithms adopting a vertical database repre-
sentation have been proposed such as SPADE [6], CM-SPADE [9], VMSP [10] and FCloSM [11]. These algorithms
first scan the database to calculate the support of single items. Then, they create a vertical structure for each frequent
pattern, and search for patterns using a depth-first search. These algorithms combine small patterns to generate larger
patterns. The vertical structure of a pattern containing more than one item is obtained by intersecting the vertical
structures of some of its sub-patterns. The vertical structure of a pattern is useful because it allows to calculate its
support without scanning the database [6]. Although these vertical algorithms reduce the number of database scans,
they can still generate candidate patterns that do not exist in the database, which is time-consuming.

To avoid this drawback, several pattern-growth algorithms have been proposed such as FreeSpan [7], PrefixS-
pan [8], and MaxSP [32]. These algorithms scan the database to count the support of single items. Then, they create
a projected database for each frequent items, and scan that projected database to count the support of items and find
larger patterns extending the current pattern. This process is repeated recursively using a depth-first search to find all
patterns. The advantage of the pattern-growth approach is that only patterns that exist in the database are considered.
As sequential pattern mining is an active research topic, many other algorithms and extensions have been proposed in
recent years.

2.3. High utility sequential pattern mining
Though frequent pattern mining has many applications, frequent patterns are often uninteresting to users. For

instance, a pattern {bread, egg} may be frequent in a customer transaction database but may yield a low profit as these
items are typically inexpensive. On the other hand, some rare patterns may be considered as important because they
yield a high profit. Because users may be more interested in finding patterns that have a high profit or importance
rather than mining frequent patterns, the problem of frequent itemset mining was generalized as high utility pattern
mining [33, 34]. The goal of high utility pattern mining is to identify patterns having a utility that is no less than a

4

minimum utility threshold called minutil, where the utility is a numerical measure representing the relative importance
of patterns (e.g. the profit generated).

Several high utility pattern mining problems have been proposed extending corresponding frequent pattern mining
problems [26, 27, 33, 35, 36, 37]. The extension of sequential pattern mining that considers a utility measure is called
high utility sequential pattern mining (HUSPM) [33]. The input of HUSPM is a minimum utility threshold minutil
and a database of quantitative sequences, where each sequence is an ordered list of transactions. A transaction is a
set of items, each annotated with some internal utility value (e.g. a purchase quantity). Moreover, each item has a
weight called the external utility, indicating its relative importance (e.g. unit profit). The output of HUSPM is the set
of all high utility sequences that have a utility (importance) that is no less than minutil. The concept of utility can be
used to model data in various domains. For instance, HUSPM can be applied to mine sequences of purchases made
by customers that yield a high profit from sequences of customer transactions. Table 2 shows an example quantitative
sequence database containing four sequences. The third sequence indicates that a customer purchased three units of
item a, followed by three units of item b, then two units of item b, and finally one unit of item c.

Table 2: A quantitative sequence database containing four sequences (the database type considered in HUSPM).

Quantitative sequences with purchase quantities (internal utility)
〈(a, 1), (e, 3)〉
〈(a, 6), (c, 7), (b, 8), (d, 9)〉
〈(a, 3), (b, 3), (b, 2), (c, 1)〉
〈(b, 3), (c, 1)〉
Unit profits (external utility)
a = 5$, b = 1$, c = 2$, d = 1$

A major challenge in HUSPM is that the utility measure is not anti-monotonic. In other words, the utility of a
sequence may be higher, lower or equal to that of its subsequences. Thus, it is not possible to simply apply traditional
SPM algorithms for HUSPM. The first HUSPM algorithms are US and UL [33]. US adopts a candidate generation
approach similar to GSP, while UL adopts a pattern growth approach similar to PrefixSpan. To efficiently reduce the
search space, these algorithms rely on a novel measure called sequence-weighted utility (SWU) that is an upper-bound
on the utility of patterns and their supersequences, and is anti-monotonic. Then, several more efficient algorithms have
been proposed. PHUS [34] adopts a pattern-growth approach with an upper-bound that is tighter than the SWU to
reduce the search space and improve the mining performance. Other recent algorithms are USpan [12], HupsExt [38],
and HUS-Span [39].

Although HUSPM is useful in many domains such as market basket analysis, only considering the utility to
evaluate patterns is insufficient for several other domains where not only the utility must be considered but also the
cost to determine if a pattern is desirable or interesting. Hence, this paper proposes to utilize both a cost and a utility
model to identify useful patterns in event sequences.

2.4. Integrating the concept of cost in pattern mining
Few work have considered cost in pattern mining. The closest work to the one presented in this paper is in the

field of process mining, where cost was considered to perform behavior analysis. The main goal of process mining
is to extract models or patterns from event logs that characterize a business process [40]. An event log is a list of
events with timestamps, ordered by time. Techniques for process mining have been applied for many tasks such
as analyzing education, business and healthcare event logs [41, 42, 43], using both supervised and unsupervised
methods [44, 45]. To analyze medical pathway data, it was proposed to extract a graph [46], where nodes and edges,
respectively represent events and their temporal relationships. Such graph was used to formulate guidelines for the
medical treatments of inpatients with the sepsis condition. Though extracting this type of graphs can be useful, it
does not consider the cost of treatments, and temporal relationships are limited to consecutive events. Moreover, the
proposed graph structure can be very large and complex for large event logs and thus be difficult to interpret. An
algorithm named Twincle [47] was proposed for analyzing hospital event-logs, where each event is annotated with a
cost value. The output is rules indicating that a set of events occurred before another set of events, and having a small
cost (e.g. in terms of money for medical treatments). Such rules give insights about how to reduce medical costs.

5

Twincle adopts a rule growth approach which starts by finding rules between pairs of events and then recursively
grows these rules to find larger rules. To use Twincle, the user must set multiple parameters, specified in terms of
time, confidence, cost and rule length. An important limitation of Twincle is that although it considers the cost of
patterns, it ignores the utility. Thus, it can find patterns that have a low-cost but a low utility. For example, it could
find a pattern representing cheap medical treatments but that provide a very low probability of being cured. In this
paper, we consider that both utility and cost should be assessed to find cost-effective patterns (patterns providing a
good cost/utility trade-off).

2.5. Emerging pattern mining

Emerging pattern mining is another research area that is related to the work presented in this paper. It consists
of discovering patterns that appear significantly more often in records that belong to a class than to those of another
class. For example, Poon et al. [48] proposed to discover emerging sequential patterns in educational data. The data is
an event log from a statistic course, where each event is an access to a simulation, video or quiz, and has a timestamp.
Moreover, the event log of each learner is annotated with a class label indicating if his quiz score result is below or
above average. Such a sequence database with class labels is presented in Table 3. Then, patterns were extracted that
discriminate between the two groups to recommend better ways of using e-learning resources.

A major limitation of this work is that it does not consider the cost (e.g. the time spent by students for each event
to obtain high scores). Moreover, a score is defined as a binary variable rather than a numeric variable, which results
in information loss. It is thus desirable to design an algorithm that can identify patterns having a low cost and high
utility (e.g. high scores), and can consider not only binary classes but also numeric values if required.

Table 3: A sequence database with binary labels (a database type considered in emerging SPM)

Sequences Class Labels
〈(a), (c), (f), (g), (e)〉 above average
〈(a), (c), (b), (f)〉 above average
〈(a), (b), (f), (e)〉 below average
〈(b), (f)〉 below average

The next section addresses the aforementioned limitations by proposing a novel problem of discovering cost-
effective patterns by combining both the concepts of utility and cost. The cost is modeled by associating a numeric
value to each event, while the utility is either defined by associating a binary class label (e.g. died or cured) or a
numeric value (e.g. an exam score) to each sequence. Moreover, a concept of correlation or trade-off is introduced to
assess the relationship between the utility and cost of each pattern.

3. Problem Definition

This section proposes the novel problem of discovering Cost-Effective Patterns (CEP). Three cases (variations of
this problem) are presented to address the needs of different applications. The type of database that is considered is
Sequential Event Logs (SEL) where events are annotated with cost values and each sequence has utility information
either encoded as a binary or a numeric value. This section first introduces the type of data and important concepts.
Then the proposed problem is defined, and key differences with previous work are highlighted.

Definition 1. (Sequential Event Log) A sequence S s is a list of m events denoted as S s = 〈{e1[c1], e2[c2], . . . em[cm]}
|Utility〉. Each event ei (1 ≤ i ≤ m) is annotated with a positive number ci indicating the cost of the event. The cost is
a measure of resources spent for an event such as an amount of time or money. An event ei is said to have appeared
before another event e j of a sequence if i < j. Furthermore, each sequence has a utility value Utility. A sequential
event log (SEL) consists of n sequences, denoted as S EL = {S 1, S 2, . . . S n}. The s-th sequence of a SEL, denoted as
S s, is said to have the sequence identifier s. Two types of SELs are considered. A numeric SEL contains sequences
where utility values are positive numbers, while a binary SEL contains sequences where utility is a binary label (− or
+, denoting a negative or positive outcome).

6

Table 4: A binary SEL

Sid Sequence (event[cost]) Class

1 〈(a[2]), (b[4]), (c[9]), (d[2])〉 +

2 〈(b[1]), (d[12]), (c[10]), (e[1])〉 −

3 〈(a[5]), (e[4]), (b[8])〉 +

4 〈(a[3]), (b[5]), (d[1])〉 −

5 〈(b[3]), (e[4]), (c[2])〉 +

Table 5: A numeric SEL

Sid Sequence (event[cost]) Utility

1 〈(a[20]), (b[40]), (c[50]), (d[20])〉 80

2 〈(b[25]), (d[12]), (c[30]), (e[25])〉 60

3 〈(a[25]), (e[14]), (b[30])〉 50

4 〈(a[40]), (b[16]), (d[40])〉 40

5 〈(b[20]), (e[24]), (c[20])〉 70

For instance, consider the binary SEL database depicted in Table 4, which contains five sequences. The second
sequence contains four events. The event b first occurred and has a cost of 1. Then, it was followed by d with a cost of
12, then by c with a cost of 10, and finally by e with a cost of 1. That sequence has a negative class label (denoted as
−), indicating that it has lead to a negative outcome. Other sequences follow the same format. This type of database
can be found in many domains. For example, it can model sequences of treatments received by patients where positive
and negative class labels indicate whether a patient has cured or died, respectively. Another example is sequences of
learning activities done by students where cost is the time spent and class labels indicate whether a student has then
passed or failed an exam.

An example of numeric SEL is shown in Table 5. This database contains five sequences encoded using the same
format as in the previous example, but where the utility is modeled as a numeric value. For example, the first sequence
has a utility of 80. A numeric SEL can be used to encode data from various applications. For example, a sequence of
learning activities done by students may be annotated with a numeric utility value indicating his final grade.

To discover interesting relationships between events in a SEL database, we consider a type of patterns that is a
sequence of events.

Definition 2. (Pattern) A time-ordered list of events is called a sequence of events or pattern. Consider two patterns
p = 〈e1, e2, ..., eo〉 and v = 〈r1, r2, ..., rq〉. The pattern v is said to extend p (to be an extension of p) if ry1 = e1,
ry2 = e2, . . ., ryo = eo for some integers 1 ≤ y1 ≤ y2 ≤ . . . ≤ yo ≤ q.

In the following, the extension of a pattern p = 〈e1, e2, ..., eo〉 with an item z to obtain a sequence 〈e1, e2, ..., eo, z〉
will be denoted as v ∪ z.

Let there be a sequence S s = 〈{e′1[c1], e′2[c2], . . . e′m[cm]} |Utility〉. The sequence S s is said to contain p (denoted
as p ⊆ S s) if e′a1 = e1, e′a2 = e2, . . ., e′ao = eo for some integers 1 ≤ a1 ≤ a2 ≤ . . . ≤ ao ≤ m. If that condition is met,
it is equivalently said that p occurs or appears in S s. The first occurrence of p in a sequence S s is the smallest set of
integers a1, a2, . . . ao such that p ⊆ S s. The sequence of events 〈e′a1, e

′
a2 . . . e

′
ao〉 corresponding to that first occurrence

is denoted as f irst(p, S s).

To select interesting patterns in sequential event logs, the support and (average) cost measures are used.

Definition 3. (Support measure) Let there be a pattern p. The support of p in a sequential event log S EL is the
number of sequences where p appears. Formally, sup(p) = |{S s|p ⊆ S s ∧ S s ∈ S EL}|.

The reason for using the support measure is the same as in frequent pattern mining, that is to eliminate infrequent
patterns that may represent noise [49]. The cost measure is defined as follows.

Definition 4. (Cost measure) Let there be a sequence S s and a pattern p. The cost of p in S s is defined as the sum
of the cost values of the first occurrence of p in S s, that is c(p, S s) =

∑
ei∈ f irst(p,S s) c(ei, S s) if p ⊆ S s and otherwise

0. Given a SEL, the cost of p is the sum of its cost in all sequences where it appears. Formally, it is defined as
c(p) =

∑
p⊆S s∧S s∈S EL c(p, S s).

For instance, consider the binary SEL shown in Table 4. In the first sequence, the pattern 〈a, b〉 has a cost of
c(〈a, b〉, S 1) = 2 + 4 = 6. If cost values are represented in dollars, it would mean that 6 dollars were spent to apply this

7

pattern in S 1. The cost of that pattern in the whole database is calculated as: c(〈a, b〉) = c(〈a, b〉, S 1) + c(〈a, b〉, S 3) +

c(〈a, b〉, S 4) = (2 + 4) + (5 + 8) + (3 + 5) = 27.
In the above definition, the cost is defined based on the first occurrence of a pattern in each sequence. Without

loss of generality, this definition can be reversed to consider the last occurrence instead of the first one. The reason for
choosing either the first or last occurrence for computing the cost rather than considering all occurrences is that some
cases are problematic if multiple occurrences are considered. For example, if many occurrences of a pattern share
events, calculating the cost of all occurrences would not only be more computationally expensive than calculating the
cost of only the first (last) occurrence but would result in overestimating the pattern’s cost (due to adding multiple
times the cost values of events shared by multiple occurrences).

The cost is a useful measure to evaluate the total amount of resources spent to apply a pattern in a SEL (e.g. total
amount of money or time). However, because the cost of a pattern may not be the same in different sequences, it
is useful to evaluate a pattern using the average for all sequences where it appears. The average cost is defined as
follows.

Definition 5. (Average cost measure) Consider a pattern p. Its average cost in a SEL is the average of its costs in all
sequences where it appears. Formally, it is denoted and defined as: ac(p) =

∑
p⊆S s∧S s∈S EL c(p,S s)

|sup(p)| .

For instance, consider the binary SEL shown in Table 4. The cost of pattern 〈a, b〉 in the sequences S 1, S 2 and S 3
where it appears is 6, 13 and 8, respectively. Thus its average cost is ac(〈a, b〉) = 27

3 = 9. If cost values represent an
amount of time in hours, this pattern indicates that the average cost for applying the pattern 〈a, b〉 is 9 hours.

Using the average cost measure is more meaningful than using the cost for several applications such as e-learning.
For example, consider that the above database is sequences of activities or events, representing the activities done
by different learners, where the cost of an activity is the time spent, and the utility is to pass or fail an exam. The
cost of the pattern 〈a, b〉 indicates that all students have totally spent 27 hours studying activity a and then b. But
a problem with the cost measure is that it does not inform us about the resources typically spent by each student.
This is a problem because each user may apply the same pattern with different cost values, i.e. students may spent
different amount of time on these activities. Using the average cost measure addresses this issue as it lets the user
know about the average amount of resources typically used for using each pattern. In this example, the average cost
of 〈a, b〉 indicates that a student typically spent 9 hours on that pattern. Knowing this information is useful for users,
as a user may want to know the amount of resources required to apply a pattern, and may not want to use a pattern
that requires spending too much resources. Note that it would be possible to also compute other measures like the
standard deviation of the cost. However, the average cost is especially interesting as we can define a lower bound that
can be used for reducing the search space to improve the performance of our proposed algorithms.

Lemma 1 (anti-monotonicity of the support). Let there be two patterns p and q such that q extends p (or generally,
p is included in q). Then, sup(p) ≥ sup(q) [4].

Lemma 2 (lack of monotonicity or anti-monotonicity of the average cost). Let there be two patterns p and q such
that q extends p (p is included in q). The average cost of p may be smaller, equal or greater than that of q.

Proof 1. The above lemma is proved using an example. Consider the binary SEL of Table 4. The average cost
of pattern 〈d〉 is ac(〈d〉) = c(〈d〉, S 1) + c(〈d〉, S 2) + c(〈d〉, S 4))/ sup(〈d〉) = (2 + 12 + 1)/3 = 5, while ac(〈a〉) =

c(〈a〉, S 1) + c(〈a〉, S 3) + c(〈a〉, S 4))/sup(〈a〉) = (2 + 5 + 3)/3 = 3.3 and ac(〈a, d〉) = c(〈a, d〉, S 1) + c(〈a, d〉, S 4))/
sup(〈a, d〉) =

(4+4)
2 = 4.

Based on the above lemma, it is clear that the average cost cannot be directly used to reduce the search space. To
still mine patterns efficiently using this measure, Section 4 will propose two lower-bounds on the average-cost that
can be used for search space reduction.

It is to be noted that in the field of frequent sequential pattern mining, two strategies were proposed to prune
the search space using the average measure when a numeric value is associated to each item from sequences [50].
However, these strategies are not applicable for the average cost measure since they assume that an item must always
have the same value in all sequence. But in the problem studied in this paper, an event (item) may have different cost
values in different sequences (which is more general).

8

Table 6: Cost-effective patterns found in positive sequences (Case 1)

Pattern Average cost Pattern Average cost

〈a〉 3.5 〈c〉 5.5

〈e〉 4.0 〈b, c〉 9.0

〈b〉 5.0 〈a, b〉 9.5

Having presented the type of patterns that will be found and the cost and support measures that will be used to
evaluate patterns, the next subsections present the problem of mining cost-effective patterns for three cases, corre-
sponding to different scenarios. Additional pattern evaluation measures will be introduced for the second and third
cases.

3.1. Case 1: Mining Cost-Effective Patterns in Positive Sequences of a Binary SEL

The first case is to extract cost-effective patterns in a binary SEL where only sequences annotated with the positive
class are used. The goal is to extract patterns having a low cost that lead to a desirable outcome. The problem is
defined as follows:

Definition 6. (Problem definition - Case 1) Let there be a binary SEL and two user-specified thresholds named
maxcost and minsup. The problem of discovering cost-effective patterns in positive sequences consists of identi-
fying each pattern q that has a low average cost and is frequent, that is sup(q) ≥ minsup and ac(q) ≤ maxcost.

For instance, consider the binary SEL of Table 4 and that minsup = 2 and maxcost = 20. This SEL contains three
positive sequences (S 1, S 3 and S 5). The cost-effective patterns extracted from these positive sequences are shown in
Table 6. These patterns can be viewed as different sequences of events that have lead to the desirable outcome. It
can be observed that these patterns contain different events and have different average cost. The assumption of this
problem definition is that by discovering patterns in positive sequences of a binary SEL, cost-effective patterns that
are likely to yield a positive outcome can be found.

3.2. Case 2: Mining Cost-Effective Patterns in Negative and Positive Sequences of a Binary SEL

Case 1 considers mining cost-effective patterns in positive sequences. This can reveal patterns having a low cost
but a high utility (leading to the desirable outcome). This can be useful when sequences with negative labels are
unavailable. However, there is an important drawback of Case 1. It is that negative sequences are not considered. As
a result, some patterns may be discovered that appear not only in positive sequences but also in negative sequences.
Such patterns can be misleading because they may contain events that actually do not influence the utility (outcome)
of the sequence.

To address this issue, a second case is defined where cost-effective patterns are mined from all sequences of a
binary SEL (by considering both positive and negative sequences), and where the correlation between a pattern and its
utility is evaluated. By evaluating this correlation, it is possible to find patterns that are cost-effective and correlated
with a positive utility. The following paragraphs propose a correlation measure and then the problem of Case 2 is
described.

Definition 7. (Positive and negative sequences containing a pattern) Let there be a binary SEL where each sequence is
annotated with positive or negative class labels. For a pattern p, let D+

p and D−p denote the set of positive and negative
sequences containing the pattern p, respectively.

For instance, consider the binary SEL shown in Table 4. The set of positive sequences of pattern 〈c〉 is D+
〈c〉 =

{S 1, S 5}, while its set of negative sequences is D−
〈c〉 = {S 2}.

9

Table 7: Cost-effective patterns found in negative and positive sequences (Case 2)

Pattern Correlation Average cost Pattern Correlation Average cost

〈e〉 1.0 3.0 〈b〉 0.42 4.2

〈a, b〉 0.24 9.0 〈a〉 0.19 3.3

〈b, c〉 −0.28 9.7 〈d〉 −0.43 5.0

〈b, d〉 −0.50 8.3 〈c〉 −0.60 7.0

Definition 8. (Correlation of a pattern with binary utility) For a binary SEL, the correlation of a pattern p to the

utility of sequences where it appears is calculated as: cor(p) =
ac(D+

p)−ac(D−p)
S td

√
sup(D+

p)

|Dp|

sup(D−p)

|Dp|
where ac(D+

p) and ac(D−p)

respectively denote the pattern p’s average cost in D+
p and D−p , S td is the standard deviation of p’s cost and sup(D+

p),
sup(D−p) are respectively the support of p in D+

p and D−p . Positive and negative cor values indicate a positive and
negative correlation, respectively

For instance, consider the pattern 〈c〉 and the binary SEL of Table 4. It is found that cor(〈c〉) =
(9+2

2 −
10
1)

S td(9,2,10)

√
2
3 ×

1
3 ≈

−0.60.
The above correlation measure named cor was defined by adapting the biserial correlation measure [51] , which

is generally used to assess the correlation between a binary and a numeric attribute in statistics. Values of the cor
measure are in the [−1, 1] interval. The term ac(D+

p) − ac(D−p) is used in the cor measure to find patterns that have
a large difference in terms of average cost for positive and negative sequences. For example, in e-learning, a same
pattern representing different ways of studying may be interesting if it has different cost (amount of time) for students
who fail and succeed a course. That cost difference is divided by the standard deviation of the cost to avoid using

absolute values in the equation. The term
√

sup(D+
p)

|Dp|

sup(D−p)

|Dp|
is used in the cor measure to find patterns that are different

in terms of occurrence frequencies for the positive and negative classes. The cor measure is interpreted as follows.
A negative cor value indicates that a pattern is correlated with a negative utility. A positive cor value indicates that
a pattern is correlated with a positive utility. The greater positive (smaller negative) the cor measure is, the more a
pattern is correlated with a positive (negative) utility. Consider the patterns 〈a, b〉 and 〈a, c〉 in the SEL of Table 4. It
is found that cor(〈a, c〉) = −0.5 and cor(〈a, b〉) = 0.8. Thus, the former pattern is correlated with a negative outcome,
while the latter pattern is correlated with a positive outcome. It is to be noted that the proposed algorithms do not use
the cor measure for search space pruning and thus its calculation could be adapted for a specific application if needed.
The problem definition of Case 2 is defined as follows.

Definition 9. (Problem definition - Case 2) Given a binary SEL and user-defined minsup and maxcost thresholds, the
problem of Case 2 consists of extracting each pattern p such that (sup(p) ≥ minsup) ∧ (ac(p) ≤ maxcost) and p has a
high positive correlation.

In other words, the aim is to identify cost-effective patterns where cost is correlated with a positive utility (the
desirable outcome) rather than a negative utility. For instance, consider the binary SEL of Table 4. If the parameters
are set to minsup = 3 and maxcost = 10, eight patterns are discovered for Case 1, depicted in Table 7. Interestingly,
it is found that four of those patterns are correlated with a negative utility, i.e. (〈c〉, 〈b, d〉, 〈d〉, and 〈b, c〉). This shows
the importance of considering a correlation measure to identify patterns that are not only cost-effective but also likely
leading to a positive outcome.

3.3. Case 3: Mining Cost-effective Patterns in a Numeric SEL
Case 1 (Section 3.1) and Case 2 (Section 3.2) considered that utility is encoded as binary values. This section

presents the third case to handle SEL with numeric utility values. A numeric SEL can be used to model various types

10

Table 8: Cost-effective patterns found in a numeric SEL (Case 3)

Utility Pattern Trade-off

70 〈b, c〉 0.88

65 〈b, e〉 0.72

60 〈b, d〉 0.85

56 〈a, b〉 1.01

of data such as event logs of e-learning sessions where final exam scores are expressed as numbers. An example
numeric SEL is shown in Table 5. To find cost-effective patterns in such SEL, the cor measure cannot be applied as it
is only defined for binary utility values. Hence, the next paragraphs redefine the concept of pattern utility and present
a novel measure called trade-off to evaluate the relationship between cost and numeric utility in a numeric SEL.

Definition 10. (Utility of a pattern) Let there be a numeric SEL and a pattern p. The utility of p in the SEL is the
average of the utility of sequences containing p, i.e. u(p) =

∑
p⊆S s∧S s∈S EL su(S s)
|sup(p)| where su(S s) denotes the numeric utility

of sequence S s.

Definition 11. (Trade-off) For a pattern p, the trade-off of p is the ratio of its average cost to its average utility, i.e.
t f (p) =

∑
p⊆S s∧S s∈S EL(c(p, S s)/su(S s)).

Trade-off values are in the (0,∞] interval. The trade-off value of a pattern indicates how efficient the pattern is.
A pattern having a small trade-off is viewed as being cost-effective as it provides utility at a low cost (it requires a
small amount of resources to obtain a desirable outcome). For example, in e-learning, a pattern with a small trade-off

may indicate that studying some learning activities (events) typically requires a small amount of time (cost) and is
correlated with obtaining high scores (utility). On the other hand, patterns having a larger trade-off may be viewed as
not being cost-effective, or being less efficient. For example, consider the Table 5 and the pattern 〈a, d〉. Its trade-off

is calculated as: t f (〈a, d〉) = ac(〈a, d〉)/u(〈a, d〉) =
[c(〈a,d〉,S 1)+c(〈a,d〉,S 4)]/sup(〈a,d〉)

[su(S 1)+su(S 4)]/2 =
[(20+20)+(40+40)]/2

[(80+40)]/2 = 1. It is to be
noted that the proposed algorithms do not use the trade-off measure for search space pruning. Thus, it could be easily
adapted for the requirements of specific applications if needed. The problem definition of Case 3 is given next.

Definition 12. (Problem definition - Case 3) Consider a numeric SEL and two user-defined thresholds, minsup and
maxcost. The goal of Case 3 is to identify each cost-effective pattern p such that (sup(p) ≥ minsup) ∧ (ac(p) ≤
maxcost), and p has a low trade-off and high utility.

Case 3 of the proposed problem can be used to find cost-effective patterns that provide a good trade-off between
cost and utility. After extracting patterns using the minimum support and maximum cost, patterns can be ranked by
descending order of trade-off before being presented to the user.

For instance, consider the numeric SEL of Table 8, minsup = 2 and maxcost = 100. Four patterns are found,
shown in Table 5. In that example, 〈b, e〉 is viewed as the most efficient pattern since it has the lowest trade-off.

3.4. Relationship between the proposed problem and previous work
The problem studied in this paper and its three cases are quite different from problems studied in previous papers.

To illustrate these differences, Table 9 compares the type of data and patterns extracted for the problems of (1) frequent
SPM, (2) HUSPM, (3) emerging SPM, (4) low-cost rule mining, and (5) the proposed problem. From this table, it can
be seen that the type of data and patterns considered in this paper are quite different from previous work.

In SPM [3, 4, 5], patterns are found strictly based on their support. In HUSPM [12, 13, 14], patterns are found
based on their utility, and events are annotated with numeric utility values. In emerging pattern mining, frequent
patterns are found in database records having class labels. These class labels represent categories of records. In low-
cost rule mining [47], the goal is to extract rules having a low-cost from sequences where events are annotated with
cost values.

11

Differently, from previous work, the proposed problem considers both cost and utility, and the relationship (trade-
off or correlation) between cost and utility, with the aim of finding low-cost patterns that can lead to a high utility
(positive outcome). Moreover, utility is sequence annotations rather than event annotations because utility is viewed
as an outcome. Binary utility can be viewed as similar to class labels used in emerging pattern mining. But the seman-
tic is quite different. The former represents positive/negative outcomes, while the latter represent categories of records
that may not have a negative or positive meaning. Moreover, in the proposed problem, utility can be numeric unlike
in emerging pattern mining where symbolic labels are used. Besides, differently from HUSPM, events are annotated
with cost rather than utility, and the average cost is considered.

Because of the many differences with previous work, existing algorithms and techniques for reducing the search
space cannot be directly adapted to solve the proposed problem. Generally, designing efficient pattern mining algo-
rithms require to use techniques tailored to the problem. Hence, the next section presents novel properties, appropriate
data structures and efficient algorithms to solve the three cases of the proposed problem. Then, Section 5 presents
an experimental evaluation to evaluate the algorithms’ performance and case studies are described, which shows that
interesting patterns are found in real data.

Table 9: Comparison of database and pattern types for the proposed problem and those of previous work

Problem Event annotations? Sequence annotations? Pattern type
SPM – – frequent sequences
HUSPM Utility (numeric) – high utility sequences
Emerging SPM – Binary classes emerging sequences
Low-cost rule mining Cost (numeric) – low-cost rules
Proposed problem - Case 1,2 Cost (numeric) Binary utility cost-effective sequences
Proposed problem - Case 3 Cost (numeric) Numeric utility cost-effective sequences

4. Proposed Algorithms

This section presents algorithms to efficiently discover Cost-Effective Patterns (CEP) for the three cases introduced
in the previous section. The algorithms rely on the basic search procedure of the PrefixSpan algorithm [8] to explore
the search space of sequences in a database. This procedure starts by considering patterns containing single events and
then recursively grows these patterns by appending items one at a time. To reduce the cost of scanning the database
to calculate the measures, a projected database is created for each pattern. In the proposed algorithm, that procedure
is adapted to consider the cost and utility, to use a lower-bound on the cost to reduce the search space, and to integrate
a memory buffering optimization.

This section is organized as follows. Section 4.1 introduces a lower bound on the cost of patterns, called ASC,
and discusses its properties. Then, Section 4.2 presents a lower bound named AMSC, which is tighter than the
ASC. Then, Section 4.3 introduces the buffering method to reduce memory usage when creating projected databases.
Finally, Section 4.4, 4.5 and 4.6 present the proposed algorithms for the three cases by putting all these ideas together.
For each algorithm, pseudocode is given, a detailed example, as well as a discussion of the algorithm’s complexity.

4.1. A Lower Bound on the Average Cost
The search space for discovering CEP in a SEL can be very large. If the longest sequence in a SEL has k events,

there are up to 2k − 1 patterns to be considered. To design efficient CEP mining algorithms, it is thus necessary to
avoid exploring all possible patterns to find the desired patterns. In frequent pattern mining, search space reduction
is done using the anti-monotonicity property of the support measure. But as shown in Lemma 2, the average cost
measure is neither monotonic nor anti-monotonic, and thus cannot be used to reduce the search space as in frequent
pattern mining. As a solution, this section introduces a lower bound on the average cost that allows to reduce the
search space, named Average Supported Cost (ASC), and a corresponding pruning property.

Definition 13. (Average Supported Cost). Consider a pattern p such that sup(p) ≥ minsup. Let C(p) be the set of
costs of p in sequences where it appears, i.e. C(p) = {c(p, S i)|p ⊆ S i ∈ S EL}. Furthermore, let ci(p) denotes the i-th
smallest cost of p in C(p). The ASC is defined as: asc(p) = 1

sup(p)
∑

i=1,2,...,minsup ci(p).

12

For example, consider Table 5, minsup = 2 and the pattern p = 〈a〉. The pattern p appears in the first, third and
fourth sequences, and its set of costs is C(p) = {20, 25, 40}. Hence, asc(〈a〉) = 1

3 × (20 + 25) = 15. The average cost
of 〈a〉 is ac(〈a〉) = (20 + 25 + 40)/3 ≈ 28.3

Property 1. (Underestimation of the average cost by the ASC measure) The AS C of a pattern p is smaller than or
equal to its average cost, that is asc(p) ≤ ac(p). In other words, the ASC is a lower bound on the average cost.

Proof 2. Since sup(p) ≥ minsup, asc(p) = 1
sup(p)

∑
i=1,2,...,minsup ci(p) ≤ ac(p) = 1

sup(p)
∑

i=1,2,...,sup(p) ci(p).

Property 2. (Monotonicity of the ASC measure) For any two sequential patterns px ⊂ py, the relationship asc(px) ≤
asc(py) holds.

Proof 3. Since px ⊆ py, it follows that sup(px) ≥ sup(py) ≥ minsup and ci(px) ≤ ci(py) . Thus, we can infer that
asc(px) = 1

sup(px)
∑

i=1,2,...,minsup ci(px) ≤ asc(py) = 1
sup(py)

∑
i=1,2,...,minsup ci(py).

Property 3. (Pruning using the ASC lower bound) For a pattern p, if asc(p) > maxcost, then it follows that ac(p) >
maxcost, and that p is not a CEP. Moreover, any super-pattern py ⊃ px is also not a CEP.

Proof 4. This directly follows from Property 1 and 2.

4.2. A Tighter Lower-Bound on the Average Cost
The previous subsection has introduced a lower bound on the average cost that can be used for search space

reduction. But can we find a tighter lower bound to more effectively reduce the search space? The answer is yes.

Definition 14. (Average Minimum Supported Cost) Let the Average Minimum Supported Cost (AMSC) of a pattern
p be defined as amsc(p) = 1

minsup
∑

i=1,2,...,minsup ci(p).

For example, consider Table 5 and that minsup = 2. Then, amsc(〈a〉) = 1
2 × (20 + 25) = 22.5 < ac(〈a〉) ≈ 28.3.

Property 4. (Underestimation of the average cost by the AMSC measure) The AMS C of a pattern p is smaller than
or equal to its average cost, that is amsc(p) ≤ ac(p).

Proof 5. Let N = sup(p) and M = minsup. Without loss of generality, assume that all the cost values in C(p) =

{c1, c2, . . . cN} are sorted in ascending order, i.e. c1 ≤ c2 ≤ ... ≤ cM ≤ ... ≤ cN . Then, 1
M
∑

i=1,2,...,M ci(p) ≤
1
N
∑

i=1,2,...,N ci(p), because cost values are in ascending order, and thus (N−M)
∑

i=1,2,...,M ci(p) ≤ (N−M) ·M ·cM(p) ≤
M · (N − M) · cM+1(p) ≤ M

∑
i=M+1,M+2,...,N ci(p).

Property 5. (Monotonicity of the AMSC measure) Let there be two patterns px ⊂ py that are frequent (sup(px) ≥
minsup and sup(py) ≥ minsup). The relationship amsc(px) ≤ amsc(py) holds.

Proof 6. Since px ⊂ py, it follows that sup(px) ≥ sup(py) ≥ minsup. Because ∀px ⊆ py, ci(px) ≤ ci(py)
and all the cost values ci(px) and ci(py) are sorted in ascending order, ci(py) > c ji (px) where { j1, j2, ..., jsup(py)} ⊆

{1, 2, ..., sup(px)}, and therefore amsc(py) = 1
minsup

∑
i=1,2,...,minsup ci(py) ≥ amsc(px) = 1

minsup
∑

i=1,2,...,minsup c ji (px).

Property 6. (Pruning using the AMSC lower bound) For a pattern p, if amsc(p) > maxcost, then it follows that
ac(p) > maxcost, and that p is not a CEP. Moreover, any super-pattern py ⊃ px is also not a CEP.

Proof 7. This directly follows from Property 1 and 2.

For example, consider Table 5 and that minsup = 2. For pattern 〈a〉, we have asc(〈a〉) = 15 < amsc(〈a〉) =

(20+25)/2 = 22.5 < ac(〈a〉) ≈ 28.3. For pattern b, we have asc(〈b〉) = (16+20)/5 = 7.2 < amsc(〈b〉) = (16+30)/2 ≈
23 < ac(〈b〉) ≈ 28.7. Furthermore, asc(〈a, b〉) = ((25 + 30) + (40 + 16))/3 = 37 < amsc(〈a, b〉) =

(25+30)+(40+16)
2 =

55.5 < ac(〈a, b〉) = 57. Thus, max{asc(〈a〉), asc(〈b〉)} < asc(〈a, b〉), and max{amsc(〈a〉), amsc(〈b〉)} < amsc(〈a, b〉).
In this paper, a key consideration is to find CEP having a low average cost. Using the proposed Property 6, if the
AMS C of a pattern is larger than maxcost, this pattern and all its super-patterns do not need to be considered because
they are not CEP.

13

Table 10: A projected binary SEL

Sid Sequence (event[cost]) Class

1 〈(c[9]),(d[2])〉 +

4 〈(d[1])〉 −

4.3. Computing Database Projections using a Projected Database Buffer
The designed algorithms utilize a pattern-growth approach to explore the search space of all patterns. The pattern-

growth approach consists of performing a database projection for each considered pattern, and then to scan the pro-
jected database to find larger patterns that extend the pattern. Before presenting the designed algorithms, this subsec-
tion introduces the concept of database projection. Then, it presents an optimization called Projected Database Buffer
to perform database projections more efficiently. Finally, the last paragraph describes how the proposed algorithms
explore the search space while using the Projected Database Buffer.

Definition 15. (Database projection) Let there be a pattern p and a sequence S s from a database SEL. The projection
of S s by p is the part of the sequence S s that appears after the first occurrence of p in S S , if p appears in S s. Otherwise,
it is the empty sequence. The projection of SEL by p is the set of all projected sequences by p. It is denoted as PDp.

For example, consider the binary SEL of Table 4. The projection of this database by pattern 〈a, b〉 is shown in
Table 4. Note that although this example shows the projection of a binary SEL, numeric SEL can be projected in the
same way.

When a pattern-growth algorithm considers a pattern p, it projects the database by p. Then, the algorithm uses
this reduced database to explore larger patterns that extend p. This reduces the cost of database scans as projected
databases become smaller and smaller as larger patterns are considered. However, creating all these projections can
require a considerable amount of memory and time. To address this issue, a novel Projected Database Buffer (PDBuf)
structure is proposed to reuse the memory for storing projected databases. By reusing memory, runtimes also decrease
as the number of memory allocation operations is reduced. The proposed PDBuf structure has two components: (1) a
summary list (sumList) that stores general information about each projected database currently in memory, and (2) an
array structure to store projected databases, called the projected database list (pdList). The next paragraphs present
these components. Then, the following subsections explain how the designed algorithms utilize that structure and the
lower bounds presented in previous subsections to efficiently discover CEP.

Definition 16. (Summary List) The summary list (sumList) component of the PDBuf structure is a list of summaries
sumList = {s0, s1, . . . , sn}, containing a summary for each projected database stored in the PDBuf structure. The
notation sumList[x] denotes the summary at position x in sumList. And the notation sumList(a1, a2] denotes the
summaries from position a1, exclusive, to a2, inclusive. A summary is a triple of the form {pattern, startInx, endInx}
indicating a pattern that was used to perform a database projection, and two positive integers startInx and endInx
indicating that the projected database is stored from the startInxth record to the (endInx − 1)th record of the pdList
structure.

Definition 17. (Projected Database List) The projected database list (pdList) component of the PDBuf structure stores
projected databases. It is implemented as an array of elements pdList = {e0, e1, . . . , en}, each representing a sequence
projected by a pattern. Elements representing projected sequences from the same projected database are stored con-
secutively in the pdList. The notation pdList[x] denotes the event at the position x of pdList. And the notation
pdList(a1, a2] denotes event from position a1, exclusive, to a2, inclusive. An element is a triple {seqId, f olInx, cost}
storing the identifier seqId of a projected sequence, an integer startIndex indicating the position in the original se-
quence where the projected sequence starts, and the pattern’s cost in that sequence. Information about the cost is
stored in elements to be able to quickly calculate the cost of patterns.

For example, consider a database containing three sequences: S 1 = 〈(a[2]), (b[4]), (c[9]), (d[2]), S 2 = 〈(a[5]),
(e[4]), (b[8]) and S 3 = 〈(a[2]), (b[3]), (e[4]), (c[2])〉. Figure 2 shows a projected database buffer containing the corre-
sponding projected databases of patterns 〈a〉, 〈b〉, 〈c〉 and 〈e〉 (represented with different colors). The first summary

14

in the pdList, denoted as pdList[0] is the summary of the projected database of 〈a〉. This summary contains the
tuple {pattern = a, startInx = 0, endInx = 3} indicating that this projection consists of three projected sequences
stored in records 0, 1 and 2 of the pdList. The record 0 of the pdList, denoted as pdList[0], contains the tu-
ple {seqId = 1, f olIndex = 1, cost = 2}. This record represents the projection of sequence 1 with item a. That
projected sequence starts from position f olIndex = 1 of sequence S 1. In other words, that projected sequence is
〈(b[4]),(c[9]),(d[2])〉. The value cost = 2 indicates that the cost of a in that sequence is 2. Other records follow the
same format.

In the pdList, each projected sequence for a pattern p is represented by a triple {seqId, f olInx, cost}. The reason
for storing the cost in each triple is to be able to quickly calculate the cost of an extension of p without having to
scan the original database. This is shown with an example. Consider the projected database PD〈b〉 of pattern 〈b〉. The
pdList contains a triple {1, 2, 4} indicating that 〈b〉 appears at position 2 of sequence 1 with a cost of 4. Moreover,
consider the projected database PD〈c〉 of pattern 〈c〉. The pdList contains a triple {1, 3, 9} indicating that 〈c〉 appears
at position 3 of sequence 1 with a cost of 9. Using this information, it is possible to directly derive the triple of pattern
〈bc〉 as {1,max(2, 3), 9 + 4} = {1, 3, 13}. In other words, the triple of that sequence can be obtained without scanning
the original database. This technique improves the efficiency of the proposed algorithms.

The proposed algorithms explore the search space using a depth-first search. In this paragraph, an illustrative
example is given to explain how the search space is traversed and how the Projected Database Buffer is used during
that traversal to reuse memory and thus reduce memory usage. Then, the following subsections describe the proposed
algorithms in details. Consider the database of the running example. The search space contains all patterns that can
be formed using events a, b, c, d and e. But using the pruning properties, some parts of the search space do not
need to be explored. In this example, we will consider that one of the proposed algorithms is applied to explore the
part of the search space shown in Fig. 1. The algorithm first scans the database to calculate the support, average cost
and upper-bounds of each single events. Then, the algorithm eliminates patterns according to the pruning properties
based on cost and support. Assume that the patterns 〈a〉, 〈b〉, 〈c〉, and 〈e〉 satisfy these constraints. Then, the projected
databases PD〈a〉, PD〈b〉, PD〈c〉 and PD〈e〉 of these patterns are created and stored in the Projected Database Buffer (by
updating the sumList and pdList structures). Then, a depth-first search is performed to extends each pattern. The
algorithm processes patterns in reverse order and thus starts by 〈e〉. The projected database of 〈e〉 is scanned to find
larger patterns extending 〈e〉 but no patterns are found. Thus, the projected database PD〈e〉 is not needed anymore
in the buffer and that memory can be reused. Then, the algorithm performs the depth-first search to extend pattern
〈c〉. The algorithm scans the projected database PD〈c〉 and no patterns are found extending 〈c〉. Thus, the projected
database PD〈c〉 is not needed anymore in the buffer and that memory can be reused. Then, the algorithm performs the
depth-first search to find patterns extending the next pattern 〈b〉. The algorithm scans the projected database PD〈b〉
and finds that the pattern 〈bc〉 is a CEP. The projected database of PD〈bc〉 is created and stored in the buffer. It is
to be noted that the projected database of PD〈bc〉 is stored by overwritting the memory previously used for storing
projected databases PD〈c〉 and PD〈e〉 (depending on how much memory is neeeded), which thus reduces memory
usage because memory is reused. The projected database buffer now contains PD〈a〉, PD〈b〉, and PD〈bc〉. Then, the
algorithm continues the depth-first search to find patterns extending 〈bc〉. The algorithm scans the projected database
PD〈bc〉 and no patterns are found extending 〈bc〉. Thus, the projected database PD〈bc〉 is not needed anymore in the
buffer and that memory can be reused. Since the depth-first search has finished extending the pattern 〈b〉, the projected
database PD〈b〉 is not needed anymore in the buffer and that memory can be reused. Then, the algorithm continues
the depth-first search to find patterns extending the next pattern 〈a〉. The algorithm scans the projected database PD〈a〉
and finds that the pattern 〈ab〉, 〈ac〉, and 〈ae〉 are CEPs. The algorithm thus stores their projected databases PD〈ab〉,
PD〈ac〉 and PD〈ae〉 in the buffer by overwritting the memory used for storing the previously stored projected databases
that are not needed anymore. The projected database buffer now contains PD〈a〉, PD〈ab〉, PD〈ac〉 and PD〈ae〉. Then, the
algorithm continues the depth-first search in a similar way to extend the patterns 〈ab〉, 〈ac〉, and 〈ae〉. Assume that no
more patterns are found. The algorithm stops, and all the CEPs have been found.

As can be seen in the above example, by using the buffer while doing the depth-first search, memory is often
reused rather than allocating new memory, which reduces memory usage. As it will be shown in the experiment, this
can considerably improve performance.

It is to be noted that how the proposed Projected Database Buffer structure is used in the proposed algorithms
has some similarity to how the Utility-List Buffer structure is used in itemset mining [52]. The similarity is that both
structures are employed to reuse memory during a depth-first search to find patterns. However, there are two important

15

differences. First, the type of patterns is different and the data stored in the two buffers is different. The latter stores
vertical structures for each itemset, while this work store horizontal projected databases for each pattern. Second,
another important difference is that this work proposes to use the backward scanning order during the depth-first
search. Using this order has the benefit of allowing to reuse more memory compared to how the Utility-List Buffer is
used [52]. This is illustrated with the previous example. Consider that the pattern 〈a〉 is first processed by the depth
first search rather than 〈e〉. Then, the memory of 〈a〉 cannot be reused after processing 〈a〉 because other projected
databases appearing after 〈a〉 have not been yet processed and they have been inserted in the buffer after 〈a〉. On
the other hand, if the backward order is used, the memory of PD〈e〉 can be reused immediately after processing 〈e〉
because PD〈e〉 is the last inserted projected database in the buffer. A more general observation is that if the proposed
backward processing order is not used, the memory used for the projected databases of single events could never be
reused. Thus, the backward order is preferable. The next subsections presents the three proposed algorithms.

Ø

a b c e

XX

bc𝑎b 𝑎c 𝑎e

XXXX

Figure 1: An example of search space traversal using the projected database buffer

pattern:

startInx:

endInx:

a
0
3

b
3
6

c
6
8

e
8
10

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
4

2
3
8

3
2
3

1
3
9

3
4
2

2
2
4

3
3
4

Figure 2: A Projected Database Buffer containing the projected databases of a, b, c and e

4.4. The CEPB Algorithm

A first algorithm, named CEPB (Cost-Effective Pattern mining in Binary SEL), is designed to find all cost-effective
patterns in a binary SEL when considering only positive sequences (the problem of Case 1, Definition 6). The main
procedure of CEPB is presented in Algorithm 1. It takes as input a binary SEL, the minsup and maxcost thresholds,
and the sumList and pdList components of the projected database buffer, which are initially empty.

The procedure reads the database to calculate the support, average cost, and AS C (or AMS C) of each single event
(Line 1). For each event a such that sup(a) ≥ minsup and ac(a) ≤ maxcost, the pattern 〈a〉 is output as a cost-effective
pattern (Line 6). Thereafter, the condition asc(〈a〉) ≤ maxcost of the search space reduction Property 3 is checked
(Line 8). If the condition is false, it means that the algorithm does not need to extend the pattern 〈a〉 with other events
to form larger patterns because all such patterns cannot be cost-effective patterns. Note that the ASC lower bound
can be replaced by the AMSC in Line 8 to obtain the more powerful pruning Property 6, since the AMSC is a tighter
lower bound on the average cost than the ASC. If the condition asc(〈a〉) ≤ maxcost is true, then the Update procedure

16

input : a SEL D, minsup, maxcost, the summary list sumList, the projected database list pdList
output: the cost-effective patterns found in positive sequences

1 Read D once to obtain the support, average cost and AS C of each event;
2 endPos← 0;
3 foreach event a do
4 if (sup(a) ≥ minsup) then
5 if (ac(a) ≤ maxcost) then
6 Save(a);
7 end
8 if (asc(a) ≤ maxcost) then
9 CreateProjectedDatabase(a, sumList, pdList, endPos);

10 end
11 end
12 else Remove event a from the database D;
13 end
14 Search(0, endPos − 1, sumList, pdList);

Algorithm 1: The CEPB algorithm

(Algorithm 2) is called with the parameters 〈a〉, sumList, pdList and the variable endPos to create the projected
database PD〈a〉 and store it in the projected database buffer. The variable endPos indicates the position in the sumList
where the summary of PD〈a〉 should be stored. If the event a is infrequent, then it is removed from the database or
ignored during further processing (Line 13). After the for loop ends, the projected databases of several events have
been stored in the buffer. Then, the Search procedure (Algorithm 3) is called to explore the search space of patterns
having the empty sequence 〈〉 as prefix.

The Update procedure (Algorithm 2) takes as input an event a, the summary list sumList, the projected database
list pdList, and the position sumIndex where the summary for the projected database of 〈a〉 will be stored in the
pdList. If sumIndex is no less than the current size of sumList, the procedure appends a new summary at the end
of the sumList (Line 1). Otherwise, the procedure stores the summary of a at the position sumIndex, overwriting
the summary previously stored at that position. By this mechanism, memory is reused rather than allocating new
memory. Information is stored in the summary of 〈a〉 as follows. First, the field pattern is set to 〈a〉 (Line 2). Then,
the start and end positions for storing the projected sequences of 〈a〉 in the pdList must be determined. If sumIndex
is 0, PD〈a〉 will be the first projected database in the pdList, and thus the fields startPos and endPos are set to 0
(Line 3 to 6). Otherwise, these fields are set such that the projected sequences of 〈a〉 will follow those of the previous
summary (Line 7 to 10). After that, the Update procedure creates the projected sequences of PD〈a〉 and stores them in
the pdList. This is done by scanning each sequence (Line 11 to 18). For a sequence with an identifier s, the algorithm
finds the position i of the first occurrence of 〈a〉 and its cost. Then, a corresponding projected sequence is stored in
the pdList as the tuple {s, i, cost} either by appending a new record to the pdList (Line 15) or by reusing a record of
the pdList that is not needed anymore (Line 16). Finally, the endPos field of the summary of 〈a〉 is set to remember
where the next projected sequence should be inserted in the pdList (Line 17).

The Search procedure (Algorithm 3) takes two positions preS tartPos and preEndPos of the summary list as
input, and the projected database buffer. Between the preS tartPos and preEndPos positions, the database buffer
contains summaries for patterns of the form p = v∪ z, where v is a common prefix sequence and z is some event. The
Search procedure iterates over these summaries in backward order (Line 1 to 14). For each summary corresponding
to a pattern p, the procedure scans its projected database PDp stored in the pdList (which is stored between positions
startIndx to endInx) (Line 4). During that database scan, the procedure calculates for each event a appearing in PDp,
the support, average cost and ASC (or AMSC) of 〈p ∪ a〉. If sup(〈p ∪ a〉) ≥ minsup and average cost of 〈p ∪ a〉 is
no greater than maxcost, the pattern 〈p ∪ a〉 is output as a CEP (Line 7). After, if the pruning condition of Property 3
is passed, the Update procedure is called to calculate the projected database PD〈p∪a〉 and it is stored in the projected
database buffer (Line 8 to 10). Then, the Search procedure is recursively called to find each CEP having 〈p ∪ a〉 as
prefix (Line 13). When the for loop ends, all CEP patterns having p as prefix have been found.

17

input : an event a, the summary list sumList, the projected database list pdList, a position sumIndex
output: empty

1 if (sumIndex ≥ |sumList|) then sumList[sumIndex].append({0,0,0});
2 sumList[sumIndex].pattern← a;
3 if (sumIndex = 0) then
4 curS ummary.startPos← 0;
5 sumList[sumIndex].endPos← 0;
6 end
7 else
8 sumList[sumIndex].startPos← sumList[sumIndex − 1].endPos;
9 sumList[sumIndex].endPos← sumList[sumIndex].startPos;

10 end
11 foreach sequence identifier pdList[preEndPos].seqId as s, scan the sequence s from the position

pdList[preEndPos]. f olInx as f do
12 i← position of the first occurrence of a in sequence s;
13 cost ← cost of the first occurrence of a in sequence s;
14 insertPosition← sumList[sumIndex].endPos;
15 if (insertPosition ≥ |pdList|) then pdList.append({s, i, cost});
16 else pdList[insertPosition]← {s, i, cost};
17 sumList[sumIndex].endPos← sumList[sumIndex].endPos + 1;
18 end

Algorithm 2: The Update procedure of CEPB

input : two positions preS tartPos and preEndPos of the summary list, the summary list sumList, the
projected database list pdList

output: the cost-effective patterns found in positive sequences having one of the pattern p from the buffer as
prefix

1 for i← preEndPos to preS tartPos do
2 p← sumList[i].pattern;
3 PDp ← projected database of p stored in the pdList;
4 Scan PDp to calculate the support, average cost and ASC (or AMSC) of p ∪ a for each event a appearing

in PDp;
5 foreach event a ∈ PDp do
6 if (sup(p ∪ a) ≥ minsup) then
7 if (ac(p ∪ a) ≤ maxcost) then Save(p ∪ a);
8 if asc(p ∪ a) ≤ maxcost then
9 CreateProjectedDatabase(p ∪ a, sumList, pdL, endPos);

10 end
11 end
12 end
13 Search(p ∪ a, preS tartPos + 1, endPos, sumList, pdList);
14 end

Algorithm 3: The Search procedure of CEPB

18

The algorithm explores the search space using a depth-first search by recursively growing patterns a single event
at a time, which allows to explore the search space of all patterns. To reduce the search space, the CEPB algorithm
applies the minsup constraint used in traditional sequential pattern mining, as well as a novel search space pruning
property based on the cost. Because these pruning techniques only eliminate patterns that are not cost-effective, the
algorithm is complete (it finds all the desired patterns). To reduce memory usage, the algorithm uses the projected
database buffer. As it will be shown in the experiments, using the novel pruning properties based on the average cost
and the proposed buffering technique can greatly reduce runtime and memory usage.

A Detailed Example. Consider the following database: 〈(a[2]), (b[4]), (c[9]), (d[2]),+〉, 〈(a[5]), (e[4]), (b[8]),+〉,
〈(a[2]), (b[3]), (e[4]), (c[2]),+〉, and that minsup = 2 and maxcost = 10. The CEPB algorithm first scans the database
to calculate the support values of 〈a〉, 〈b〉, 〈c〉, 〈d〉 and 〈e〉, which are 3, 3, 2, 1 and 2, respectively. Because the pattern
〈d〉 is infrequent, it is eliminated from the database. Then, CEPB calculates the average costs of 〈a〉, 〈b〉, 〈c〉 and 〈e〉,
which are 3.0, 5.0, 5.5, and 4.0, respectively. Because these values are no greater than maxcost, all these events are
output as cost-effective patterns. Then, CEPB calculates the lower-bound ASC of 〈a〉, 〈b〉, 〈c〉, and 〈e〉, which are 2.0,
3.5, 5.5, and 4.0, respectively. Thereafter, the algorithm creates the projected database buffer. A summary is stored
for the patterns 〈a〉, 〈b〉, 〈c〉, and 〈e〉 in position 0 to 3 of the summary list, respectively. Moreover, the projected
sequences of each pattern are stored in pdList[0, 3), pdList[3, 6), pdList[6, 8) and pdList[8, 10), respectively. The
content of the projected database buffer after this step is shown in Figure 3. Then, the Search procedure is called to
find larger patterns having the patterns 〈a〉, 〈b〉, 〈c〉 and 〈e〉 as prefix. The procedure receives as input sumList[0, 3].
The procedure do a for loop over sumList[0, 3] to process each pattern in backward order from position sumList[3] to
sumList[0]. In Figure 3, the green arrow (called sumPS) represents the first position visited by the for loop, while the
black arrow is the last position (called sumPE). Because of the backward processing order, the pattern 〈e〉 stored in
sumList[3] is first processed. The algorithm accesses pdList[8, 10) to scan PD〈e〉 but no extensions of 〈e〉 are found.
Then,s the sumPS pointer of the for loop is moved to index sumList[2] to process the next pattern in the buffer, as
shown in Figure 4. This pattern is 〈c〉. The algorithm accesses pdList[6, 8) to scan PD〈c〉 but no extensions of 〈c〉
are found. Thus, the next pattern is processed by moving sumPS to sumList[1], as shown in Figure 5. This pattern
is 〈b〉. The algorithm accesses pdList[3, 6) to scan PD〈b〉, which contains the projected sequences 〈(c[9]), (d[2])〉 and
〈(e[4]), (c[2])〉. By scanning PD〈b〉, the pattern 〈bc〉 is found to be a CEP because sup(〈bc〉) = 2 and ac(〈bc〉) = 9.0,
and it is output. Because AS C(〈bc〉) = 9.0 < 10, the algorithm calls the Update procedure to store the projected
database PD〈bc〉. For each projected sequence in PD〈bc〉, the cost is calculated as the sum of the cost of 〈b〉 in the
corresponding sequence in PD〈b〉 and that of 〈c〉 in the corresponding sequence in PD〈c〉. The Search procedure is
called to search for patterns having 〈bc〉 as prefix. For this, the sumPS and sumPE pointers of the for loop are both
set to 2, as illustrated in Figure 6. The algorithm accesses pdList[6, 8) to scan PD〈bc〉 but no patterns are found, and
thus the process of searching for patterns having 〈bc〉 as prefix is over.

After the recursive calls to Search returns, sumPS is moved to sumList[0] to process the next pattern, as shown in
Figure 7. This pattern is 〈a〉. Next, the algorithm accesses pdList[0, 3) to scan PD〈a〉. The support values of patterns
〈ab〉, 〈ac〉 and 〈ae〉 are 3, 2, 2, respectively. Their average costs are 8.0, 7.5 and 7.5, respectively. Hence, those
patterns are output as cost-effective patterns. Because the ASC of these patterns are 5.5, 7.5, 7.5, extensions of these
patterns will be considered by the depth-first search. Thus, the Update procedure is called to first store the projected
databases of those patterns (see Figure 7). Then, the Search procedure is called with sumList[1, 3]. The for loop
of Line 1 considers each pattern from sumList[3] to sumList[1], respectively, as shown in Figure 8. The algorithm
begins to search from sumList[3] and ends at sumList[1]. However, in this example, no more CEP are found. The for
loop is completed, the algorithm stops and all cost-effective patterns have been output. It can be seen in these figures
that the size of the projected database buffer does not increase much during search space exploration. This shows that
the proposed projected database buffer is useful to reduce memory usage.

Complexity. The complexity of the CEPB algorithm is analyzed as follows. The algorithm first scans the database
to calculate the support, average cost and ASC of each event in the database. The complexity of this step is o(n × w),
where n and w are the number of sequences in the database and the average sequence length, respectively. After
that, the algorithm removes infrequent events from the original database, which has a time cost of o(n × w). The
algorithm then outputs all cost-effective patterns containing a single event. Then, the Search procedure is called for
each pattern to recursively search for larger patterns using a depth-first search. For each recursive call, the algorithm
takes o(n × w) time to create the projected database of the prefix pattern, and then it takes o(n) time to calculate the
pattern’s average cost. Then, the Update prcedure takes o(n) + o(1) time to maintain the projected database buffer.

19

pattern:

startInx:

endInx:

a
0
3

b
3
6

c
6
8

e
8
10

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
4

2
3
8

3
2
3

1
3
9

3
4
2

2
2
4

3
3
4

Figure 3: Projected Database Buffer containing the projected databases of
〈a〉, 〈b〉, 〈c〉 and 〈e〉

pattern:

startInx:

endInx:

a
0
3

b
3
6

c
6
8

e
8
10

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
4

2
3
8

3
2
3

1
3
9

3
4
2

2
2
4

3
3
4

Figure 4: Accessing the next pattern 〈c〉 in sumList[2]

pattern:

startInx:

endInx:

a
0
3

b
3
6

bc
6
8

e
8
10

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
4

2
3
8

3
2
3

1
3
13

3
4
5

2
2
4

3
3
4

Figure 5: Accessing the next pattern 〈b〉 in sumList[1], and then inserting
PD〈bc〉 in pdList[6, 8)

pattern:

startInx:

endInx:

a
0
3

b
3
6

bc
6
8

e
8
10

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
4

2
3
8

3
2
3

1
3
13

3
4
5

2
2
4

3
3
4

Figure 6: Accessing the next pattern 〈bc〉 in sumList[2]

pattern:

startInx:

endInx:

a
0
3

ab
3
6

ac
6
8

ae
8
10

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
6

2
3
13

3
2
5

1
3
11

3
4
4

2
2
9

3
2
6

Figure 7: Accessing the next pattern 〈a〉 in sumList[0], and then insert-
ing PD〈ab〉, PD〈ac〉 and PD〈ae〉 in pdList[3, 6), pdList[6, 8), pdList[8, 10),
respectively

pattern:

startInx:

endInx:

a
0
3

ab
3
5

ac
5
7

ae
7
9

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
6

2
3
18

3
2
5

1
3
11

3
4
4

2
2
9

3
3
6

Figure 8: Accessing patterns 〈ae〉, 〈ac〉 and 〈ab〉 from sumList[3] to
sumList[1]

20

Therefore, the complexity of the CEPB algorithm is o(n×w× x), where x is the number of considered patterns (which
depends on how the parameters are set). It is to be noted that although several database scans are performed, projected
databases become smaller as the algorithm considers larger patterns. Moreover, each projected database is relatively
small because database projections are created using pointers on the original database rather than by copying the
database content.

4.5. The Correlated CEPB Algorithm
The second proposed algorithm, named corCEPB (correlated CEPB), is designed to find all cost-effective patterns

in a binary SEL when considering not only positive but also negative sequences (the problem of Case 2, Definition 9).
The main difference between CEPB and corCEPB is that the latter calculates the correlation of patterns, which requires
to consider both positive and negative sequences. Information about the correlation is useful for the user to learn about
the most efficient patterns.

The main procedure of corCEPB is presented in Algorithm 4. It takes as input a binary SEL D, the minsup and
maxcost thresholds, and the sumList and pdList components of the projected database buffer, which are initially
empty. The procedure reads the database to calculate the support, average cost, and AS C (or AMS C) of each single
event (Line 1). Then, a loop is performed to consider each event a of D. If sup(〈a〉,D+

a) is equal to 0, then the pattern
〈a〉 and its extensions cannot be cost-effective patterns, and thus 〈a〉 is removed from the database or ignored from
further processing (Line 3). Otherwise, if sup(〈a〉) is larger than minsup and ac(〈a〉) ≤ maxcost, then cor(〈a〉) is
calculated and 〈a〉 is output as a cost-effective pattern (Line 5 to 9). In the case where sup(〈a〉) < minsup, event a is
removed from the database or ignored from further processing. Thereafter, the condition asc(〈a〉) ≤ maxcost of the
search space reduction Property 3 is checked (Line 10). If the condition is false, the algorithm does not need to extend
the pattern 〈a〉 with other events to form larger patterns because all such patterns cannot be cost-effective patterns.
Note that the lower bound ASC can be replaced by AMSC in Line 10 to obtain the more powerful pruning Property 6,
since the AMSC is a tighter lower bound on the average cost than the ASC. If the condition asc(〈a〉) ≤ maxcost is true,
then the Update procedure (Algorithm 2) is called with the parameters 〈a〉, sumList, pdList and the variable endPos
to create the projected database PD〈a〉 and store it in the projected database buffer. The variable endPos indicates the
position in thesumList where the summary of PD〈a〉 should be stored and is initialized to 0 for each event a. After
the for loop ends, the projected databases of several events have been stored in the buffer. Then, the Search procedure
(Algorithm 5) is called to explore the search space of patterns having the empty sequence 〈〉 as prefix (Line 18).

The Search procedure (Algorithm 5) takes as input a pattern p, two positions preS tartPos and preEndPos in the
summary list, and the projected database buffer. Between the preS tartPos and preEndPos positions, the database
buffer contains summaries for patterns of the form p = v ∪ z, where v is a common prefix sequence and z is some
event. The Search procedure iterates over these summaries in backward order (Line 1 to 19). For each summary
corresponding to a pattern p, the procedure scans its projected database PDp stored in the pdList (which is stored
between positions startIndx to endInx) (Line 2 to 4). During that database scan, the procedure calculates for each
event a appearing in PDp, the support, average cost and ASC (or AMSC) of 〈p ∪ a〉. If the sup(〈a〉, PD+

〈a〉) is equal
to 0, then the pattern 〈p ∪ a〉 and its extensions will be ignored (Line 3). Otherwise, if sup(〈a〉) ≥ minsup and
ac(〈p ∪ a〉) ≤ maxcost, then cor(〈p ∪ a〉) is calculated and pattern 〈p ∪ a〉 is output as a CEP (Line 5 to 9). After, if
the pruning Property 3 is passed, the Update procedure is called to calculate the projected database PD〈p∪a〉 and store
it in the projected database buffer (Line 10 to 12). Then, the Search procedure is recursively called to find each CEP
having 〈p ∪ a〉 as prefix (Line 18). When the for loop ends, all CEP patterns having p as prefix have been found.

A Detailed Example. Consider a database D containing the sequences 〈(a[2]), (b[4]), (c[9]), (d[2]),+〉, 〈(a[5]),
(e[4]), (b[8]),−〉, 〈(a[2]), (b[3]), (e[4]), (c[2]),−〉, that minsup = 2 and maxcost = 10. The algorithm scans the
database to calculate the support, average cost and ASC (or AMSC) of each event. The support values of 〈a〉, 〈b〉, 〈c〉,
〈d〉, and 〈e〉 in postitive sequences are 1, 1, 1, 1, 0, respectively. The pattern 〈e〉 is eliminated because it is infrequent.
The support values of 〈a〉, 〈b〉, 〈c〉, 〈d〉, and 〈e〉 in all sequences are 2, 3, 2, 1, 2, respectively. The pattern 〈d〉 is elimi-
nated because sup(〈d〉) < minsup. The algorithm loops over single events, and it is found that the average cost values
of 〈a〉, 〈b〉, and 〈c〉 are 3.0, 5.0, and 5.5, respectively. Moreover, their correlation are −0.5,−0.33, and 1.0, respec-
tively. Therefore, 〈a〉, 〈b〉 and 〈c〉 are output as CEPs. The algorithm calculates the ASC of 〈a〉, 〈b〉, and 〈c〉, which are
2.0, 3.5, 5.5, respectively. Because these values are no greater than maxcost, the projected databases PD〈a〉, PD〈b〉, and
PD〈c〉 are stored in the projected database buffer by updating the sumList and pdList (see Figure 9). More precisely,
the projected databases of these patterns are stored in pdList[0, 3), pdList[3, 6) and pdList[6, 8), respectively. Then,

21

input : a binary SEL D, minsup, maxcost, the summary list sumList, the projected database list pdList
output: the cost-effective patterns

1 Read D once to calculate the support, average cost and AS C (or ASMC) of each event;
2 endPos← 0;
3 foreach event a do
4 if sup(a,D+

a) , 0 then
5 if (sup(a) ≥ minsup) then
6 if (ac(a) ≤ maxcost) then
7 if (sup(a,D+

a) = sup(a) then cor(a)←1;
8 else Calculate cor(a);
9 Save(a);

10 if asc(a) ≤ maxcost then
11 CreateProjectedDatabase(a, sumList, pdL, endPos);
12 end
13 end
14 end
15 else Remove event a from the database;
16 end
17 end
18 Search(0, endPos − 1, sumList, pdList);

Algorithm 4: The corCEPB algorithm

input : two positions preS tartPos and preEndPos of the summary list, the summary list sumList, the
projected database list pdList

output: the cost-effective patterns having p as prefix

1 for i← preEndPos to preS tartPos do
2 p← sumList[i].pattern;
3 PDp ← projected database of p stored in the pdList;
4 Scan PDp to calculate the support, average cost and ASC (or AMSC) of p ∪ a for each event a appearing

in PDp;
5 foreach event a ∈ PDp do
6 if sup(a,D+

a) , 0 then
7 endPos← 0;
8 if (sup(a) ≥ minsup) then
9 if (ac(p ∪ a) ≤ maxcost) then

10 if (sup(a,D+
a) = sup(a) then cor(p ∪ a)←1;

11 else calculate cor(p ∪ a);
12 Save(p ∪ a);
13 if asc(p ∪ a) ≤ maxcost then Update(p ∪ a, sumList, pdL, endPos);
14 end
15 end
16 end
17 end
18 Search(preS tartPos + 1, endPos, sumList, pdList);
19 end

Algorithm 5: The Search procedure of corCEPB

22

the Search procedure is called to find larger patterns having the patterns 〈a〉, 〈b〉, and 〈c〉 as prefix. The procedure
receives as input sumList[0, 2]. The procedure do a for loop over sumList[0, 2] to process each pattern in backward
order from position sumList[2] to sumList[0]. In Figure 9, the green arrow (called sumPS) represents the first position
visited by the for loop, while the black arrow is the last position (called sumPE). Because of the backward processing
order, the pattern 〈c〉 stored in sumList[2] is first processed. The projected database PD〈c〉 stored in pdList[6, 8) is
scanned, and no patterns extending 〈c〉 are found. Then, the sumPE pointer is moved to sumList[1], which contains
the pattern 〈b〉, as shown in Figure 10. The projected database PD〈b〉 stored in pdList[3, 6) is scanned, which contains
the sequences 〈(c[9]), (d[2]),+〉 and 〈(e[4]), (c[2]),−〉. It is found that in that projected database, sup(〈bc〉) = 2 ≥ 2
and ac(〈bc〉) = 9, 0 ≤ 10. Hence, 〈bc〉 is output as a CEP. Moreover, since AS C(〈bc〉) = 9 < maxcost, extensions
of 〈bc〉 will be considered. Thus, its projected database is inserted in the buffer, as shown in Figure 10. Then the
sumPS and sumPE pointers are both moved to sumList[2] (as shown in Figure 11) and the algorithm searches for
extensions of 〈bc〉. No patterns are found, and the recursive calls return and sumPS is moved to sumList[0] (as shown
in Figure 12) to consider extensions of the pattern 〈a〉. The algorithm accesses pdList[0, 3) to scan the projected
database PD〈a〉, which contains the projected sequences 〈(b[4]), (c[9]), (d[2]),+〉 and 〈(e[4]), (b[8]),−〉. It is found
that sup(〈ab〉) = 2, sup(〈ac〉) = 2, ac(〈ab〉) = 8.0 and ac(〈ac〉) = 7.5. Thus, these patterns satisfy the constraints
and their correlation is calculated as cor(〈ab〉) = −0.4 and cor(〈ac〉) = 1.0. Moreover, 〈ab〉 and 〈ac〉 are output as
CEPs. Then, the ASC values are calculated as AS C(〈ab〉) = 5.5 ≤ 10 and AS C(〈ac〉) = 7.5 ≤ 10. Thus, the projected
databases PD〈ab〉 and PD〈ac〉 are inserted in the buffer. Then, the Search procedure is called with sumList[1, 2] to ex-
tend these patterns. The algorithm first processes the pattern at sumList[2], which is 〈ac〉 (as shown in Figure 13). The
algorithm accesses pdList[6, 8) to scan PD〈ac〉 but finds that no patterns are satisfying the support threshold. Then, the
algorithm considers the next pattern at sumList[1], which is 〈ab〉. The algorithm accesses pdList[3, 6) to scan PD〈ab〉

but finds that no patterns are satisfying the constraints. Then, the for loop is completed, and the search process ends.
All CEPs have been output.

Complexity. The complexity of the corCEPB algorithm is similar to that of the CEPB algorithm. The main
difference between these two algorithms is that the correlation can be calculated for patterns in addition to the support,
average cost and lower bound on the cost. This calculation takes O(n) time where n is the number of sequences in the
database. But on overall, the complexity of the coCEPB algorithm remains o(n × w × x) where x is the number of
considered patterns and w is the average sequence length.

4.6. The CEPN Algorithm
The third proposed algorithm, named CEPN (Cost-Effective high utility Pattern mining in Numeric SEL) is de-

signed to find all cost-effective patterns in a numeric SEL (the problem of Case 3, Definition 12). The main procedure
of CEPN is presented in Algorithm 6. It takes as input a numeric SEL D, the minsup and maxcost thresholds, and the
sumList and pdList components of the projected database buffer, which are initially empty.

The procedure first reads the database to calculate the support, average cost, and AS C (or AMS C) of each single
event (Line 1). Then, a loop is performed to consider each event a. If sup(〈a〉) ≥ minsup and the average cost of
〈a〉 is no greater than maxcost, the algorithm calculates the trade-off of 〈a〉 (Line 6) and output 〈a〉 as a cost-effective
pattern (Line 7). Thereafter, the condition asc(〈a〉) ≤ maxcost of the search space reduction Property 3 is checked
(Line 9). If the condition is false, it means that the algorithm does not need to consider extensions of the pattern 〈a〉
because all such patterns cannot be cost-effective patterns. Note that the ASC lower bound can be replaced by the
AMSC in Line 9 to obtain the more powerful pruning Property 6. If the condition asc(〈a〉) ≤ maxcost is true, then the
CreateProjectedDatabase procedure (Algorithm 2) is called with the parameters a, sumList, pdList and the variable
endPos to create the projected database PD〈a〉 and store it in the buffer. The variable endPos indicates the position
in the sumList where the summary of PD〈a〉 should be stored and is initialized to 0. If the event a is infrequent, then
it is removed from the database or ignored from further processing (Line 14). After the for loop ends, the projected
databases of several events have been stored in the buffer. Then, the Search procedure (Algorithm 7) is called to
explore the search space of these patterns having the empty sequence 〈〉 as prefix.

The Search procedure (Algorithm 7) takes as input two positions preS tartPos and preEndPos of the summary list
as input, and the projected database buffer. Between the preS tartPos and preEndPos positions, the database buffer
contains summaries for patterns of the form p = v∪ z, where v is a common prefix sequence and z is some event. The
Search procedure iterates over these summaries in backward order (Line 1 to 17). For each summary corresponding
to a pattern p, the procedure scans its projected database PDp stored in the pdList (which is stored between positions

23

pattern:

startInx:

endInx:

a
0
3

b
3
6

c
6
8

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
4

2
3
8

3
2
3

1
3
9

3
4
2

Figure 9: Projected Database Buffer containing the projected databases of
〈a〉, 〈b〉 and 〈c〉

pattern:

startInx:

endInx:

a
0
3

b
3
6

bc
6
8

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
4

2
3
8

3
1
3

1
3
13

3
4
5

Figure 10: Accessing the next pattern 〈b〉 in sumList[1], and then inserting
PD〈bc〉 in pdList[6,8)

pattern:

startInx:

endInx:

a
0
3

b
3
6

bc
6
8

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
4

2
3
8

3
1
3

1
3
13

3
4
5

Figure 11: Accessing the next pattern 〈bc〉 in sumList[2]

pattern:

startInx:

endInx:

a
0
3

ab
3
6

ac
6
8

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
6

2
3
13

3
1
5

1
3
11

3
4
4

Figure 12: Accessing the next pattern 〈a〉 in sumList[0], and then inserting
PD〈ab〉 and PD〈ac〉 in pdList[3,6) and pdList[6,8), respectively

pattern:

startInx:

endInx:

a
0
3

ab
3
6

ac
6
8

seqId:

folInx:

cost:

1
1
2

2
1
5

3
1
2

1
2
6

2
3
13

3
1
5

1
3
11

3
4
4

Figure 13: Accessing the patterns 〈ac〉 and 〈ab〉 from sumList[2] to
sumList[1]

24

input : a numeric SEL D, minsup, maxcost, the summary list sumList, the projected database list pdList
output: the cost-effective patterns

1 Read the S EL once to calculate the support, average cost and AS C of each event;
2 endPos← 0;
3 foreach event a do
4 if (sup(a) ≥ minsup) then
5 if (ac(a) ≤ maxcost) then
6 Calculate t f (a);
7 Save(a);
8 end
9 if (asc(a) ≤ maxcost) then

10 CreateProjectedDatabase(a, sumList, pdL, endPos);
11 end
12 end
13 else
14 Remove event a from the database
15 end
16 end
17 Search(0, endPos − 1, sumList, pdList);

Algorithm 6: The CEPN algorithm

startIndx to endInx) (Line 2 to 4). During that database scan, the procedure calculates for each event a appearing in
PDp, the support, average cost and ASC (or AMSC) of 〈p∪a〉. If sup(〈p∪a〉) ≥ minsup and average cost of 〈p∪a〉 is
no greater than maxcost, the trade-off of 〈p ∪ a〉 is calculated and the pattern is output as a CEP (Line 6 to 10). After,
if the pruning condition of Property 3 is passed, the CreatedProjectedDatabase procedure is called to calculate the
projected database PD〈p∪a〉 and store it in the buffer (Line 8 to 10). Then, the Search procedure is recursively called
to find each CEP having 〈p∪ a〉 as prefix (Line 13). When the for loop ends, all CEP patterns having p as prefix have
been found.

When the algorithm terminates, all the required patterns have been found. Before presenting the patterns to the
user, they can then be sorted by average utility and/or trade-off. The main originality of the CEPN algorithm is to use
the trade-off measure to quantify the efficiency of patterns for the case of a numeric SEL.

A Detailed Example. Consider a database D containing the sequences 〈(a[2]), (b[4]), (c[9]), (d[2]), 5, 〈(a[5]),
(e[4]), (b[8]), 20} and 〈(a[2]), (b[3]), (e[4]), (c[2]), 10〉, that minsup = 2 and maxcost = 10. The algorithm first
scans the database to calculate the support, average cost and ASC (or AMSC) of each event. The support values of
〈a〉, 〈b〉, 〈c〉, 〈d〉 and 〈e〉 are 3, 3, 2, 1, and 2, respectively. Because sup(〈d〉) < minsup, the pattern 〈d〉 is eliminated
from the database. The average cost values of 〈a〉, 〈b〉, 〈c〉, and 〈e〉 are 3.0, 5.0, 5.5 and 4.0, respectively. Hence, those
patterns are output as CEPs with a trade-off of 0.26, 0.43, 0.73 and 0.27, respectively. The ASC values of 〈a〉, 〈b〉, 〈c〉,
and 〈e〉 are 2.0, 3.5, 5.5, and 4.0, respectively. Because those values are no greater than maxcost, the algorithm stores
the summaries of 〈a〉, 〈b〉, 〈c〉, and 〈e〉 in the buffer, at positions sumList[0, 3]. The projected databases PD〈a〉, PD〈b〉,
PD〈c〉, and PD〈e〉, are stored in pdList[0, 3), pdList[3, 6), pdList[6, 8) and pdList[8, 10), respectively, as depicted in
Figure 3. Then, the Search procedure is called with sumList[0, 3] to consider extensions of each of those patterns.
The procedure does a for loop over sumList[0, 3] to process each pattern in backward order from position sumList[3]
to sumList[0]. In Figure 3, the green arrow (called sumPS) represents the first position visited by the for loop,
while the black arrow is the last position (called sumPE). Because of the backward processing order, the pattern
〈e〉 stored in sumList[3] is first processed. The projected database PD〈e〉 stored in pdList[8, 10) is scanned, and no
patterns extending 〈e〉 are found. Then, the pointer sumPS of the for loop is moved to sumList[2] to consider the
next pattern 〈c〉, as shown in Figure 4. The algorithm accesses pdList[6, 8) to scan PD〈c〉 but no patterns extending
〈c〉 satisfy the constraints. Then, sumPS is moved to sumList[1] (as depicted in Figure 5), and the algorithm accesses
pdList[3, 6) to scan PD〈b〉. This projected database contains sequences 〈(c[9]), (d[2]), 5〉 and 〈(e[4]), (c[2]), 10〉. It

25

input : two positions preEndPos and preS tartPos of the summary list, the summary list sumList, the
projected database list pdList

output: the cost-effective patterns having p as prefix

1 for i← preEndPos to preS tartPos do
2 p← sumList[i].pattern;
3 PDp ← projected database of p stored in the pdList;
4 Scan PDp to calculate the support, average cost and ASC (or AMSC) of p ∪ a for each event a appearing

in PDp;
5 foreach event a ∈ PDp do
6 if (sup(a) ≥ minsup) then
7 if (ac(p ∪ a) ≤ maxcost) then
8 Calculate t f (p ∪ ay);
9 Save(p ∪ a);

10 end
11 if asc(p ∪ a) ≤ maxcost then
12 CreateProjectedDatabase(p ∪ a, sumList, pdL, endPos);
13 end
14 end
15 end
16 Search(preS tartPos + 1, endPos, sumList, pdList);
17 end

Algorithm 7: The Search procedure of CEPN

is found that the pattern 〈bc〉 is a CEP because sup(〈bc〉) = 2 and ac(〈bc〉) = 9.0. The pattern 〈bc〉 is thus output
with its trade-off of 1.20. Because AS C(〈bc〉) = 9.0 < 10, the algorithm will consider extensions of 〈bc〉, and thus
the CreateProjectedDatabase procedure is called to create and store PD〈bc〉 in the buffer. The Search procedure is
then called to search for patterns extending 〈bc〉. In the for loop of Line 1, sumPS and sumPE are both set to 2, as
shown in Figure 6. The algorithm accesses pdList[6, 8) to scan PD〈bc〉 but no patterns extending 〈bc〉 are found to
satisfy the constraints. The recursive call to Search returns and the algorithms consider extending the next pattern
in sumList[0, 3], which is 〈a〉 at position sumList[0] (as shown in Figure 7). The algorithm accesses pdList[0, 3) to
scan PD〈a〉. It is found that the support values of patterns 〈ab〉, 〈ac〉 and 〈ae〉 are 3, 2, and 2, respectively. Moreover,
their average cost values are 8.0, 7.5 and 7.5, respectively. Hence, those are output as CEPs with a trade-off of 0.69,
1.00, 0.50, respectively. Because the ASC values of those patterns are 5.5, 7.5 and 7.5, respectively, the algorithm
will consider extending these patterns. Hence, the CreateProjectedDatabase procedure is called to create and store
the projected databases PD〈ab〉, PD〈ac〉, and PD〈ae〉 in the buffer. Then, the Search procedure is called to consider
extensions of 〈ab〉, 〈ac〉 and 〈ae〉. The for loop of Line 1 is performed with sumPS and sumPE initially set to
sumList[3] and sumList[1], respectively (as shown in Figure 8). The algorithm thus searches from sumList[3] to
sumList[1]. However, no patterns satisfy the constraints. The algorithm terminates and all CEPs have been output.

Complexity. The complexity of the CEPN algorithm is similar to that of the corCEPB algorithm. The main
difference between these two algorithms is that the trade-off is calculated for patterns instead of the correlation. These
two calculations take O(n) time where n is the number of sequences in the database. Thus, on overall, the complexity
of the CEPN algorithm remains o(n × w × x) where x is the number of considered patterns and w is the average
sequence length.

5. Experimental evaluation

This section first reports results of experiments to assess the performance of the proposed CEPB, corCEPB and
CEPN algorithms. Then, a case study is presented, where the proposed algorithms have been applied on e-learning
data to identify interesting cost-effective patterns. All algorithms were implemented in Java and experiments were

26

carried out on a computer having a 64 bit Xeon E3-1270 3.6 Ghz CPU, running the Windows 10 operating system and
equipped with 64 GB of RAM.

5.1. Performance Evaluation

The performance of the algorithms was evaluated using four standard benchmark datasets commonly used to
evaluate sequential pattern mining algorithms, namely Bible, BMS, SIGN and FIFA. These datasets were obtained
from the SPMF software website [53], and were chosen because they have different characteristics such as dense,
sparse, long and short sequences. Since these datasets do not contain utility and cost information, those values were
randomly generated using a normal distribution with cost values in the [0, 5] interval and utility values in the [0, 100]
interval, similarly to several previous studies on high utility pattern mining [54]. The Bible dataset contains 36, 369
sequences with 13, 905 event types and an average sequence length of 44.3 events. The BMS dataset contains 59,601
sequences with 497 event types and an average sequence length of 6.02 events. The SIGN dataset contains 730
sequences with 267 event types and an average sequence length of 104.1 events. The FIFA dataset contains 20, 450
sequences with 2,990 event types and an average sequence length of 34.74 events. Each algorithm was run on each
dataset while the maxcost and minsup threshold were increased to evaluate how they influence performance. On each
dataset, we recorded the execution time, memory, number of candidate patterns and number of patterns found.

Three versions of the algorithm were compared (ASC: when the ASC lower bound is used for search space
pruning), (ASMC: when the AMSC lower bound is used instead of the ASC), and (AMSC+Buf: which indicates
that the AMSC was used and that the projected database buffer optimization is used). Results of each experiment are
presented next.

5.1.1. Influence of maxcost on runtime, number of patterns and number of candidates
In the first experiment, execution times of the CEPB, corCEPB and CEPN algorithms were compared for various

maxcost threshold values, when the minsup threshold is fixed. For the Bible, BMS, SIGN and FIFA datasets, the
minsup thresholds were set to 0.1%, 0.5%, 2%, and 5%, respectively. These values were chosen empirically on each
dataset to filter patterns that have a very low frequency, while ensuring that cost-effective patterns can be found. The
maxcost threshold was decreased until the trend regarding its influence on runtime could be clearly observed. Runtime
results are shown in Fig. 16, Fig. 17 and Fig. 18, respectively. Moreover, the number of patterns found and the number
of candidate patterns considered are shown in Fig. 14 and Fig. 15, respectively.

It is first observed that generally as the maxcost threshold is decreased (and the maxcost constraint becomes more
strict), the number of patterns decreases as well as runtimes. This shows that reducing the search space using the
proposed ASC or AMSC lower bounds on the average cost measure is useful. Second, it is observed that using the
AMSC instead of the ASC improves runtimes by up to 10 times on all datasets (even though these datasets have
quite different characteristics). This shows that the AMSC is really better than the ASC lower bound, as it allows to
eliminate considerably more candidate patterns from the search space (see Fig. 15).

A third observation is that using the projected database buffer improves runtime. This is interesting since the main
purpose of this technique is to reduce memory consumption by reusing memory rather than reducing runtimes. The
reason for the runtime reduction is that less operations are performed to allocate and free memory. This also means
that the Java garbage collector must perform less work.

5.1.2. Influence of minsup on runtime
In a second experiment, execution times of the algorithms were compared for various minsup threshold values,

when the maxcost threshold is set to a fixed value. For the Bible, BMS, SIGN and FIFA datasets, the maxcost
thresholds were set to 50, 100, 30 and 100, respectively. These values were chosen empirically to ensure that cost-
effective patterns can be found and that the trend regarding the influence of minsup can be clearly observed. Results
are shown in Fig. 19 for the CEPN algorithm. It was observed that the support has the same influence on the two
other proposed algorithms for the four datasets. This is because the support has no influence on how the average cost
is used in other calculations. Thus results are not shown for CEPB and corCEPB. Generally, as minsup is increased,
execution time decreases. This is because more infrequent patterns can be eliminated from the search space using
Lemma 1 for high support values. This is in accordance with results in sequential pattern mining that have shown that
the support measure is very effective for reducing the search space [3, 4, 5].

27

0

50

10 30

P
at

te
rn
s (

T)

maxcost

Bible

0

1000

2000

90 110

P
at

te
rn
s (

T)

maxcost

BMS

0

20

40

5 25

P
at

te
rn
s (

T)

maxcost

FIFA

0

1

2

10 30

P
at

te
rn
s (

T)

maxcost

SIGN

CEPB

0

5

10

15

5 25

P
at

te
rn
s (

T)

maxcost

0
200
400
600
800

80 100

P
at

te
rn
s (

T)

maxcost

0
10
20
30
40

10 30

P
at

te
rn
s (

T)

maxcost

0
200
400
600
800

80 100

P
at

te
rn
s (

T)

maxcost

A)

B)

C)

0

10

20

30

5 25
P

at
te

rn
s (

T)
maxcost

0

10

20

30

5 25

P
at

te
rn
s (

T)

maxcost

0
0.5

1
1.5

2

10 30

P
at

te
rn
s (

T)

maxcost

corCEPB

0
0.5

1
1.5

2

10 30

P
at

te
rn
s (

T)

maxcost

CEPN

Figure 14: The number of mined patterns

0

100

200

300

10 15 20 25 30

C
an
d
id
at
es
(M

)

maxcost

SIGN

ASC AMSC

0

20

40

5 10 15 20 25

C
an
d
id
at
es
(M

)

maxcost

FIFA

ASC AMSC

0

50

100

90 95 100 105 110

C
an
d
id
at
es
(M

)

maxcost

BMS

ASC AMSC

0

50

100

150

10 15 20 25 30

C
an
d
id
at
es
(M

)

maxcost

Bible

ASC AMSC

Figure 15: The number of candidate patterns

Besides, it is again observed in this experiment that using the AMSC lower bound and the buffering technique
(AMSC+Buf) provides the best performance on all datasets compared to the ASC and AMSC versions of the algo-
rithms. As minsup is increased, the execution time difference between the different versions of the algorithm become
smaller (lines are getting closer on the chart). This is because few large patterns satisfy the minsup constraint, and the

28

0
20
40
60
80

100
120
140
160
180
200

5 10 15 20 25

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

Bible minsup=0.1%

0
20
40
60
80

100
120
140
160
180
200

80 85 90 95 100

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

BMS minsup=0.5%

0

50

100

150

200

250

20 25 30 35 40

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

SIGN minsup=2%

0

50

100

150

200

250

300

350

20 25 30 35 40

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

FIFA minsup=5%

Figure 16: Runtime of CEPB when increasing maxcost

average cost of these patterns is generally below the maxcost threshold.

5.1.3. Influence of minsup and maxCost on memory usage
Table 11, 12, 13, and 14 compare the memory usage of the algorithms for various maxcost values for the four

datasets. The minsup values were set to the same fixed values as in Section 5.1.1. It is first observed that when
maxcost is increased, the three algorithms require more space to store candidate patterns. For example, when maxcost
is increased from 30 to 35 in Table 11, the memory usage increases from 2139 to 4179 and 2102 to 4024, respectively.
Moreover, it is observed that using the proposed AMSC lower bound and buffer optimization (AMSC+Buf) reduces
memory usage since memory is reused. For example, in Table 14, it can be seen that using the AMSC with the
projected database buffer optimization can reduce memory consumption by hundreds or even thousands of megabytes.
Thus, the designed lower bound and buffering optimization not only reduce runtime but are also quite effective at
reducing memory usage.

5.2. Case study in E-learning

The previous experiments were performed on standard benchmark datasets commonly used to evaluate the runtime
and memory usage of pattern mining algorithms when parameters are varied. However, a limitation of these datasets
is that cost and utility values are synthetic. Thus, patterns found in these datasets are not meaningful.

This section addresses this issue by analyzing patterns found in data having real cost and utility values. The goal is
to verify if interesting patterns are found by the proposed algorithms. The real data is an e-learning dataset collected
from the Deeds e-learning environment was used. The data was made available online at https://archive.ics.
uci.edu/ml/datasets/Data+for+Software+Engineering+Teamwork+Assessment+in+Education+Setting

by Vahdat et. al [55]. Students use Deeds to learn digital electronics by browsing learning materials, and assess their
knowledge by solving problems of different difficulty levels. The dataset provides data of 115 students. The data of

29

Table 11: Memory comparison of CEPB, corCEPB and CEPN on the Bible dataset

maxcost 30 35 40 45 50

Algorithm ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf

CEPB 2139 2102 4179 3005 4189 3019 4194 3030 4193 3038

corCEPB 596 174 847 307 1123 943 2150 1061 3052 2109

CEPN 1964 592 4152 1122 4151 1188 5377 2156 5384 3889

Table 12: Memory comparison of CEPB, corCEPB and CEPN on the BMS dataset

maxcost 90 95 100 105 110

Algorithm ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf

CEPB 4228 3289 4223 3289 5616 4112 5604 4112 6028 4112

corCEPB 4170 3291 4203 3292 4171 3292 4211 3289 4216 3289

CEPN 4226 3288 4227 3291 4235 3292 4238 3292 4241 3292

Table 13: Memory comparison of CEPB, corCEPB and CEPN on the FIFA dataset

maxcost 5 10 15 20 25

Algorithm ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf

CEPB 194 190 262 191 262 191 263 191 262 191

corCEPB 194 190 262 193 281 193 263 193 264 193

CEPN 194 190 261 193 281 193 263 193 264 193

Table 14: Memory comparison of CEPB, corCEPB and CEPN on the SIGN dataset

maxcost 10 15 20 25 30

Algorithm ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf ASC AMSC+Buf

CEPB 2139 857 4185 2034 4188 2170 4203 2161 4205 3387

corCEPB 605 132 1122 293 2142 1116 3071 2124 4227 3357

CEPN 599 217 1074 445 1204 557 2174 855 4244 3243

30

0
20
40
60
80

100
120
140
160
180
200

5 10 15 20 25

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

Bible minsup=0.1%

0

50

100

150

200

250

5 10 15 20 25

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

BMS minsup=0.5%

0

50

100

150

200

250

5 10 15 20 25

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

SIGN minsup=2%

0

50

100

150

200

250

300

350

400

20 25 30 35 40

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

FIFA minsup=5%

Figure 17: Runtime of corCEPB when increasing the maxcost threshold

each student is a sequence of learning modules, called sessions, where each session consists of learning events, each
having a time duration. In addition, a score is given to each student at the end of a session based on its results at
the session’s exam. Moreover, a final score is given to each student based on a final exam that assesses the overall
knowledge of learners about digital electronics. There are totally six learning sessions that are offered to learners but
students were allowed to not do all sessions, and there was also no strict order for doing sessions. The number of
event types is fifteen. The goal of the case study is to find cost-effective patterns indicating time-effective ways of
studying that allows to pass the course or obtain a high score.

5.2.1. Patterns found by corCEPB
The corCEPB algorithm was first applied on the e-learning data to find sequences of learning sessions that have a

low cost in terms of time but allow to pass the final exam. The data was preprocessed to obtain a binary SEL, where
each sequence indicates the learning sessions completed by a student, the cost is the time spend for each learning
session, and the utility is whether the student has passed or failed the final exam (a PASS or FAIL value). For the
purpose of this study, the minimum passing score was assumed to be 60%.

The corCEPB algorithm was applied on the prepared data with minsup = 0.5 and maxcost = 600. Some patterns
found are shown in Table 15. In that table, learning sessions are denoted as e1, e2, e3, e4, e5 and e6. Furthermore,
patterns are organized into three groups, separated by black bold lines. The top, center and bottom groups contain
patterns having a high positive correlation, no significant correlation, and having a high negative correlation to the
utility, respectively. Some interesting patterns are found. For example, the patterns 〈e1, e6〉, 〈e1, e2, e5, e6〉, 〈e2, e6〉 and
〈e1, e2, e6〉 have a positive correlation with success (0.21, 0.209, 0.208 and 0.204, respectively). It was also found that
some patterns such as 〈e4, e5〉 and 〈e5〉 have a negative correlation with success (−0.109 and −0.147, respectively).
Moreover, it was found that some patterns such as 〈e2, e3〉 and 〈e3, e4, e5, e6〉 are barely correlated with the final exam
result (their correlation are both 0.001).

31

0

50

100

150

200

250

20 25 30 35 40

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

Bible minsup=0.1%

0
20
40
60
80

100
120
140
160
180
200

80 85 90 95 100

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

BMS minsup=0.5%

0

50

100

150

200

250

20 25 30 35 40

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

SIGN minsup=2%

0

50

100

150

200

250

300

350

400

20 25 30 35 40

T
im

e
(s

)

maxcost

ASC
AMSC
AMSC+Buffer

FIFA minsup=5%

Figure 18: Runtime of CEPN when increasing the maxcost threshold

Based on these patterns, it is observed that learners who did Session 1 and Session 6 are more likely to pass the
final exam. On the other hand, if a student only studies Session 5, or Session 4 and Session 5, he is likely to fail the
exam. Besides, if a student spends time on other unrelated sessions, it may consumes more time but may not increases
much his chances of passing the final exam. Another observation is that positive correlation values are rather small in
this dataset. This is because the dataset is small (only 62 students took the final exam), and that few students passed
the exam when using a 60 point passing threshold. If that threshold is reduced, correlation will increase.

Note that the corCEPB algorithm was applied instead of CEPB because the latter assumes that sequences with a
negative utility are not available. If CEPB was applied, the same patterns would be obtained except that correlation
values would not be calculated.

5.2.2. Patterns found by CEPN
We then applied the proposed CEPN algorithm to analyze learning events for specific learning sessions of the

Deeds dataset. This was done to study the relationships between events within a learning session with respect to utility
and cost. For each session, a student has a sequence of events, where each event has a time duration (cost), and where
the utility of a sequence is the learner’s score at the session’s exam. The database can thus contain multiple sequences
for the same session (one for each student). Unlike in the previous subsection, the utility is here represented as a
numeric value. The goal of this experiment is to obtain insights about time-efficient ways of using learning materials
to obtain high scores in each session.

In this experiment, parameters were set as minsup = 0.1 and maxcost = 100 to obtain a small set of patterns.
For Session 6, the average score is 14. The most efficient pattern to obtain this score is 〈DeedsEs 6 2〉, which has a
trade-off of 0.63. For Session 5, to obtain an average score of 6 the most efficient pattern is 〈S tudy Es 5 2〉, having
a trade-off of 1.35. For Session 4, the average score of 14 is obtained with the pattern 〈S tudy Es 4 2〉, having a
trade-off of 0.71.

32

0
50

100
150
200
250
300
350
400
450
500

30 35 40 45 50

T
im

e
(s

)

minsup

ASC
AMSC
AMSC+Buffer

Bible maxcost=50

0

50

100

150

200

250

300

35 36 37 38 39

T
im

e
(s

)

minsup

ASC
AMSC
AMSC+Buffer

BMS maxcost=100

0

50

100

150

200

250

300

350

400

450

5 10 15 20 25

T
im

e
(s

)

minsup

ASC
AMSC
AMSC+Buffer

SIGN maxcost=30

0
100
200
300
400
500
600
700
800
900

1000

1400 1500 1600 1700 1800

T
im

e
(s

)

minsup

ASC
AMSC
AMSC+Buffer

FIFA maxcost=100

Figure 19: Runtime of CEPN when increasing the minsup threshold

These patterns can be interpreted as follows. To obtain a given score, students do not need to do all learning activ-
ities (events), and sometimes a single event is enough. It was also observed that some patterns having a small trade-off

also have a low utility. For this reason, we suggest to consider not only the cost of patterns but also their utility. Ta-
ble 16 shows the most cost-effective pattern for each utility value. It can be seen that to obtain a high score of 28(/40),
the pattern having the smallest trade-off (1.35) is 〈Deeds Es 6 1,Deeds Es 6 2, S tudy Es 6 3, S tudy Es 6 3〉. Some
other patterns are also correlated with this utility but have smaller trade-off values (not shown in Table 16). Moreover,
it is observed that even though some patterns have a much smaller trade-off value than the above pattern, they allow to
obtain a low utility (e.g pattern 〈S tudy Es 6 1〉 has a trade-off 1.2 and utility of 9). From an application perspective,
it is thus interesting to show the most cost-effective patterns for each utility range so that users can choose patterns in
a specific range to obtain that utility. This is more meaningful than just showing an unsorted set of patterns.

On overall, this case study has shown that cost-efficient patterns are discovered for different ranges of utility
values. A user could thus select specific patterns and apply them to attain a given utility value. To further analyze
patterns, we have also checked the questions in the final exam of each session to compare them with the materials
appearing in each pattern. It was found that exam questions are indeed strongly correlated with patterns. This shows
that the patterns found are interesting.

5.2.3. Comparison with related work
This paper does not compare the performance (time and memory) and number of patterns found by the proposed

algorithms with that of previous work because such comparison would be unfair. The reason is that the problem
addressed in this paper is quite different from those of previous work, and thus the search space is not the same. A
summary of the key differences between the proposed problem and those addressed in previous work was presented
in Table 9. In particular, this paper does not compare the proposed algorithms with Twincle for the following reasons:

• In terms of pattern type, Twincle discovers sequential rules each having an antecedent and a consequent, and

33

Table 15: Cost-effective patterns found in sequences of learning sessions

Pattern Correlation Average Cost Support

〈e1, e6〉 0.210 250.2 39
〈e1, e2, e5, e6〉 0.209 485.7 34
〈e2, e6〉 0.208 298.4 41
〈e1, e2, e6〉 0.204 391.9 36
〈e1, e5, e6〉 0.194 344.3 37
〈e6〉 0.193 157.2 50

〈e1, e4〉 −0.004 169.1 41
〈e1, e5〉 0.002 186.0 41
〈e2, e3〉 0.001 284.1 40

〈e3, e4, e5, e6〉 0.001 469.5 40
〈e1, e4, e5〉 0.003 263.2 38
〈e1, e2, e4〉 −0.003 311.5 36
〈e2, e3, e4〉 −0.005 358.2 38

〈e5〉 −0.147 96.3 53
〈e4, e5〉 −0.109 171.0 49
〈e1, e3〉 −0.099 234.6 37
〈e1, e3, e4〉 −0.081 311.2 35

where the order between items from sequences is ignored in the antecedent and consequent. Moreover, a strict
constraint is imposed that an item cannot appear twice in a rule and that the antecedent and consequent must be
disjoint. In this paper, the proposed algorithm discovers sequences of items that are totally ordered, and where
an item can appear multiple times in the same pattern. Because of these differences, the size of the search space
(the set of all possible patterns) is very different for these two problems. If there are d distinct items, the number
of rules found by Twincle is in the worst case 3d − 2d + 1. In this paper, if the longest sequence has m items, the
number of possible patterns is in the worst case 2m − 1.

• In terms of input data, Twincle is designed for processing sequences of events, where it is not allowed for an
event to appear more than once per sequence, where each event has a cost value, and where there is no utility
information. On the other hand, the proposed algorithm processes sequences of events where an event may
appear multiple times per sequence, where each event has a cost and where there is also utility information.

• In terms of measures used to evaluate patterns, the two algorithms are also very different and do not have the
same parameters. This paper relies on measures such as the average cost, utility, correlation and trade-off, while
Twincle calculates support, confidence, and uses a sliding window to find patterns.

In terms of patterns found, this paper proposes to find cost-efficient patterns, providing a good trade-off or cor-
relation between cost and utility. Because previous algorithms either do not consider the cost and/or utility, they can
output many patterns that have a low utility and/or have a high cost. This is illustrated by comparing patterns found
by the proposed CEPN algorithm with those of the state-of-the-art CM-SPADE [9] algorithm for frequent sequential
pattern mining on the Deeds e-learning dataset. Table 17 shows some patterns found by CM-SPADE (gray color)
and some patterns found by the proposed CEPN algorithm (white color), previously presented in Table 16. It is ob-
served that for the same utility, the patterns found by CM-SPADE have a much higher average cost than those found
by CEPN. For example, the two first lines of Table 17 show patterns both having a utility of 10 but having average
costs of 21 and 101, respectively. The reason why CM-SPADE extracts the first pattern is that frequency is the only
criterion used by CM-SPADE to select patterns. On overall, this table indicates that patterns having a high support are
not necessarily cost-efficient. This shows the importance of explicitly considering cost and utility in a pattern mining

34

Table 16: Cost-effective patterns found in event sequences of learning session 6

Utility Pattern trade-off Average Cost Support

1 〈S tudy Es 6 1, S tudy Es 6 1, S tudy Es 6 1〉 48.0 57.6 5

2 〈S tudy Es 6 1, S tudy Es 6 1, S tudy Es 6 3〉 15.0 33.0 5

4 〈S tudy Es 6 1, S tudy Es 6 2, S tudy Es 6 2〉 7.0 32.8 6

5 〈S tudy Es 6 1, S tudy Es 6 1〉 5.1 27.6 9

6 〈S tudy Es 6 1, S tudy Es 6 1,Deeds Es 6 1〉 6.0 40.5 6

7 〈S tudy Es 6 2, S tudy Es 6 2〉 2.9 20.7 11

8 〈S tudy Es 6 2, S tudy Es 6 2,Deeds Es 6 2〉 3.6 31.3 6

9 〈S tudy Es 6 1〉 1.2 11.0 20

10 〈S tudy Es 6 1,Deeds Es 6 2〉 2.1 21 13

11 〈S tudy Es 6 2, S tudy Es 6 3〉 1.56 18.2 16

12 〈S tudy Es 6 2〉 0.69 8.9 25

13 〈S tudy Es 6 3〉 0.64 8.52 25

14 〈Deeds Es 6 2〉 0.62 9.1 28

15 〈S tudy Es 6 2,Deeds Es 6 2, S tudy Es 6 3〉 1.7 27.0 10

16 〈FS M Es 6 1, FS M Es 6 1,Deeds Es 6 2, S tudy Es 6 3〉 3.9 64.2 5

17 〈Deeds Es 6 2, S tudy Es 6 3〉 0.89 15.6 16

18 〈S tudy Es 6 3, S tudy Es 6 3〉 1.0 18.8 9

20 〈Deeds Es 6 1, tudy Es 6 3, S tudy Es 6 3〉 1.6 32.7 7

21 〈FS M Es 6 3, S tudy Es 6 3, S tudy Es 6 3〉 4.5 94.8 6

23 〈Deeds Es 6 2, S tudy Es 6 3, S tudy Es 6 3〉 1.2 27.0 6

24 〈FS M Es 6 1,Deeds Es 6 1, S tudy Es 6 3, S tudy Es 6 3〉 3.6 86.3 6

28 〈Deeds Es 6 1,Deeds Es 6 2, S tudy Es 6 3, S tudy Es 6 3〉 1.35 38.0 5

35

Table 17: Comparison of patterns found with frequent sequential pattern mining

Pattern Utility Average Cost Support

〈S tudy Es 6 1,Deeds Es 6 2〉 10 21 13
〈FS M Es 6 1,Deeds Es 6 2, FS M Es 6 2〉 10 101 6

〈S tudy Es 6 2,Deeds Es 6 2, S tudy Es 6 3〉 15 27.0 10
〈S tudy Es 6 1, FS M Es 6 2, FS M Es 6 3〉 15 103.5 12

〈FS M Es 6 1, FS M Es 6 1,Deeds Es 6 2, S tudy Es 6 3〉 16 64.2 5
〈FS M Es 6 1, FS M Es 6 2, S tudy Es 6 2, FS M Es 6 3, FS M Es 6 3〉 16 295.5 8

〈Deeds Es 6 1, tudy Es 6 3, S tudy Es 6 3〉 20 32.7 7
〈FS M Es 6 1,Deeds Es 6 1, FS M Es 6 2〉 20 137.7 19

〈FS M Es 6 3, S tudy Es 6 3, S tudy Es 6 3〉 21 94.8 6
〈FS M Es 6 1, FS M Es 6 2, FS M Es 6 3〉 21 178.3 12

〈Deeds Es 6 2, S tudy Es 6 3, S tudy Es 6 3〉 23 27.0 6
〈FS M Es 6 1, FS M Es 6 2,Deeds Es 6 2, S tudy Es 6 3, FS M Es 6 3 23 197 12

model and to measure the trade-off or correlation between cost and utility, as proposed in this paper. Algorithm for
other pattern mining problems would also face the same problem as CM-SPADE as none of them considers both cost
and utility and their correlation/trade-off.

We would also like to clarify that it would be hard to compare patterns found by the proposed algorithms with high
utility sequential pattern mining because these problems have different input. In fact, datasets for high utility pattern
mining do not contain cost information. Moreover, each item in high utility pattern mining datasets is annotated with
a utility value. However, in this paper, events (items) are each annotated with a cost value, and a single utility value
annotates each sequence. Thus, if one would like to apply high utility sequential pattern mining on the e-learning
data used in this paper, it would require to replace cost values of items by utility values. But how to compute these
utility values is a major problem. A simple approach to obtain utility values would be to divide the sequence utility
equally between its items (events). In other words, the final exam score for a sequence of learning activities would
be divided equally between all the activities. But this approach would assume that all activities are equally important,
which may not be true. Then, one may want to subtract cost values from utility values. However, as explained in the
introduction this approach does not allow to measure the correlation between cost and utility. Moreover, since cost
and utility are measured using different units in the e-learning data, combining them in a single value would not only
result in information loss but the resulting values would be meaningless for the user.

6. Conclusion

This article presented a novel problem of discovering cost-effective patterns in event sequences by considering
both a utility and a cost model. Three versions of the problem have been defined, to be applied in different real-life
scenarios. A performance evaluation performed on four real-life datasets has shown that search space pruning using
the average cost measure is effective and that the projected database buffer technique improves performance. A case
study on data from an e-learning system has shown that useful cost-effective patterns are discovered. Those patterns
can provide insights to students and teachers about how to use learning materials more efficiently.

There are several opportunities for future work. From an algorithmic perspective, we are interested in exploring
other optimizations that could improve performance. Moreover, we intend to integrate the concept of cost in other
pattern discovery tasks such as itemsets and sequential rules, and add other constraints to the proposed model. A more
detailed study on how cost-efficient patterns can be used in e-learning and other applications can also be done.

36

References

[1] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without candidate generation: A frequent-pattern tree approach, Data mining and
knowledge discovery 8 (1) (2004) 53–87.

[2] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, B. Le, A survey of itemset mining, WIREs Data Mining and Knowledge Discovery
(2017).

[3] P. Fournier-Viger, J. C.-W. Lin, U. R. Kiran, Y.-S. Koh, A survey of sequential pattern mining, Data Science and Pattern Recognition 1 (1)
(2017) 54–77.

[4] R. Agrawal, R. Srikant, Mining sequential patterns, in: Proc. of the 11th Intern. Conf. on Data Engineering, IEEE, 1995, pp. 3–14.
[5] R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and performance improvements, in: Proc. of the 5th Intern. Conf. on

Extending Database Technology, Springer, 1996, pp. 1–17.
[6] M. J. Zaki, Spade: An efficient algorithm for mining frequent sequences, Machine learning 42 (1-2) (2001) 31–60.
[7] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu, Freespan: frequent pattern-projected sequential pattern mining, in: Proc. of

the 6th ACM SIGKDD Intern. Conf. on Knowledge discovery and data mining, ACM, 2000, pp. 355–359.
[8] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, M.-C. Hsu, Mining sequential patterns by pattern-growth: The

prefixspan approach, IEEE Transactions on Knowledge and Data Engineering 16 (11) (2004) 1424–1440.
[9] P. Fournier-Viger, A. Gomariz, M. Campos, R. Thomas, Fast vertical mining of sequential patterns using co-occurrence information, in: Proc.

of the 18th Pacific-Asia Conference on Knowledge Discovery in Data, Part I, 2014, pp. 40–52.
[10] P. Fournier-Viger, C. Wu, A. Gomariz, V. S. Tseng, VMSP: efficient vertical mining of maximal sequential patterns, in: Proc. of the 27th

Canadian conference on Artificial Intelligence, 2014, pp. 83–94.
[11] B. Le, H. V. Duong, T. C. Truong, P. Fournier-Viger, Fclosm, fgensm: two efficient algorithms for mining frequent closed and generator

sequences using the local pruning strategy, Knowl. Inf. Syst. 53 (1) (2017) 71–107.
[12] J. Yin, Z. Zheng, L. Cao, Uspan: an efficient algorithm for mining high utility sequential patterns, in: Proc. of the 18th ACM SIGKDD Intern.

Conf. on Knowledge discovery and data mining, ACM, 2012, pp. 660–668.
[13] M. Zihayat, H. Davoudi, A. An, Mining significant high utility gene regulation sequential patterns, BMC Systems Biology 11 (6) (2017)

109:1–109:14.
[14] O. K. Alkan, P. Karagoz, Crom and huspext: Improving efficiency of high utility sequential pattern extraction, in: Proc. of the 32nd IEEE

Intern. Conf. on Data Engineering, 2016, pp. 1472–1473.
[15] T. Truong-Chi, P. Fournier-Viger, A survey of high utility sequential pattern mining, in: High-Utility Pattern Mining, Springer, 2019, pp.

97–129.
[16] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, et al., Knowledge discovery and data mining: Towards a unifying framework., in: Proc. of the

2nd ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data mining, Vol. 96, 1996, pp. 82–88.
[17] C. C. Aggarwal, Data mining: the textbook, Springer, 2015.
[18] O. Maimon, L. Rokach, Introduction to knowledge discovery and data mining, in: Data Mining and Knowledge Discovery Handbook,

Springer, 2009, pp. 1–15.
[19] P. K. Novak, N. Lavrač, G. I. Webb, Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup

mining, Journal of Machine Learning Research 10 (2009) 377–403.
[20] C. Zhang, C. Liu, X. Zhang, G. Almpanidis, An up-to-date comparison of state-of-the-art classification algorithms, Expert Systems with

Applications 82 (1) (2017) 128–150.
[21] F. Herrera, C. J. Carmona, P. González, M. J. Del Jesus, An overview on subgroup discovery: foundations and applications, Knowledge and

information systems 29 (3) (2011) 495–525.
[22] A. Zimmermann, S. Nijssen, Supervised pattern mining and applications to classification, in: Frequent pattern mining, Springer, 2014, pp.

425–442.
[23] N. Anwar, H. L. H. S. Warnars, H. E. P. Sanchez, Survey of emerging patterns, in: Proc. of the 2017 IEEE Intern. Conf. on Cybernetics and

Computational Intelligence, IEEE, 2017, pp. 11–18.
[24] L. Venturini, P. Garza, D. Apiletti, Bac: A bagged associative classifier for big data frameworks, in: M. Ivanović, B. Thalheim, B. Catania,

K.-D. Schewe, M. Kirikova, P. Šaloun, A. Dahanayake, T. Cerquitelli, E. Baralis, P. Michiardi (Eds.), Proc. of the 20th East-European Conf.
on Advances in Databases and Information Systems, Springer International Publishing, Cham, 2016, pp. 137–146.

[25] J. M. Luna, Pattern mining: current status and emerging topics, Progress in Artificial Intelligence 5 (2016) 165–170.
[26] P. Fournier-Viger, J. C.-W. Lin, T. Truong-Chi, R. Nkambou, A survey of high utility itemset mining, in: High-Utility Pattern Mining,

Springer, 2019, pp. 1–45.
[27] P. Fournier-Viger, Y. Zhang, J. C.-W. Lin, H. Fujita, Y. S. Koh, Mining local and peak high utility itemsets, Information Sciences 481 (2019)

344–367.
[28] C.-W. Wu, Y.-F. Lin, P. S. Yu, V. S. Tseng, Mining high utility episodes in complex event sequences, in: Proc. of the 19th ACM SIGKDD

Intern. Conf. on Knowledge discovery and data mining, 2013.
[29] P. Fournier-Viger, Z. Li, C.-W. Lin, R. U. Kiran, H. Fujita, Efficient algorithms to identify periodic patterns in multiple sequences, Information

Sciences 489 (2019) 205–226.
[30] C. Jiang, F. Coenen, M. Zito, A survey of frequent subgraph mining algorithms, Knowledge Eng. Review 28 (2013) 75–105.
[31] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, J. C. S. Lui, Diversified temporal subgraph pattern mining, in: Proc. of the 22nd ACM SIGKDD

Intern. Conf. on Knowledge discovery and data mining, 2016.
[32] P. Fournier-Viger, C.-W. Wu, V. S. Tseng, Mining maximal sequential patterns without candidate maintenance, in: H. Motoda, Z. Wu, L. Cao,

O. Zaiane, M. Yao, W. Wang (Eds.), Proc. of the 9th Intern. Conf. on Advanced Data Mining and Applications, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013, pp. 169–180.

[33] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, A novel approach for mining high-utility sequential patterns in sequence databases, ETRI journal
32 (5) (2010) 676–686.

37

[34] G.-C. Lan, T.-P. Hong, V. S. Tseng, S.-L. Wang, Applying the maximum utility measure in high utility sequential pattern mining, Expert
Systems with Applications 41 (11) (2014) 5071–5081.

[35] H. Ryang, U. Yun, High utility pattern mining over data streams with sliding window technique, Expert Syst. Appl. 57 (2016) 214–231.
[36] U. Yun, H. Ryang, G. Lee, H. Fujita, An efficient algorithm for mining high utility patterns from incremental databases with one database

scan, Knowl.-Based Syst. 124 (2017) 188–206.
[37] W. Gan, C.-W. Lin, H. Chao, T.-P. Hong, P. S. Yu, Coupm: Correlated utility-based pattern mining, 2018 IEEE International Conference on

Big Data (2018) 2607–2616.
[38] O. K. Alkan, P. Senkul, Crom and huspext: Improving efficiency of high utility sequential pattern extraction, IEEE Transactions on Knowledge

and Data Engineering 27 (2015) 2645–2657.
[39] J.-Z. Wang, J.-L. Huang, Y.-C. Chen, On efficiently mining high utility sequential patterns, Knowledge and Information Systems 49 (2015)

597–627.
[40] W. M. Van der Aalst, A. Weijters, Process mining: a research agenda, Computers in Industry 55 (3) (2004) 231–244.
[41] W. M. Van Der Aalst, M. La Rosa, F. M. Santoro, Business process management, Springer, 2016.
[42] A. Bogarı́n, R. Cerezo, C. Romero, A survey on educational process mining, Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery 8 (1) (2018).
[43] R. S. Mans, W. M. van der Aalst, R. J. Vanwersch, A. J. Moleman, Process mining in healthcare: Data challenges when answering frequently

posed questions, in: Proc. of the 2012 Joint Workshop on Process-Oriented Information Systems and Knowledge Representation in Health
Care, Springer, 2013, pp. 140–153.

[44] J. Garcıa-Algarra, Subgroup discovery in process mining, in: Proc. of the 20th Intern. Conf. on Business Information Systems, Vol. 288,
Springer, 2017, p. 237.

[45] J. Ranjan, K. Malik, Effective educational process: a data-mining approach, Vine 37 (4) (2007) 502–515.
[46] F. Mannhardt, D. Blinde, Analyzing the trajectories of patients with sepsis using process mining, CEUR, 2017, pp. 72–80.
[47] B. Dalmas, P. Fournier-Viger, S. Norre, Twincle: A constrained sequential rule mining algorithm for event logs, in: Proc. 9th Intern. KES

Conf. on Intelligent Decision Technologies, Elsevier, 2017, pp. 205–214.
[48] L. K. Poon, S.-C. Kong, M. Y. Wong, T. S. Yau, Mining sequential patterns of students’ access on learning management system, in: Proc. 2nd

Intern. Conf. on Data Mining and Big Data, Springer, 2017, pp. 191–198.
[49] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, R. Thomas, A survey of sequential pattern mining, Data Science and Pattern

Recognition 1 (1) (2017) 54–77.
[50] J. Pei, J. Han, W. Wang, Mining sequential patterns with constraints in large databases, in: Proc. of the 11th Intern. Conf. on Information and

knowledge management, ACM, 2002, pp. 18–25.
[51] G. V. Glass, K. D. Hopkins, Statistical methods in education and psychology, Pearson, 1996.
[52] Q.-H. Duong, P. Fournier-Viger, H. Ramampiaro, K. Nørvåg, T.-L. Dam, Efficient high utility itemset mining using buffered utility-lists,

Applied Intelligence 48 (7) (2018) 1859–1877.
[53] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu, V. S. Tseng, Spmf: a java open-source pattern mining library, Journal of

Machine Learning Research 15 (1) (2014) 3389–3393.
[54] S. Zida, P. Fournier-Viger, C.-W. Wu, J. C.-W. Lin, V. S. Tseng, Efficient mining of high-utility sequential rules, in: Proc. of the 11th Intern.

Conf. on Machine Learning and Data Mining in Pattern Recognition, Springer, 2015, pp. 157–171.
[55] M. Vahdat, L. Oneto, D. Anguita, M. Funk, M. Rauterberg, A learning analytics approach to correlate the academic achievements of students

with interaction data from an educational simulator, in: Design for Teaching and Learning in a Networked World, Springer, 2015, pp. 352–
366.

38

