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Abstract. High utility episode mining consists of finding episodes (sub-
sequences of events) that have a high importance (e.g high profit) in a
sequence of events with quantities and weights. Though it has important
real-life applications, the current problem definition has two critical limi-
tations. First, it underestimates the utility of episodes by not taking into
account all timestamps of minimal occurrences for utility calculations,
which can result in missing high utility episodes. Second, the state-of-
the-art UP-Span algorithm is inefficient on large databases because it
uses a loose upper bound on the utility to reduce the search space. This
paper addresses the first issue by redefining the problem to guarantee
that all high utility episodes are found. Moreover, an efficient algorithm
named HUE-Span is proposed to efficiently find all patterns. It relies on a
novel upper-bound to reduce the search space and a novel co-occurrence
based pruning strategy. Experimental results show that HUE-Span not
only finds all patterns but is also up to five times faster than UP-Span.

1 Introduction

Frequent Episode Mining (FEM) [1,4-6,12,15] is a fundamental data mining
task, used to analyze a sequence of discrete events. It consists of identifying all
episodes having a support (occurrence frequency) that is no less than a user-
defined minimum support threshold. An episode (also known as serial episode)
is a totally ordered set of events (a subsequence). Though FEM has been well-
studied, it assumes that each event cannot appear more than once at each time
point and that all events have the same importance (e.g. in terms of weight, unit
profit or value). But for many real-life applications, this assumption does not
hold [17]. For example, for market basket analysis, a sequence of customer trans-
actions may contains non binary item purchase quantities at each time point,
and purchased items may have different importance in terms of unit profits. On
such data, FEM algorithms may discover a large amount of frequent episodes



that yield a low profit and discard profitable episodes that are less frequent.
Hence, to find interesting episodes in sequences, other aspects can be considered
such as a measure of importance (e.g. profit).

To address this issue, FEM was generalized as High Utility Episode Mining
(HUEM) [17] to consider the case where events can appear more than once at
each time point and each event has a weight indicating its relative importance.
The goal of HUEM is to find High- Utility Episodes (HUEs), that is sub-sequences
of events that have a high importance as measured by a utility measure (e.g.
profit). HUEM has many applications such as website click stream analysis [2],
cross-marketing in retail stores [11,16], stock investment [13] and cloud work-
load prediction [3]. However, HUEM is more difficult than FEM because the
downward-closure property used in FEM to reduce the search space using the
support measure does not hold for the utility measure. That property states
that the support of an episode is anti-monotonic, that is a super-episode of an
infrequent episode is infrequent and sub-episodes of a frequent episode are fre-
quent. But the utility of an episode is neither monotonic or anti-monotonic, that
is a high utility episode may have a super-episode or sub-episode with lower,
equal or higher utility [17]. Hence, techniques designed for reducing the search
space in FEM cannot be directly used for HUEM. To mine HUEs in a com-
plex sequence (where some events may be simultaneous) without considering all
possible episodes, Wu et al. [17] proposed the UP-Span algorithm. It relies on
an upper-bound on the utility that is anti-monotonic, named EWU (Episode
Weighted Utilization), which is inspired by the TWU measure used in high util-
ity itemset mining [8]. Another HUEM algorithm named T-Span [11] was then
proposed but appears to be incomplete and is reported to provide a marginal
performance improvement over UP-Span (up to about 25% faster).

Although HUEM is useful, it has two major limitations. First, as this paper
will explain, the traditional way of performing utility calculations for episodes,
which can underestimate their utility. As a consequence, current HUEM algo-
rithms may miss several HUEs [11,17]. The reason for this underestimation is
that an episode may be supported by multiple timestamps in a time interval
but traditional HUEM algorithms only consider the timestamps that follow a
specific processing order, and ignore other timestamps where the episode may
yield a higher utility. This simplifies the design of HUEM algorithms but can
lead to discarding high utility patterns. Second, the state-of-the-art UP-Span
algorithm utilizes the loose EWU upper bound on utility. This upper bound is
ineffective for reducing the search space of HUEM in large databases.

This paper addresses these limitations by presenting a new framework for
mining HUEs in complex event sequences. Contributions are as follows:

— The problem of HUEM is redefined to fix the utility calculation of episodes
to guarantee that all high utility episodes are found.

— An efficient algorithm named HUE-Span (High Utility Episodes mining by
Spanning prefixes) is proposed for mining the complete set of HUEs in
complex event sequences.



— The proposed algorithm integrates the concept of remaining utility [8,14]
with the EWU model to derive a tighter upper bound on episode util-
ity, named ERU. HUE-Span applies novel search space reduction strategies
based on the ERU to reduce the number of candidate episodes.

— To reduce the cost of episode spanning (extending an episode with a single
event to generate a larger episode), a novel pruning strategy is proposed,
named EEUCP (Estimated Episode Utility Cooccurrence Pruning). It can
eliminate low utility episodes before a pattern is extended (spanned).

— The performance of the proposed HUE-Span algorithm is compared with
the state-of-the-art UP-Span algorithm on both synthetic and real datasets.
Results show that the proposed HUE-Span algorithm discovers all HUEs for
the redefined HUEM problem, while UP-Span can miss up to 65% of them.
Moreover, HUE-Span generates less candidates and is up to five times faster.

The rest of this paper is organized as follows. Section 2 introduces HUEM and
explains why the traditional HUEM model can miss HUEs. Section 3 presents
the revised HUEM problem. Then, Sections 4, 5 and 6 respectively presents the
proposed HUE-Span algorithm, the experimental evaluation and the conclusion.

2 Frequent and High Utility Episode Mining

The first studies on episode mining focused on finding frequent episodes in a
sequence of discrete events with timestamps. FEM is defined as follows [12, 15].

Definition 1 (Complex event sequence). Let ¢ = {e1,ea, -+, e} be a fi-
nite set of events. A complex event sequence CES = ((tSEy,,t1), (tSE,,t2), -,
(tSE;, ,ty)) is an ordered sequence of simultaneous event sets, where each tSE;, C
€ consists of all events associated with a time stamp ¢;, and t; < t; for any
1<i<ji<n.

For example, Fig. 1 (left) shows a complex event sequence CES = (((A), 1),
((BD),t2), ((BC),t3), ((AC),t4), ((D),t5)), that will be used as running exam-
ple. Such sequence can represents various types of data such as customer trans-
actions [1,4-6], alarm sequences [15], stock data [13] and cloud data [3].

D(1) C(1) c(1)

A(1) B(2) B(3) A(2 D(1) Event | A|B|C|D
e 4 @ o—O 9 @ > Profit | 2 | 1
t; t; t3 t ts

Fig.1: A complex event sequence (left) and external utility values (right)

The goal of FEM is to find all frequent episodes [12, 15]. The support (occur-
rence frequency) of an episode is measured by counting its minimal occurrences
in the input sequence. These concepts are defined as follows.



Definition 2 (Episode containing simultaneous event sets). An episode
« is a non-empty totally ordered set of simultaneous events of the form (SEj,
SEs,---,SEy), where SE; C ¢ and SE; appears before SE; for 1 <i < j <k.

Definition 3 (Occurrence). Given an episode o = (SEy,SEs, -+ ,SEy), a
time interval [ts,t.] is called an occurrence of « if (1) «a occurs in [t, te], (2)
SE; occurs at ts, and (3) SEj occurs at t.. The set of all occurrences of « is
denoted as occSet(a).

For instance, the set of all occurrences of ((B), (C)) is occSet({((B), (C))) =
{[t2, ta], [t2, tal, [ts, tal}-

Definition 4 (Minimal occurrence). Given two time intervals [tg,t.] and
[t.,t.] of occurrences of episode a, [t,,t.] is a sub-time interval of [ts,t.] if t5 <
) <t <t.. The time interval [ts,t.] is called a minimal occurrence of a if (1)
[ts,te] € occSet(a), (2) there is no alternative occurrence [t),t.] of a such that

[t.,t.] is a sub-time interval of [ts,t.]. The complete set of minimal occurrences
of «a is denoted as moSet(a).

For example, the episode {(B),(C))) has two minimal occurrences that are
moSet(((B), (C))) = {[tz,ts], [ts, t]}.

Definition 5 (Support of an episode). The support of an episode is its
number of minimal occurrences.

For example, the support of episode ((B),(C)) is [moSet({(B), (C)))| = 2.
FEM consists of finding all episodes that have a minimum support. To consider
that events can appear more than once at each time point and that events
may have different importance (utility), FEM was generalized as HUEM [17] by
introducing the concepts of internal and external utility.

Definition 6 (Internal and external utility of events). Each event e € ¢
of a CES is associated with a postive number p(e), called its external utility,
representing its relative importance (e.g. unit profit). Moreover, each event e in
a simultaneous event set tSE; at a time point t; is associated with a positive
number q(e, t;), called its internal utility indicating its number of occurrences at
time ¢; (e.g. purchase quantity).

For example, Fig. 1 (left) shows a complex event sequence with internal utility
values. At time point to, events B and D have an internal utility (quantities) of
2 and 1, respectively. Fig. 1 (right) indicates that the external utility of A, B, C
and D are 2, 1, 3 and 2, respectively. The goal of HUEM is to find high utility
episodes, where the utility of an episode is calculated as follows [17].

Definition 7 (Utility of an event at a time point). The utility of an event
e at a time point ¢; is defined as u(e,t;) = p(e) x q(e, t;).

For example,u(B,t3) = p(B) X q¢(B,t2) =1 x2=2.



Definition 8 (Utility of a simultaneous event set at a time point). The
utility of a simultaneous event set SE = {e1),€f(2), -+ ,€rq)} at a time point

t; is defined as u(SE,t;) = Z;Zl u(eg(s), ti)-
For example, u((BD),t2) = u(B,t2) + u(D,t2) =2+ 2 = 4.

Definition 9 (Utility of a minimal occurrence of an episode). The utility
of a minimal occurrence [ts, t.] of an episode o« = (SE1, SEs, -+ , SE}) is defined

as u(a, [ts,te]) = Zle u(SE;, ty(s)).

For example, the utility of the minimal occurrence [ta, t3] of & = ((B), (C))
is u(ay, [to,t3]) = w(B,t2) + u(C,t3) = 243 = 5. And u(a, [t3,t4]) = 6.

Definition 10 (Utility of an episode in a complex event sequence). The
utility of an episode o in a complex event sequence is the sum of the utility of

its minimal occurrences, that is u(a) = -, semoset(a) W, mo).

For example, the utility of ((B), (C)) in the running example is u({(B), (C))) =
u(((B), (C)), [t2, t3]) + u(((B), (C)), [ts, ta]) = 5 + 6 = 11.

Definition 11 (High utility episode mining). An episode is a high utility
episode, if and only if its utility is no less than a user-specified minimum utility
threshold (minUtil). The task of HUEM is to find all HUEs [17].

A major problem with the traditional definition of HUEM is that the utility
of an episode is calculated without considering all the timestamps of its min-
imal occurrences. Hence, utility can be underestimated and it can be argued
that some HUEs are missed. This problem is illustrated with an example. Let
minUtil = 9. The utility of episode ((A), (B),(A)) in the CES is calculated
as u(((4), (B), (4))) = u(((A), (B), (A)), [t1, ta]) = u(A, t1) + u(B, t2) + u(A, ta)
= 2+ 2+ 4 = 8. Thus, this pattern is considered as a low utility episode by
HUEM algorithms, and is discarded. But it can be observed that this pattern
is a HUE for other timestamps in the same minimal occurrence [t1,t4]. In fact,
((A), (B),(A)) also appears at timestamps t1, t3 and ¢4 with a utility of 9 >
manUtil. The reason why current HUEM algorithms calculate the utility of that
episode as 8 in [t;, t4] rather than 9 is that the pattern ((A), (B), (A)) is obtained
by extending ((A), (B)) with (A), and that the timestamps of ((A), (B), (A)) are
obtained by combining those of the minimum occurrence of {(A), (B)), i.e. [t1, ta]
with the timestamp t4 of (A4). In other words, timestamps used for calculating
the utility of a minimal occurrence of an episode are determined by the process-
ing order, and other timestamps are ignored. This can lead to underestimating
the utility of episodes in time intervals of their minimal occurrences, and hence
to discard episodes that should be considered as HUEs.

3 Redefining High Utility Episode Mining

To fix the above issue of utility calculation in HUEM, and ensures that all HUEs
are found, this paper proposes to consider all timestamps that match with an



episode in each of its minimal occurrence. This is done by using the maximum
of the utility values. Definition 9 is redefined as follows.

Definition 12 (Redefined utility of a minimal occurrence of an episode).

Let [ts,t.] be a minimal occurrence of an episode a = (SEy,SEs, - ,SEy), in
which each middle simultaneous event set SE; € a and i € [2,k — 1] is as-
sociated with some (at least one) time points t4(;y1,%4z)2, - tg(i);- The util-

ity of the episode a w.r.t. [ts,te] is defined as u(a, [ts,te]) = w(SE1,ts) +
Zf:zl maz{u(SE;, tyiye)|x € [1, 7]} + u(SEk, te).

For example, the redefined utility of the minimal occurrence [t1,t4] of ((A),
(B), (A)) is ul((A), (B), (A)), [t1,ta)) = u(A,t1) + maz{u(B,tz),u(B, ts)} +
u(A,ty) = 2+ max(2,3) + 4 = 9. Thus, that episode is a HUE for minUtil = 9.

Moreover, to avoid finding some very long minimal occurrences which may
not be meaningful, the concept of mazimum time duration is used in the pro-
posed problem, as in previous work [12].

Definition 13 (Maximum time duration). Let mazDur be a user-specified
mazimum time duration. A minimal occurrence [tg, t.] of an episode « is said to
satisfy the maxzimum time duration if and only if t, — t. + 1 < mazxzDur.

The redefined HUEM problem is defined as follows.

Definition 14 (Redefined High Utility Episode Mining). Given minUtil
and maxDur thresholds, the redefined problem of HUEM is to find all HUEs
when considering only minimal occurrences satisfying the maxDur constraint,
and calculating the utility using Definition 12.

4 The HUE-Span algorithm

This subsection introduces the proposed HUE-Span algorithm to efficiently dis-
cover HUEs in a complex event sequence. HUE-Span adopts the prefix-growth
paradigm [17], starting from patterns containing single events and then recur-
sively concatening events to obtain larger patterns.

Definition 15 (Simultaneous and serial concatenations). Let a = (SF,

SEy,---,SE;) and 8 = (SE},SE;,---,SE;) be episodes. The simultaneous
concatenation) of o and 8 is defined as simul-concat(«, 8) = (SE1,SFEy, -+ ,SE,
U SE], SEy,---,SE;). The serial concatenation of episodes o and f3 is defined
as serial-concat(a, ) = (SE1, SEs, - -+ ,SE,, SE}, SEy, -+ ,SEy).

To reduce the search space, the EWU upper bound on the utility was pro-
posed [17]. It is presented, and then a tighter upper bound is proposed.

Definition 16 (Episode-Weighted Utilization of a minimal occurrence
of an episode). Let there be a minimal occurrence [ts,t.] of an episode
a=(SEy,SEs, - ,SE}) satisfying maxz Dur, where simultaneous event sets are



associated with some time points t4(1),%4(2) " - tg(x), respectively. The episode-
weighted utilization (EWU) of the minimal occurrence [ts,t.] of o is EWU (e,
[ts,te]) = Zi:ll u(SE;, tys)) + Z;ilﬂaajDUPI u(tSEj,j), where tSE; is the si-
multaneous event set at time point j in CES.

Definition 17 (Episode-Weighted Utilization of an episode). The episode-
weighted utilization of «v is the sum of the EWU of its minimal occurrences, that
is EWU(O&) = EmoemoS’et(a) EWU(O{, mo).

For example, if mazDur = 3, EWU({(4),(D))) = {u(4,t1) +[u((BD),t2) +
u((BC),t3)]} +{u(A, ta)+u(D,t5)} = {2+[4+6]} +{4+2} = 18. The EWVU is
an anti-monotonic upper bound on an episode’s utility and can be used to reduce
the search space [17]. To be more effective, a tighter upper bound is proposed in
this paper, inspired by the concept of remaining utility [8,9,14].

Definition 18 (Episode-Remaining Utilization of a minimal occurrence
of an episode). Let > be a total order on events from e. The episode-remaining
utilization of a minimal occurrence [ts,t.] of an episode « is ERU (a, [ts,te]) =
Zi;l u(SE;, tyy)+u(rSE;,, te)—l—zzijfwafl u(tSE;, j), where u(rSEy,, t.)

= EmEtSEtE/\z>SEk u(xv te)~

Definition 19 (Episode-Remaining Utilization of an episode). For an
episode a, its episode-remaining utilization is the sum of the FRU of its minimal
occurrences, that is ERU(a) = 3_, ¢ noset(a) ERU (, mo).

For example, if maxzDur = 3, ERU({(A), (D)))

= {[U(A, t1)+U(D,t2)]+0+
u((BC),t3)} + {u(A,ts) +u(D,t5)} ={[2+2] +0+6

}+{4+2} =16.

Lemma 1 (Anti-monotonicity of the ERU). Let a and /8 be episodes,
and v = simult-concat(a, 8) or v = serial-concat(c, 8). It follows that u(y) <
ERU(v) < ERU(a) < EWU («).

Proof. Let moSet(a) = [moy, mog, - -+ ,mo,], moSet(y) = [mo}, moy, - -- ,moy|.
Because v = simult-concat(a, 8) or v = serial-concat(a, 3), |moSet(a)| >
|moSet(v)|. Based on Def. 16 and 18, EWU (a) > ERU () = Y., ERU (o, mo0;)
> 31 ERU(y,mo;) = 321 ERU(v,mo;) = ERU(7) = u(7).

Theorem 1 (Search space pruning using FRU). For an episode «, if
ERU(a) < minUtil, then « is not a HUE as well as all its super-episodes
(obtained by concatenations). Proof. This follows from Lemma 1.

The proposed algorithm uses the EWU and EFRU to eliminate candidate
episodes during the search for HUEs. However, the FRU and EWU cannot be
used to remove events from the complex sequence, and it is costly to calculate
these upper bounds. To remove events, we introduce a measure called AWU of
events. If the AWU of an event is less than minUtil, it can be removed. The
rationale for pruning using the AWU will be explained after.



Definition 20 (Action-Window Utilization of an episode). Let moSet(a)
= [ts1,te1], [ts2, te2]s -, [tsk, ter] De the set of all minimal occurrence of the
episode «. Each minimal occurrence [tg;,te;], must be a sub-time interval of
[tei — maxDur + 1, ts; + mazDur — 1]. Hence, the action-window utilization of
a is defined as AWU () = Zle E;;Z"ﬁﬁf;%;;ﬂ tSE;.

For example, let mazDur = 3. The AWU({((A))) = [0+0+2+4+6] +
[4+6+7+240] =31. The AWU({(AC))) = [4+6+ 742+ 0] = 19. The
AWU(((A),(B))) =[0+2+4+6] =12.

Algorithm 1: The HUE-Span algorithm

input : CES: a complex event sequence,
minUtil and maxDur: the user-specified thresholds.
output: The complete set of high utility episodes
1 Scan C'ES once to calculate the AWU of each event, and remove events such
that their AWU < minUtil from the CES, let ex be the events that their
AWU > minUtil. Let > be the total order of AWU ascending values on ex;
Scan the updated CES to build EEUCSsimu and EEUCSserial;
foreach event a € ex such that ERU(«) > minUtil do
‘ MiningHU E(a, moSet(a), minUtil, mazDur);
end
Procedure MiningHU E(a, moSet(a), minUtil, mazDur):
if wu(a) > minUtil then Output o
MiningSimult HU E(a, moSet(a), minUtil, max Dur);
MiningSerial HU E(a, moSet(a), minUtil, maxz Dur);
EndProcedure
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The HUE-Span algorithm. The pseudocode is shown in Algorithm 1.
It takes as input a complex event sequence C'ES with utility values, and the
minUtil and maz Dur thresholds. The algorithm first scans the CES to calculate
the AWU of each event. The algorithm removes events having AW U values that
are less than minUtil from CES, and identifies the set ex of all events having
AWU values that are no less than minUtil. The AW U values of events are then
used to establish a total order > on events, which is the order of ascending AWU
values. A second sequence scan is then performed to build a new structure, named
EEUCS (Estimated Episode Utility Co-occurrence Structure) used by a novel
strategy named FEUC P (Estimated Episode Utility Co-occurrence Pruning) to
reduce the number of EWU and ERU calculations. The EEUCS structure is
defined as a set of triples of the form (z,y,c), where a triple (z,y, ¢) indicates
that AWU ({(xy))) = ¢ (where y = x), or that AWU ({(x), (y))) = c. A EEUCS
of the first type is called EEUC Ssimui, while a EEUCS of the second type
is called EEUCS;eriq1- The EEUC S imuy and EEUC S eriq; sStructures can be
implemented as two matrices as shown in Fig. 2. But in HUE-Span, they are
implemented as hashmaps of hashmaps where only tuples of the form (z,y, ¢)



such that ¢ # 0 are stored. This representation is more memory efficient because
on real data, few events typically co-occur with other events in EEUCSg;muit-

Event | A|D| B| C
A 0 [27 12|12

17| 0 [19] 19

D
B |36]15]19 |38
c |19]/30]|0 |19

(@) EEUCSsimuu (b) EEUCSseriar

Fig.2: EEUC Ssimuir and EEUC Sgeriqi for the sequence of Fig. 1 and mazDur = 3

Then, the algorithm considers extending each episode a € ex such that
ERU(«a) > minUtil by calling the MiningHUE procedure. Other episodes are
not extended, based on Theorem 1. The MiningHUE procedure spans a prefix «
(Line 6-10) by calling two procedures MiningSimultHUE and MiningSerialHUE.
The former first considers concatenating simultaneous events to a according to
>, while the latter first considers concatenating serial events to «.

Algorithm 2: MiningSimultHUE

input : a: an episode, occSet(a): possible occurrences of
minUtil, maxDur: the user-specified thresholds.
output: The set of high utility simultaneous episodes w.r.t prefix «
1 Let last Event be the last event of a, and initialize 3-Set < 0;
2 foreach occurrence of « [ts,tc] € occSet(a) do

3 foreach event e that occurs at t. and e > lastEvent do
4 B = simult-concat(a, e);
5 occSet(B) + occSet(B) U [ts, tel;
6 if [ts,te] is a minimal occurrence of 8 then
moSet(f) < moSet(B) U [ts, te];
Add § to B-Set;
end
9 end
10 foreach episode 8 € 3-Set do
11 if V(z,y) € B, EEUC Ssimuit(z,y) > minUtil N EEUC Sserial(x,y)
> minUtil and ERU(B) > minUtil then
MiningHU E (B, occSet(8), minUtil, max Dur);

12 end

The MiningSimultHUE procedure (Algorithm 2) is applied as follows. For
each occurrence [ts,t.] € occSet(a), the algorithm considers each event e that



occurs at t, and such that e is greater than all events in the last event of «
according to >. For each such event, the algorithm performs a simultaneous
concatenation of a with e to obtain an episode 8 (Line 4). Then, [ts, t] is added
to occSet(B) (Line 5). If [ts,te] is a minimal occurrence, [ts,t.] is added to
moSet(5) (Line 6). Then, S is added to a set 8-Set. After occSet(«) has been
traversed, the algorithm considers each episode 5 € (-Set. If the episode does
not pass the FEUCP pruning conditions, it is ignored (Line 11). Let y be the
last added event to 8. The pruning conditions are that there is no tuple (z,y, ¢)
such that ¢ > minUtil (1) in EEUC Sgjmui for an event x appearing at the same
time point as y, and no such tuple (2) in EEUC Sgeriq for an event z followed by
y. If the conditions are verified, then 8 and all its super-episodes are not HUEs
and are ignored. Otherwise, FRU(3) is calculated by using moSet(5), and if
ERU(B) > minUtil, the procedure MiningHUE is called to further concatenate
events to 8 to find larger HUEs (Line 11).

Algorithm 3: MiningSerialHUE

input : a: an episode, occSet(a): possible occurrences of a,
minUtil, maxDur: the user-specified thresholds.
output: The set of high utility serial episodes w.r.t prefix a
1 Let 3-Set + 0;
2 foreach minimal occurrence [ts1,te1] € occSet(a) do

3 Let [ts2,te2] be the next minimal occurrence;

4 foreach event e occurring at a time point ¢ in
[te1 + 1, min(ts1 + mazDur — 1,te2)] do

5 B = serial-concat(c, e);

6 occSet(B) < occSet(B) U [ts1, t];

7 if [ts1,t] is a minimal occurrence of 3 then

moSet() <— moSet(S) U [ts1,t];
Add B to B-Set;
9 end
10 end
11 foreach episode 8 € 3-Set do
12 if V(z,y), EEUC Sserial(z,y) > minUtil and ERU(B) > minUtil then
MiningHU E (B, occSet(8), minUtil, max Dur);

13 end

The MiningSerialHUE procedure (Algorithm 3) is applied as follows. For
each minimal occurrence [ts1,t.1] of oceSet(a), the algorithm finds the next
minimal occurrence [ts2, tea] (Line 2-3). Then, the algorithm processes each event
e occurring at a time point ¢ in interval [te1 + 1, min(ts; + maxzDur — 1,.9)]
(Line 4). For each such event e, a serial concatenation of « with e is done to
obtain an episode 8 (Line 7). Here, it is important to note that existing HUEM
algorithms [11,17] ignore the fact that ¢ cannot exceed the end time point of
the next minimal occurrence (or the largest time point of CES). If ¢ exceeds



the end time point of the next minimal occurrence (¢ > te2), then [ts1, ] cannot
be a minimal occurrence because [tso,t] is a sub-time interval of [ts1,t]. Hence,
this technique reduces the search space. Then, the next operations are the same
as MiningSimultHUE with the only difference being that only EEUC Sseriqr is
used in MiningSerialHUE (Line 12). This is because no events are simultaneous
events with the last added event y in 5.

The EEUCRP strategy is correct (only prunes low-utility episodes) because
the AWU considers a larger window than FRU, and FRU is an upper bound
on the utility (Theorem 1). Because HUE-Span starts from single events and
considers larger episodes by recursively performing simultaneous and serial con-
catenations, and only prunes the search space by Theorem 1 and using FEUCP,
HUE-Span is correct and complete to discover all HUEs.

5 Experimental Evaluation

We performed experiments to assess the performance of the proposed algorithm.
Experiments were performed on a computer having a 64 bit Xeon E3-1270 3.6
Ghz CPU, running Windows 10 and having 64 GB of RAM. We compared
the performance of HUE-Span with the state-of-the-art UP-Span algorithm for
high-utility episode mining. Both real and synthetic datasets were used to com-
pare the algorithms’ performance. The real Retail and Kosarak datasets are
commonly used in the pattern mining literature and were obtained from the
SPMF library website (https://www.philippe-fournier-viger.com/spmf/),
while synthetic datasets were generated using the IBM data generator. The IBM
generator has four parameters: T is the average size of a simultaneous event set
at a time point; [ is the average size of event sets in frequent episodes; N is the
number of distinct events; D is the total number of time points. Internal utility
and external utility values were then generated using the SPMF generator. It has
two parameters: @ is the maximum internal utility (quantity) of each event at a
time point; F' is the average external utility of each event. The obtained Retail
and Kosarak datasets have unit profits (external utility) and purchased quan-
tities (internal utility). Note that these three datasets are sometimes considered
as transaction databases but they also can be considered as a single complex
event sequence by regarding each item as an event and each transaction as a
simultaneous event set. Characteristics of the datasets are presented in Table 1.

Table 1: Characteristics of the datasets

Dataset #Time Point|#Event|Avg. Length
T25I10N1KD10KQ10F5 9,976 929 24.8
Retail 88,162 16,470 10.3
Kosarak 990,002 41,270 8.1




In the experiments, UP-Span is compared with three versions of the proposed
algorithm: HUE-Span(ERU) only uses ERU for search space pruning; HUE-
Span(EEUCP) only uses EEUCP for search space pruning; HUE-Span(ERU
+ EEUCP) uses both ERU and FEUCP for pruning. In the following, an
algorithm name followed by a star * means that it applies the proposed redefined
utility (Definition 12) to find all HUEs by calculating the maximum utility for
each minimal occurrence of an episode. In the following experiments, minUtil
is expressed as a percentage of the total utility of the complex event sequence.
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Fig. 3: Comparison of execution times for various minUtil and minDur values

Fig. 3 compares the runtimes of HUE-Span and UP-Span for different minUtil
and maxDur values on these three datasets respectively. In the leftmost figures
from top to bottom, max Dur was set to 5, 5 and 3 respectively. In the rightmost



figures from top to bottom, minUtil was set to 2%, 20% and 2% respectively.
It is observed that HUE-Span(ERU+EEUCP) is up to 5 times faster than UP-
Span on all datasets. Moreover, for the dense dataset (T25I110N1KD10KQ10F5),
HUE-Span(ERU+EEUCP) is up to 20 times faster than UP-Span. This is be-
cause pruning using FRU is more effective for dense datasets. Six sub-figures
show enlarged parts of the charts to better show the runtime differences between
ERU pruning and EEUCP. It can be observed that ERU pruning is better than
EFEUCP. The reason is that FEUCP uses the AWU of an episode, and this
latter considers a larger window than the FRU.
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Fig.4: Number of candidates on T25I10N1KD10KQ10F5 for various minUtil and
minDur values

Fig. 4 shows the number of candidates generated by different algorithms on
T25I10N1KD10KQ10F5 using a log scale. In the left figure, mazDur = 3 and
in the right figure, minUtil = 2%. It is observed in Fig. 4 that the number of
candidates grows rapidly when minUtil decreases or mazDur increases. It is
also seen that using FRU pruning reduces the number of candidates by a large
amount compared to if only EWU pruning or EEUCP are used. For example,
in Fig. 4 (left), HUE-Span(ERU+EEUCP) generates 10 times less candidates
than UP-Span when minUtil is set to 1%.

Memory consumption of the algorithms was also evaluated. Fig. 5 (left) com-
pares the memory consumption of the algorithms on the Retail dataset for dif-
ferent minUtil values. It is observed that HUE-Span with pruning strategies
uses less memory than UP-Span since the proposed pruning strategies reduce
the number of candidates. Fig. 5 (right) compares memory consumption of the
algorithms on the Kosarak dataset for different minUtil values. It is found that
HUE-Span(ERU) sometimes uses less memory than HUE-Span(ERU+EEUCP)
because the EEUCSg;muiz and EEUC Sgeriq1 Tequire memory. Overall, results
show that the HUE-Span(*) algorithm is better than the UP-Span(*) algorithm.

The number of patterns found was also compared for different minUtil and
maxDur values. Results for Retail and Kosarak are shown in Table 2. The
column #HUFE* indicates the number of HUEs found using the proposed re-
defined utility (calculated as the maximum utility for each minimal occurrence
of an episode). The column #HUE indicates the number of HUEs found by
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Fig. 5: Memory consumptions of the algorithms

UP-Span. The column #HU E~ indicates the number of patterns for which the
utility is understimated by UP-Span. It can be observed that UP-Span finds
much less HUEs than the proposed HUE-Span* algorithm, missing up to 65% of
the HUEs found by HUE-Span*. Moreover, UP-Span underestimates the utility
of up to 79% of the HUEs that it outputs in terms of redefined utility.

Table 2: Number of patterns found by the algorithms

Dataset|minUtil|\maxDur|#HUE" |#HUFE|#HUE~
1% 5 1,556 1,174 745
1.5% 5 523 422 196
Retail 2% 5 179 170 98
2% 6 730 439 296
2% 7 2,084 | 1,077 858
10% 5 105 73 29
15% 5 27 22 5
Kosarak | 20% 5 3 2 0
20% 6 21 8 1
20% 7 81 28 16

6 Conclusion

This paper demonstrated that the traditional HUEM model can underestimate
the utility of episodes and thus miss HUEs. To address this issue, this paper
has adapted the HUEM model to consider the highest (maximal) utility for each
minimal occurrence. Moreover, to mine HUEs efficiently, an algorithm named
HUE-Span was proposed. It relies on a novel ERU upper bound to reduce the
search space and a novel pruning strategy based on event co-occurrences. Exten-
sive experiments on both synthetic and real datasets have shown that HUE-Span



not only discovers all HUEs but is up to five times faster than the state-of-the-
art UP-Span algorithm. The source code of HUE-Span and datasets can be
downloaded from the SPMF website. For future work, we will design other opti-
mizations for high utility episode mining and consider using high utility episodes
to derive high utility episode rules [5, 6], peak episodes [10] and significant pat-
terns [7].
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