
FHN: Efficient Mining of High-Utility Itemsets
with Negative Unit Profits

Philippe Fournier-Viger

Dept. of Computer Science, University of Moncton, Canada
philippe.fournier-viger@umoncton.ca

Abstract. High utility itemset (HUI) mining is a popular data mining
task. It consists of discovering sets of items generating high profit in
a transaction database. Several efficient algorithms have been proposed
for this task. But few can handle items with negative unit profits despite
that such items occurs in many real-life transaction databases. Mining
HUIs in a database where items have positive and negative unit prof-
its is a very computationally expensive task. To address this issue, we
present an efficient algorithm named FHN (Faster High-Utility itemset
miner with Negative unit profits). FHN discovers HUIs without gener-
ating candidates and introduces several strategies to handle items with
negative unit profits efficiently. Experimental results with six real-life
datasets shows that FHN is up to 500 times faster and can use up to 250
times less memory than the state-of-the-art algorithm HUINIV-Mine.

Keywords: frequent pattern mining, high-utility itemset mining, nega-
tive unit profit, negative weights, transaction database

1 Introduction

Frequent Itemset Mining (FIM) [2] is a popular data mining task that is essential
to a wide range of applications. Given a transaction database, FIM consists of
discovering frequent itemsets. i.e. groups of items (itemsets) appearing frequently
in transactions [2]. However, an important limitation of FIM is that it assumes
that each item cannot appear more than once in each transaction and that all
items have the same importance (weight, unit profit or value). These assump-
tions often do not hold in real applications. For example, consider a database of
customer transactions containing information about the quantities of items in
each transaction and the unit profit of each item. FIM algorithms would discard
this information and may thus discover many frequent itemsets generating a low
profit and fail to discover less frequent itemsets that generate a high profit. To
address this issue, the problem of FIM has been redefined as High-Utility Itemset
Mining (HUIM) to consider the case where items can appear more than once in
each transaction and where each item has a weight (e.g. unit profit). The goal of
HUIM is to discover high utility itemsets (HUIs), i.e. itemsets generating a high
profit. HUIM has a wide range of applications such as website click stream analy-
sis, cross-marketing in retail stores and biomedical applications [3, 9, 12]. HUIM



has also inspired several important data mining tasks such as high-utility se-
quential pattern mining [15, 16], high-utility episode mining [14] and high-utility
stream mining [11].

The problem of HUIM is widely recognized as more difficult than the problem
of FIM. In FIM, the downward-closure property states that the support of an
itemset is anti-monotonic, that is the supersets of an infrequent itemset are
infrequent and subsets of a frequent itemset are frequent. This property is very
powerful to prune the search space. In HUIM, the utility of an itemset is neither
monotonic or anti-monotonic, that is a high utility itemset may have a superset
or subset with lower, equal or higher utility [2]. Thus, techniques to prune the
search space developed in FIM cannot be directly applied in HUIM.

Many studies have been carried to develop efficient HUIM algorithms [3, 8, 4,
9, 10, 12, 13]. However, these algorithms are not designed to handle items having
negative weights/unit profits, despite that such items occur in many real-life
transaction databases. For example, it is common that retail stores sell items
at a loss (e.g. printers) to stimulate the sale of other related items (e.g. propri-
etary printer cartridges). It was demonstrated that if classical HUIM algorithms
are applied on databases containing items with negative unit profits, they can
generate an incomplete set of HUIs [1]. The reason is that these algorithms
over-estimate the utility of itemsets to prune the search space. But, when items
with negative unit profits are considered, these estimations may become under-
estimations, and thus HUIs may be pruned. The state-of-the-art algorithm for
mining HUIs while considering negative unit profits is HUINIV-Mine [1]. How-
ever, mining HUIs with negative unit profits remains very costly in terms of
execution time and memory. Therefore, an important challenge is to design a
more efficient algorithm for this task.

In this paper, we address this challenge. We present a novel algorithm named
FHN (Fast High-utility itemset miner with Negative unit profits) to mine HUIs
while considering both positive and negative unit profits. It extends the current
fastest HUI mining algorithm named FHM [4] so that it can handle negative
unit profits efficiently. We compare the performance of FHN and HUINIV-Mine
on six real-life datasets. Results show that FHN is up to 500 times faster than
HUINIV-Mine and consumes up to 250 times less memory. The rest of this paper
is organized as follows. Section 2, 3, 4 and 5 respectively presents the problem
definition and related work, the FHN algorithm, the experimental evaluation
and the conclusion.

2 Problem definition and related work

We first introduce important preliminary definitions.

Definition 1 (transaction database). Let I be a set of items (symbols).
A transaction database is a set of transactions D = {T1, T2, ..., Tn} such that
for each transaction Tc, Tc ∈ I and Tc has a unique identifier c called its Tid.
Each item i ∈ I is associated with a positive or negative number p(i), called



its external utility (e.g. unit profit). For each transaction Tc such that i ∈ Tc, a
positive number q(i, Tc) is called the internal utility of i (e.g. purchase quantity).

Example 1. Consider the database of Fig. 1 (left), which will be used as our run-
ning example. This database contains five transactions (T1, T2...T5). Transaction
T2 indicates that items a, c, e and g appear in this transaction with an internal
utility of respectively 2, 6, 2 and 5. Fig. 1 (right) indicates that the external
utility of these items are respectively -5, 1, 3 and 1. Thus, item a is sold at loss.

Definition 2 (utility of an item/itemset in a transaction). The utility of
an item i in a transaction Tc is denoted as u(i, Tc) and defined as p(i)× q(i, Tc).
The utility of an itemset X (a group of items X ⊆ I) in a transaction Tc is
denoted as u(X,Tc) and defined as u(X,Tc) =

∑
i∈X u(i, Tc).

 
TID Transactions  Item a b c d e f g 

T1 (a,1)(c,1)(d,1)  Profit -5 2 1 2 3 1 1 

T2 (a,2)(c,6)(e,2)(g,5)        

T3 (a,1)(b,2)(c,1)(d,6),(e,1),(f,5)         

T4 (b,4)(c,3)(d,3)(e,1)         

T5 (b,2)(c,2)(e,1)(g,2)         

 

 

TID TU  Item TWU  Item a b c d e f 

T1 3  a  45  b 25      

T2 17  b 56  c 45 56     

T3 25  c 77  d 28 45 48    

T4 20  d 48  e 42 56 74 45   

T5 11  e 74  f 25 25 25 25 25  

   f 25  g 17 11 28 0 28 0 

   g 28        

 

 

Fig. 1. A transaction database (left) and external utility values (right)

Example 2. The utility of item e in T2 is u(e, T2) = 3× 2 = 6. The utility of the
itemset {c, e} in T2 is u({c, e}, T2) = u(c, T2) + u(e, T2) = 1× 6 + 3× 2 = 12.

Definition 3 (utility of an itemset in a database). The utility of an item-
set X is denoted as u(X) and defined as u(X) =

∑
Tc∈g(X) u(X,Tc), where g(X)

is the set of transactions containing X.

Example 3. The utility of the itemset {c, e} is u({c, e}) = (u(c, T2) + u(e, T2))+
(u(c, T3) +u(e, T3))+ (u(c, T4) +u(e, T4))+ (u(c, T5) +u(e, T5)) = (6 + 6) + (1 +
3) + (3 + 3) + (2 + 3) = 27. The utility of the itemset {a, d, f} is u({a, d, f}) =
(u(a, T3) + u(d, T3)) + u(f, T3)) = −5 + 12 + 5 = 12.

Definition 4 (problem of HUI mining with/without negative unit prof-
its). Let minutil be a threshold set by the user. An itemset X is a high-utility
itemset if u(X) ≥ minutil. Otherwise, X is a low-utility itemset. The prob-
lem of high-utility itemset mining is to discover all high-utility itemsets in a
database where external utility values are positive. The problem of high-utility
itemset mining with negative unit profits is to discover all high-utility itemsets
in a database where external utility values may be positive or negative.

Example 4. If minutil = 20, twenty HUIs should be found in the database. They
are {a, b, c, d, e, f}:20, {b, d, f}:21, {b, d, e, f}:24, {b, c, d, e, f}:25, {b, c, d, f}:22,



{d, e, f}:20, {c, d, e, f}:21, {c, e, g}:24, {d}:20, {b, d}:30, {b, d, e}:36, {b, c, d, e}:40,
{b, c, d}:34, {d, e}:24, {c, d, e}:28, {c, d}:25, {b, e}:25, {b, c, e}:31, {b, c}:22 and
{c, e}:27, where the number following each itemset is its utility.

Two known properties of HUIs with respect to items having negative unit
profits are the following.

Property 1 (a HUI may contain items having negative external utilities). It can
be clearly seen from the example that a HUI may contain items having a nega-
tive external utility value. For example, {a, b, c, d, e, f} contains a, which has an
external utility of −5.

Property 2 (a HUI must contain at least an item having a positive external utility
[1]). Although a HUI may or may not contain items having negative external
utility values, a HUI need to contain at least an item having a positive external
utility value (otherwise its utility would be negative and it would not be a HUI).

It can be demonstrated that the utility measure is not monotonic or anti-
monotonic. In other words, an itemset may have a utility lower, equal or higher
than the utility of its subsets. Therefore, the strategies that are used in FIM to
prune the search space based on the anti-monotonicity of the support cannot
be directly applied to discover high-utility itemsets. Several HUIM algorithms
circumvent this problem by overestimating the utility of itemsets using a measure
called the Transaction-Weighted Utilization (TWU) [3, 10, 12], which is anti-
monotonic. The TWU measure assumes that all items have positive external
utility values. The TWU measure is defined as follows.

Definition 5 (transaction utility). The transaction utility (TU) of a trans-
action Tc is the sum of the utility of the items from Tc in Tc. i.e. TU(Tc) =∑

x∈Tc
u(x, Tc).

Definition 6 (transaction weighted utilization). The transaction-weighted
utilization (TWU) of an itemset X is defined as the sum of the transaction utility
of transactions containing X, i.e. TWU(X) =

∑
Tc∈g(X) TU(Tc).

Example 5. Consider the database of the running example and that the external
utility value of item a is 5 rather than −5 (p(a) = 5). The TU of transactions T1,
T2, T3, T4 and T5 are respectively 8, 27, 30, 20 and 11. The TWU of items a, b,
c, d, e, f and g are 65, 61, 96, 58, 88, 30 and 38. Consider item b. TWU({b}) =
TU(T3) + TU(T4) + TU(T5) = 30 + 20 + 11 = 61.

The TWU measure has three important properties that are used to prune
the search space. These properties only hold if external utility values of items
are positive [1].

Property 3 (overestimation). The TWU of an itemset X is higher than or equal
to its utility, i.e. TWU(X) ≥ u(X) [10].



Property 4 (antimonotonicity). The TWU measure is anti-monotonic. Let X
and Y be two itemsets. If X ⊂ Y , then TWU(X) ≥ TWU(Y ) [10].

Property 5 (pruning). Let X be an itemset. If TWU(X) < minutil, then the
itemset X is a low-utility itemset as well as all its supersets [10].

Most algorithms for high utility mining that only handle positive external
utility values (e.g. Two-Phase [10], IHUP [3] and UPGrowth [12]) utilizes Prop-
erty 5 to prune the search space. They operate in two phases. In Phase 1, they
identify candidate high-utility itemsets by calculating their TWU. In Phase 2,
they scan the database to calculate the exact utility of all candidates found in
Phase 1 to eliminate low-utility itemsets. However, if such algorithms are applied
on databases containing negative unit profits, some HUIs may not be output.
For example, consider the running example. If item a has an external utility of
−5 rather than 5 as we previously considered, TWU({c, e, g}) = TWU(T2) = 7
and u({c, e, g}) = 17, which would be a violation of Property 5 stating that the
TWU of an itemset is an overestimation of its utility. The consequence is that
if minutil = 10, the itemset {c, e, g} would not be output by algorithms relying
on that property even though this itemset is a HUI (it would be pruned because
TWU({c, e, g}) < minutil).

To mine high utility itemsets while considering both positive and negative
unit profits and output the full set of HUIs, the state-of-the-art algorithm is
HUINIV-Mine [1]. It is an extension of the Two-Phase algorithm [10]. To avoid
the aforementioned problem, HUINIV-Mine redefines the notion of transaction
utility as follows (and thus the TWU measure).

Definition 7 (redefined transaction utility). The redefined transaction util-
ity of a transaction Tc is the sum of the utility of the items from Tc having positive
external utilities. i.e. TU(Tc) =

∑
x∈Tc∧p(x)>0 u(x, Tc).

Example 6. Fig. 2 (left) shows the redefined TU of transactions T1, T2, T3, T4, T5

for the running example. Fig. 2 (right) shows the TWU of single items based
on the redefined transaction utility values. Consider itemsets {c, e, g} and {e, g}.
The values TWU({c, e, g}) and TWU({e, g}) are equal to 17, which are over-
estimations of u({c, e, g}) = 17 and u({e, g}) = 11.

Using the redefined transaction utility restores Property 5. This is what al-
lows HUINIV-Mine to find the complete set of HUIs. However, a major problem
is that the task of mining HUIs while considering both positive and negative
unit profits remain computationally very expensive both in terms of execution
time and memory, especially for datasets containing dense or long transactions.
It is thus a challenge to build more efficient algorithms.

To address this issue, in this paper, we propose an algorithm named FHN that
is a variation of the FHM algorithm [4]. FHM is a recently proposed algorithm
for HUI mining, which is designed to handle only positive external utility val-
ues. FHM provides the benefit of mining HUIs in a single phase, thus avoiding
the candidate generation step of other HUI mining algorithms such as Two-
Phase, UPGrowth and IHUP. FHM utilizes the depth-first search procedure and



utility-list structure recently introduced in HUI-Miner [9] to explore the search
space of itemsets, but also provides an efficient optimization named EUCP (Es-
timated Utility Co-occurrence Pruning) that makes FHM up to 6 times faster
than HUI-Miner. FHM associates a utility-list [9] to each pattern. Utility-lists
allow calculating the utility of a pattern quickly by making join operations with
utility-lists of smaller patterns. Utility-lists are defined as follows.

Definition 8 (Utility-list). Let � be any total order on items from I. The
utility-list of an itemset X in a database D is a set of tuples such that there is a
tuple (tid, iutil, rutil) for each transaction Ttid containing X. The iutil element
of a tuple is the utility of X in Ttid. i.e., u(X,Ttid). The rutil element of a tuple
is defined as

∑
i∈Ttid∧i�x∀x∈X u(i, Ttid).

Example 7. Assume that � is the alphabetical order and that the external utility
of item a is 5 rather than -5. The utility-list of {a} is {(T1, 5, 3), (T2, 10, 17),
(T3, 5, 25)}. The utility-list of {d} is {(T1, 2, 0), (T3, 12, 8), (T4, 6, 3)}. The utility-
list of {a, d} is {(T1, 7, 0), (T3, 17, 8)}.

FHM discovers HUIs by performing a single database scan to create utility-
lists of patterns containing single items. Then, longer patterns are obtained
by performing the join operation of utility-lists of shorter patterns. The join
operation for single items is performed as follows. Consider two items x, y such
that x � y, and their utility-lists ul({x}) and ul({y}). The utility-list of {x, y}
is obtained by creating a tuple (ex.tid, ex.iutil+ ey.iutil, ey.rutil) for each pairs
of tuples ex ∈ ul({x}) and ey ∈ ul({y}) such that ex.tid = ey.tid. The join
operation for two itemsets P ∪ {x} and P ∪ {y} such that x � y is performed
as follows. Let ul(P ), ul({x}) and ul({y}) be the utility-lists of P , {x} and {y}.
The utility-list of P ∪ {x, y} is obtained by creating a tuple (ex.tid, ex.iutil +
ey.iutil − ep.iutil, ey.rutil) for each set of tuples ex ∈ ul({x}), ey ∈ ul({y}),
ep ∈ ul(P ) such that ex.tid = ey.tid = ep.tid. Calculating the utility of an
itemset using its utility-list and pruning the search space is done as follows.

Property 6 (Calculating utility of an itemset using its utility-list). The utility of
an itemset is the sum of iutil values in its utility-list [9].

Property 7 (Pruning search space using utility-lists). Let X be an itemset. Let
the extensions of X be the itemsets that can be obtained by appending an item
y to X such that y � i, ∀i ∈ X. If the sum of iutil and rutil values in ul(X) is
less than minutil, then X and its extensions are low utility [9].

Before presenting our algorithm, we demonstrate with an example that the
pruning property used by FHM and HUI-Miner is invalid if both negative and
positive external utility values appears in a database. Consider that item a and d
in the running example have respectively external utility values of 5 and −2, and
that minutil = 10. The utility-list of {a, b} would thus contains a single element,
which is {(T3, 9,−3). According to Property 7, because the sum of iutil and rutil
values in ul({a, b}) is 6, which is less than minutil, {a, b} and its extensions are
low utility. However, this is not the case since itemset u({a, b, f}) = 14. Because
of this, FHM and HUI-Miner would not find this HUI.



 
TID Transactions  Item a b c d e f g 

T1 (a,1)(c,1)(d,1)  Profit -5 2 1 2 3 1 1 

T2 (a,2)(c,6)(e,2)(g,5)        

T3 (a,1)(b,2)(c,1)(d,6),(e,1),(f,5)         

T4 (b,4)(c,3)(d,3)(e,1)         

T5 (b,2)(c,2)(e,1)(g,2)         

 

 

TID TU  Item TWU  Item a b c d e f 

T1 3  a  45  b 25      

T2 17  b 56  c 45 56     

T3 25  c 77  d 28 45 48    

T4 20  d 48  e 42 56 74 45   

T5 11  e 74  f 25 25 25 25 25  

   f 25  g 17 11 28 0 28 0 

   g 28        

 

 

Fig. 2. Transaction utilities (left), TWU values of single items (center) and EUCS
(right)

3 The FHN algorithm

In this section, we present our proposal, the FHN algorithm. We first describe the
main procedure, which is inspired by the FHM [4] algorithm. This procedure can
only handle positive external utility values. We then explain how it is adapted
to handle negative unit profits without missing any HUIs. We call this new
algorithm the FHN algorithm.

3.1 Main procedure

The main procedure (Algorithm 1) takes as input a transaction database with
utility values and the minutil threshold. The algorithm first scans the database
to calculate the TWU of each item. Then, the algorithm identifies the set I∗

of all items having a TWU no less than minutil (other items are ignored since
they cannot be part of a high-utility itemset by Property 3). The TWU values
of items are then used to establish a total order � on items, which is the or-
der of ascending TWU values (as suggested in [9]). A second database scan is
then performed. During this database scan, items in transactions are reordered
according to the total order �, the utility-list of each item i ∈ I∗ is built and
a structure named EUCS (Estimated Utility Co-Occurrence Structure) is built
[4]. This latter structure stores the TWU of all pairs of items {a, b} such that
u({a, b}) 6= 0. As suggested in FHM, the EUCS is implemented as a hashmap
of hashmaps since in practice a limited number of pairs of items co-occurs in
transactions (see [4] for more details). Building the EUCS is very fast (it is per-
formed with a single database scan) and occupies a small amount of memory,
bounded by |I∗| × |I∗|, although in practice the size is much smaller because a
limited number of pairs of items co-occurs in transactions. After the construction
of the EUCS, the depth-first search exploration of itemsets starts by calling the
recursive procedure Search with the empty itemset ∅, the set of single items I∗,
minutil and the EUCS.

The Search procedure (Algorithm 2) takes as input (1) an itemset P , (2)
extensions of P having the form Pz meaning that Pz was previously obtained by
appending an item z to P , (3) minutil and (4) the EUCS. The search procedure
operates as follows. For each extension Px of P , if the sum of the iutil values



Algorithm 1: The FHN algorithm

input : D: a transaction database, minutil: a user-specified threshold
output: the set of high-utility itemsets

1 Scan D to calculate the TWU of single items;
2 I∗ ← each item i such that TWU(i) ≥ minutil;
3 Let � be the total order of TWU ascending values on I∗;
4 Scan D to built the utility-list of each item i ∈ I∗ and build the EUCS

structure;
5 Search (∅, I∗, minutil, EUCS);

of the utility-list of Px is no less than minutil, then Px is a high-utility itemset
and it is output (cf. Property 4). Then, if the sum of iutil and rutil values
in the utility-list of Px are no less than minutil, it means that extensions of
Px should be explored (cf. Property 7). This is performed by merging Px with
all extensions Py of P such that y � x and TWU({x, y}) ≥ minutil, to form
extensions of the form Pxy containing |Px|+ 1 items. The utility-list of Pxy is
then constructed as in FHM by calling the Construct procedure (cf. Algorithm
3) to join the utility-lists of P , Px and Py. This latter procedure is the same as
in FHM [4] and is thus not detailed here. Then, a recursive call to the Search
procedure with Pxy is done to calculate its utility and explore its extension(s).
Since the Search procedure starts from single items, it recursively explores the
search space of itemsets by appending single items and it only prunes the search
space based on Property 7. It can be easily seen based on Properties 6 and 7
that this procedure is correct and complete to discover all high-utility itemsets.

3.2 Modifying the algorithm to handle negative item unit profits

We next explain how the algorithm is modified to handle negative unit profits.
Let the term ”positive items” and ”negative items” denote items respectively
having positive and negative external utility values. To be able to transform the
algorithm described in the previous subsection into an algorithm that outputs all
HUIs when both negative and positive items are used, we first make a few novel
and very important observations that were not done or used in HUINIV-Mine.

First, we define the total order � such that negative items always succeed
all positive items. Now consider an itemset X. Let up(X) ⊆ X be the set of all
positive items in X. Moreover, let un(X) ⊆ X be the set of all negative items
in X. We have the following important properties.

Property 8 (upper bound on utility using positive items). Let X be an itemset.
It follows that u(X) ≤ u(up(X)). Rationale. This property holds because X \
up(X) = un(X) and negative items can only decrease the utility of X.

Property 9 (downward closure of extensions with negative items). Let X be an
itemset and z be a negative item such that z 6∈ X. It follows that u(up(X ∪
{z})) ≤ u(up(X)). Rationale. Clearly, up(X) = up(X ∪ {z}). Moreover, the



Algorithm 2: The Search procedure

input : P : an itemset, ExtensionsOfP: a set of extensions of P , the minutil
threshold, the EUCS structure

output: the set of high-utility itemsets

1 foreach itemset Px ∈ ExtensionsOfP do
2 if SUM(Px.utilitylist.iutils) ≥ minutil then
3 output Px;
4 end
5 if SUM(Px.utilitylist.iutils)+SUM(Px.utilitylist.rutils) ≥ minutil then
6 ExtensionsOfPx← ∅;
7 foreach itemset Py ∈ ExtensionsOfP such that y � x do
8 if TWU({x, y}) ≥ minutil) then
9 Pxy ← Px ∪ Py;

10 Pxy.utilitylist← Construct (P, Px, Py);
11 ExtensionsOfPx← ExtensionsOfPx ∪ Pxy;

12 end

13 end
14 Search (Px, ExtensionsOfPx, minutil);

15 end

16 end

number of transactions containing X ∪{z} can only be smaller than the number
of transactions containing X. Because of this and that z is a negative item, the
utility of up(X ∪{z}) can only be the same or less than that of up(X). But note
that u(X) may be smaller, greater or equal to u(X ∪ {z}).

The previous property can be generalized for successive extensions of an
itemset with negative items

Property 10 (downward closure of transitive extensions with negative items). Let
X be an itemset. For any itemset Y resulting from transitive extensions of X
with negative items, u(up(Y )) ≤ u(up(X)).

Based on this observation, we can use the following pruning condition.

Property 11 (pruning condition for itemsets containing negative items based on
the total order �). Let X be an itemset such that up(X) < minutil and only
negative items can be used to extend X based on the total order �. Therefore,
all transitive extensions of X with these items will be low utility and can be
pruned. Rationale. This pruning condition directly follows from the previous
properties.

But using this pruning condition in the algorithm requires to be able to
calculate u(up(X)) efficiently. The solution is to separate iutil values in utility-
list into two values: iputil and inutil. For a given transaction Tc, iputil and
inutil now respectively indicates u(up(X), Tc) and u(un(X), Tc). Having these



Algorithm 3: The Construct procedure

input : P : an itemset, Px: the extension of P with an item x, Py: the
extension of P with an item y

output: the utility-list of Pxy

1 UtilityListOfPxy ← ∅;
2 foreach tuple ex ∈ Px.utilitylist do
3 if ∃ey ∈ Py.utilitylist and ex.tid = exy.tid then
4 if P.utilitylist 6= ∅ then
5 Search element e ∈ P.utilitylist such that e.tid = ex.tid.;
6 exy ← (ex.tid, ex.iutil + ey.iutil − e.iutil, ey.rutil);

7 end
8 else
9 exy ← (ex.tid, ex.iutil + ey.iutil, ey.rutil);

10 end
11 UtilityListOfPxy ← UtilityListOfPxy ∪ {exy};
12 end

13 end
14 return UtilityListPxy ;

values, u(up(X)) can be easily computed and also u(X) by respectively summing
the iputil values, and summing both the iputil and inutil values.

Based on the above ideas, the FHN algorithm is obtained by making the
following modifications. First, instead of calculating the original TWU, the re-
defined TWU is used to avoid underestimating the utility of HUIs containing
positive items (similarly to HUINIV-Mine presented in section 2). Fig. 2 shows
the redefined transaction utility values (left), TWU of single items (center) and
EUCS (right), when this modification is done. Second, utility-lists are redefined
such that iputil and inutil elements are used. Furthermore, only utility val-
ues of positive items are included in rutil values of utility-lists. The reason is
that the algorithm can miss some HUIs if rutil values of negative items are
included in utility lists as we have demonstrated in the last paragraph of Sec-
tion 2. Third, the � total order is defined such that all negative items succeed
positive items (as previously explained). Fourth, the TWU pruning condition
TWU({x, y}) < minutil using the EUCS structure is only used for positive
items. Fifth, the pruning condition described in 11 is the only pruning condition
used for deciding whether an itemset should be extended with negative items.
Sixth, the pruning condition for positive items based on the sum of iutil and
rutil values is redefined as the sum of iputil and rutil values.

We now discuss the correctness of these modifications for finding all HUIs
when positive and negative items are used. This explanation can be broken down
into two parts (1) the algorithm first extends an itemset by appending positive
items and (2) then the algorithm appends negative items (based on �). During
the first part, FHN is correct since it behaves as a regular HUI mining algorithm
for discovering HUIs containing only positive items. This is true because negative



items are always appended after positive items (thus negative items are not
considered when forming HUIs containing only positive items). Furthermore,
the pruning condition that the sum of rutil and iputil values must be higher
than minutil is correct since rutil values of negative items are not considered
in utility-lists when the algorithm is generating HUIs containing only positive
items. The pruning condition that an extension Pxy should not be explored if
TWU(x, y) < minutil also remains correct since the redefined TWU is used. In
the second part (when negative items are appended), only the pruning condition
based on Property 10 is used. Thus, no HUIs containing negative items should
be missed.

4 Experimental Study

We evaluated the performance of the proposed FHN algorithm. Experiments
were performed on a computer with a third generation 64 bit Core i5 processor
running Windows 7 and 5 GB of free RAM. We compared the performance of
FHN with the state-of-the-art algorithm HUINIV-Mine for high-utility itemset
mining with negative unit profit. All memory measurements were done using
the Java API. Experiments were carried on six real-life datasets having varied
characteristics.

– mushroom is a dense dataset with 120 distinct items, 8,124 transactions, and
an average transaction length of 23 items.

– The retail dataset contains 88,162 transactions with 16,470 distinct items
and an average transaction length of 10,30 items.

– kosarak is a dataset that contains 41,270 distinct items, 990,000 transactions,
and transaction have an average length of 8.09 items.

– The chess dataset contains 3,196 transactions with 75 distinct items and an
average transaction length of 35 items.

– The psumb dataset contains 49,046 transactions with 7,116 distinct items
and an average transaction length of 74 items.

– The accidents dataset contains 340,183 transactions having an average length
of 33.80 items, and 468 distinct items.

For all datasets, external utilities for items are generated between -1,000 and
1,000 by using a log-normal distribution and quantities of items are generated
randomly between 1 and 5, similarly to the settings of [3, 4, 9, 12]. The source
code of all algorithms and datasets can be downloaded from the SPMF data
mining library ( http://www.philippe-fournier-viger.com/spmf/).

For each dataset, we ran the FHN and HUINIV-Mine algorithms, while de-
creasing the minutil threshold until the algorithms became too long to execute,
ran out of memory or a clear winner was observed. For each dataset, we recorded
the execution time and the maximum memory usage. The comparison of execu-
tion times is shown in Fig. 3 for all datasets. For mushroom, retail, kosarak, chess,
psumb and accidents, FHN was respectively up to 42 times faster, 18 times faster,
38 times faster, 500 times, 15 times and 25 times faster than HUINIV-Mine.



50

100

150

200

250

450K 500K 550K 600K 650K 700K 750K 800K

R
u

n
ti

m
e

 (s
) 

minutil 

mushroom 

HUINIV-Mine

FHN

50

100

150

200

250

300

350

400

450

0 10000 20000 30000 40000 50000

R
u

n
ti

m
e

 (
s)

 

minutil 

retail 

HUINIV-Mine

FHN

200

400

600

800

1000

1200

1000000 8000000 15000000

R
u

n
ti

m
e

 (
s)

 

minutil 

kosarak 

HUINIV-Mine

FHN

50

100

150

200

250

600000 650000 700000 750000 800000

R
u

n
ti

m
e

 (
s)

 

minutil 

chess 

HUINIV-Mine

FHN

20

40

60

80

100

120

140

160

74000000 76000000 78000000 80000000

R
u

n
ti

m
e

 (
s)

 

minutil 

accidents 

HUINIV-Mine

FHN

5

10

15

20

25

30

35

40

45

50

30500K 31500K 32500K 33500K

R
u

n
ti

m
e

 (
s)

 

minutil 

pumsb 

HUINIV-Mine

FHN

Fig. 3. Execution times

In terms of memory usage, FHN uses much less memory than HUINIV-Mine.
For the mushroom dataset and minutil = 450000, HUINIV-Mine used up to
4.97 GB while FHN was using only up to 250 MB. On kosarak, chess, psumb
and accidents HUINIV-Mine ran out of memory under our 5 GB memory limit
while FHN was respectively using 20 MB, 1179 MB, 100 MB and 350 MB for
the lowest minutil values. Lastly, for the retail dataset, the memory usage of
FHN was about five times less than HUINIV-Mine. Overall, FHN used up to
250 times less memory than HUINIV-Mine.

An interesting observation is that FHN performs very well on dense datasets
such as mushroom compared to HUINIV-Mine. There are several reasons why
FHN performs better than HUINIV-Mine. The first reason is that HUINIV-Mine
strictly relies on the TWU model for pruning the search space. But the TWU
model provides a less strict upper bound on the utility of itemsets than utility-



lists [4, 9]. FHN uses both utility-lists and TWU of itemsets containing two items
(the EUCS) to prune the search space. Thus, it can prune a larger part of the
search space. The second reason is that defining the total order � such that
negative items are used to extend itemsets after all positive items have been
considered allows handling negative items much more efficiently (when negative
items are used to extend an itemset, the exact utility is used to prune the search
space). This greatly reduces the search space. Third, HUINIV-Mine is a level-
wise algorithm that need to maintain a large amount of itemsets in memory to
find larger patterns. Furthermore, since it is using a two-phase approach based
on the TWU model it suffers from the problem of generating and maintaining a
huge amount of candidates in memory before low-utilty itemsets can be pruned.
In FHN, these problems are avoided by using a depth-first search that mines
high-utility itemsets without generating candidates. This is what allows FHN to
consume much less memory than HUINIV-Mine.

5 Conclusion

In this paper, we have presented a novel algorithm named FHN (Fast High-utility
itemset miner with Negative unit profits) for mining HUIs in databases where
item unit profits may be positive or negative. The algorithm is an extension of
the FHM algorithm [4] for HUI mining.

It is important to note that the strategies that we have presented in the
FHN algorithm to handle items with negative unit profits could also be applied
in other algorithms that are based on the utility-list structure (e.g. in GHUI-
Miner and HUG-Miner [7]).

We have performed an extensive experimental study on six real-life datasets
to compare the performance of FHN with the state-of-the-art algorithm HUINIV-
Mine. Results show that FHN is up to 500 times faster and can use up to
250 times less memory than HUINIV-Mine, and was shown to perform very
well on dense datasets. The source code of all algorithms and datasets used in
our experiments can be downloaded as part of the SPMF data mining library
http://www.philippe-fournier-viger/spmf/. For future work, we are inter-
ested in exploring other interesting problems involving utility mining in itemset
mining and sequential pattern mining [5, 6].

Acknowledgement This work is financed by a National Science and Engi-
neering Research Council (NSERC) of Canada research grant. Thanks also to
Chun-Wei Lin and Wensheng Gan for feedback on the paper.

References

1. Chu, C.-J., Tseng, V. S., Liang, T.: An efficient algorithm for mining high utility
itemsets with negative item values in large databases. In: Applied Math. Comput.,
215, pp. 767-778 (2009)



2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. Int. Conf. Very Large Databases, pp. 487–499 (1994)

3. Ahmed, C. F., Tanbeer, S. K., Jeong, B.-S., Lee, Y.-K.: Efficient Tree Structures
for High-utility Pattern Mining in Incremental Databases. In: IEEE Trans. Knowl.
Data Eng. 21(12), pp. 1708–1721 (2009)

4. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V. S.: FHM: Faster High-Utility
Itemset Mining using Estimated Utility Co-occurrence Pruning. In: Proc. 21st In-
tern. Symp. Methodologies Intell. Systems (ISMIS 2014), Springer, pp. 83-92 (2014)

5. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R.: Fast Vertical Sequen-
tial Pattern Mining Using Co-occurrence Information. In: Proc. 18th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Springer, LNAI, (2014)

6. Fournier-Viger, P., Wu, C.-W., Gomariz, A., Tseng, V. S.: VMSP: Efficient Vertical
Mining of Maximal Sequential Patterns. In: Proc. 27th Canadian Conference on
Artificial Intelligence, Springer, LNAI, pp. 83-94 (2014)

7. Fournier-Viger, P., Wu, C.-W., Tseng, V. S.: Novel Concise Representations of High
Utility Itemsets using Generator Patterns. In: Proc. 10th International Conference
on Advanced Data Mining and Applications, Springer LNAI, 14 pages (2014).

8. Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated items discarding strategy for discovering
high utility itemsets. In: Data & Knowledge Engineering. 64(1), pp. 198–217 (2008)

9. Liu, M., Qu, J.:Mining High Utility Itemsets without Candidate Generation. In
Proceedings of CIKM12, pp. 55–64 (2012)

10. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Proc. PAKDD 2005, pp. 689–695 (2005)

11. Shie, B.-E., Cheng, J.-H., Chuang, K.-T., Tseng, V. S.: A One-Phase Method for
Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments.
In: Proceedings of IEA/AIE12, pp. 616–626 (2012)

12. Tseng, V. S., Shie, B.-E., Wu, C.-W., Yu., P. S.: Efficient Algorithms for Mining
High Utility Itemsets from Transactional Databases. In: IEEE Trans. Knowl. Data
Eng. 25(8), pp. 1772–1786 (2013)

13. Wu, C.-W., Fournier-Viger, P., Yu., P. S, Tseng, V. S.: Efficient Mining of a Concise
and Lossless Representation of High Utility Itemsets. In: Proceedings of ICDM11,
pp. 824–833 (2011)

14. Wu, C.-W., Lin, Y.-F., Yu, P. S., Tseng, V. S.: Mining High Utility Episodes in
Complex Event Sequences. In: Proceedings of ACM SIG KDD13, pp. 536–544 (2013)

15. Yin, J., Zheng, Z., Cao, L.: USpan: An Efficient Algorithm for Mining High Utility
Sequential Patterns. In: Proceedings of ACM SIG KDD12, pp. 660–668 (2012)

16. Yin, J., Zheng, Z., Cao, L., Song, Y., Wei, W.: Efficiently Mining Top-K High
Utility Sequential Patterns. In: Proceedings of ICDM13, pp. 1259–1264 (2013)


