
Soft Comput
DOI 10.1007/s00500-016-2106-1

METHODOLOGIES AND APPLICATION

A binary PSO approach to mine high-utility itemsets

Jerry Chun-Wei Lin1 · Lu Yang1 · Philippe Fournier-Viger2 · Tzung-Pei Hong3,4 ·
Miroslav Voznak5

© Springer-Verlag Berlin Heidelberg 2016

Abstract High-utility itemset mining (HUIM) is a criti-
cal issue in recent years since it can be used to reveal the
profitable products by considering both the quantity and
profit factors instead of frequent itemset mining (FIM) or
association-rule mining (ARM). Several algorithms have
been presented tomine high-utility itemsets (HUIs) andmost
of them have to handle the exponential search space for dis-
coveringHUIswhen the number of distinct items and the size
of database are very large. In the past, a heuristic HUPEumu-
GRAM algorithm was proposed to mine HUIs based on
genetic algorithm (GA). For the evolutionary computation

Communicated by V. Loia.

B Jerry Chun-Wei Lin
jerrylin@ieee.org

Lu Yang
luyang@ikelab.net

Philippe Fournier-Viger
philfv@hitsz.edu.cn

Tzung-Pei Hong
tphong@nuk.edu.tw

Miroslav Voznak
miroslav.voznak@vsb.cz

1 School of Computer Science and Technology, Harbin Institute
of Technology Shenzhen Graduate School, Shenzhen, China

2 School of Natural Sciences and Humanities, Harbin Institute
of Technology Shenzhen Graduate School, Shenzhen, China

3 Department of Computer Science and Information
Engineering, National University of Kaohsiung, Kaohsiung,
Taiwan, ROC

4 Department of Computer Science and Engineering, National
Sun Yat-sen University, Kaohsiung, Taiwan, ROC

5 Department of Telecommunications, Faculty of Electrical
Engineering and Computer Science, VSB Technical
University of Ostrava, Ostrava-Poruba, Czech Republic

(EC) techniques of particle swarm optimization (PSO), it
only requires fewer parameters compared to the GA-based
approaches. Since the traditional PSO mechanism is used
to handle the continuous problem, in this paper, the dis-
crete PSO is adopted to encode the particles as the binary
variables. An efficient PSO-based algorithm, namely HUIM-
BPSO, is proposed to efficiently find HUIs. The designed
HUIM-BPSO algorithm finds the high-transaction-weighted
utilization 1-itemsets (1-HTWUIs) as the size of the particles
based on transaction-weighted utility (TWU) model, which
can greatly reduce the combinational problem in evolution
process. The sigmoid function is adopted in the updat-
ing process of the particles for the designed HUIM-BPSO
algorithm. An OR/NOR-tree structure is further developed
to reduce the invalid combinations for discovering HUIs.
Substantial experiments on real-life datasets show that the
proposed algorithm outperforms the other heuristic algo-
rithms for mining HUIs in terms of execution time, number
of discovered HUIs, and convergence.

Keywords Binary PSO · OR/NOR-tree · Discrete PSO ·
High-utility itemsets · TWU model

1 Introduction

Knowledge discovery in database (KDD) is an emerging
issue since the potential or implicit information can be found
from a very large database. Most of them, frequent itemset
mining (FIM) or association-rule mining (ARM) has been
extensively developed to mine the set of frequent itemsets
in which their occurrence frequencies are no less than mini-
mum support threshold or their confidences are no less than
minimum confidence threshold (Agrawal and Srikant 1994;
Chen et al. 1996). Since only the occurrence frequencies of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2106-1&domain=pdf

J. C-W. Lin et al.

itemsets are discovered whether in FIM or ARM, it is insuffi-
cient to identify the high-profit itemsets especially when the
itemsets are rarely appeared but have high profit values. For
example, bread may be purchased hundreds or thousands per
day while fewer diamonds are bought in a week or month.
The former one has higher frequency but bought with lower
profit value while the later one has lower frequency with
higher profit value for retailers.

To solve the limitation of FIM or ARM, high-utility item-
set mining (HUIM) (Ahmed et al. 2009; Yao et al. 2004;
Yao and Hamilton 2006; Yen and Lee 2007) was designed
to discover the “useful” and “profitable” itemsets from the
quantitative databases. An itemset is considered as a high-
utility itemset (HUI) if its utility value is no less than the
user-specific minimum utility threshold. In real-world prac-
tice, the utility of an itemset can be measured by various
factors, such as weight, profit, or cost, which can be defined
by users’ preferences. Many algorithms were, respectively,
developed to mine the set of complete HUIs. Chan et al.
(2003) firstmentioned utilitymining problem instead of FIM.
Yao et al. (2004) considered the quantity of items as the inter-
nal utility and the unit profit of items as the external utility to
discover the HUIs. Since the past algorithms of HUIM suf-
fer the “combinational problem” for discovering HUIs, Liu
et al. designed the two-phase (TWU) model and developed
the transaction-weighted downward closure (TWDC) prop-
erty for mining HUIs (Liu et al. 2005). Ahmed et al. adopted
the TWUmodel and designed a IHUP algorithm for interac-
tive and incremental mining HUIs (Ahmed et al. 2009). Lin
et al. developed the condensed high-utility pattern (HUP)-
tree and related algorithm for discovering HUIs (Lin et al.
2011) by adopting the FP-tree structure (Han et al. 2004) and
TWUmodel. Lan et al. designed the mining algorithm based
on index-projection mechanism and developed the pruning
strategy to efficiently mine the HUIs (Lan et al. 2013). Tseng
et al. then designed the UP-growth mining algorithm (Tseng
et al. 2010) to retrieve the HUIs based on the developed UP-
tree structure. An efficient list-based algorithm (HUI-Miner)
was also proposed to mine the HUIs without candidate gen-
eration (Liu and Qu 2012). Other related works of HUIM are
still developed in progress (Fournier-Viger et al. 2014; Wu
et al. 2012; Zihayat and An 2014).

The traditional algorithms of HUIM have to handle the
“exponential problem” of a very huge search space while
the number of distinct items or the size of database is very
large. Evolutionary computation is an efficient way and able
to find the optimal solutions using the principles of nat-
ural evolution (Cattral et al. 2009). The genetic algorithm
(GA) (Holland 1975) is an optimization approach to solve
the NP-hard and non-linear problems and used to investi-
gate a very large search spaces to find the optimal solutions
based on the designed fitness functions with various oper-
ators such as selection, crossover, and mutation. In the

past, Kannimuthu and Premalatha adopted the genetic algo-
rithm and developed the high-utility pattern extracting using
genetic algorithm with ranked mutation using minimum
utility threshold (HUPEumu-GRAM) to mine HUIs (Kan-
nimuthu and Premalatha 2014). Another algorithm, called
HUPEwumu-GRAM,was also designed tomineHUIswithout
specific minimum utility threshold (Kannimuthu and Pre-
malatha 2014). For those two algorithms, the crossover and
mutation operations are required to randomly generate the
next solutions in the evolution process. Besides, it needs
amounts of computations to find the satisfied high-utility
itemsets in the initial step, which is insufficient when the
number of distinct items is very large.

Instead of GAs, particle swarm optimization (PSO)
(Kennedy and Eberhart 1995) is also a bio-inspired and
population-based approach for finding the optimal solutions
by adopting the velocity to update the particles. It uses per-
sonal best solutions (pbest) and global best solutions (gbest)
to find the optimal solutions, which is unnecessary to per-
form the crossover and mutation operations used in GAs.
Traditionally, PSO is used to handle the continuous prob-
lem to find the optimal solutions, which is insufficient in
real-world applications to optimize for a discrete-valued
search spaces. Thus, the binary (discrete) PSO algorithm
was designed to find the optimal solutions for handling the
discrete-valued search spaces (Kennedy and Eberhart 1997).
Since each dimension in the particle can be represented as
1 or 0 in BPSO approach, an item can be represented by 1
if it is purchased in the databases or represented as 0 if it
is absent in the original databases. Thus, the BPSO-based
mechanism (Kennedy and Eberhart 1997) can be used in the
issue of HUIM. In this paper, a BPSO-based algorithm with
an improved OR/NOR-tree structure is designed for mining
the HUIs. The key contributions of this paper are described
below:

1. Fewer algorithms have been developed to find the HUIs
based on evolutionary computation. In this paper, a dis-
cretePSO-based algorithm, namelyHUIM-BPSO, is thus
designed to find the HUIs by integrating the sigmoid
updating strategy and TWU model.

2. An OR/NOR-tree structure is developed to reduce the
multiple database scans by early pruning the invalid com-
binations of the particles. This process can greatly reduce
the computations of the invalid particles (not existing in
the original database).

3. Extensive experiments were conducted on real-life
datasets to evaluate the performance of the proposed
approach. Results showed that the proposed approach
can efficiently identify the complete HUIs from very
condense databases and outperform the state-of-the-art
GA-based algorithms.

123

A binary PSO approach to mine high-utility itemsets

The rest of this paper is organized as follows: Related
work is briefly reviewed in Sect. 2. Preliminaries and the
problem statement of PSO and HUIM are presented in Sect.
3. The proposed HUIM-BPSO algorithm and the designed
OR/NOR-tree structure are described in Sect. 4. An illus-
trated example is presented in Sect. 5. Experiments are
conducted and provided in Sect. 6. Finally, conclusions are
given in Sect. 7.

2 Related work

In this section, works related to particle swarm optimization
(PSO) and high-utility itemset mining (HUIM) are briefly
reviewed.

2.1 Particle swarm optimization

In the past, many heuristic algorithms have been facilitated
to solve the optimization problems for discovering the nec-
essary information in the evolutionary computation (Cattral
et al. 2009; Martnez-Ballesteros et al. 2010). The simple
genetic algorithm (SGA) (Holland 1975) is a fundamental
search technique to find the feasible and optimal solution in
a limit amount of time, which was inspired by the Darwinian
principles of the biological evolution, re-producing and the
survival of the fittest. Each chromosome in GA is composed
of the set of the fixed-length genes as a solution. Three oper-
ators such as selection, crossover, and mutation are required
in the evolution process of GA. Many variants of GAs have
been extensively studied and applied to a wide range of
optimization problems (Kannimuthu and Premalatha 2014;
Martnez-Ballesteros et al. 2010; Salleb-Aouissi et al. 2007).

Kennedy and Eberhart first introduced particle swarm
optimization (PSO) (Kennedy and Eberhart 1995) in 1995,
which was inspired by the flocking behavior of birds to solve
the optimization problems. Many individuals (particles) are
stochastically generated in the search space of PSO in the
evolution process. Each particle is represented as an opti-
mized solution by composing a set of velocity in the evolution
process. Instead of GA, each particle has memory to keep its
previous best particle (personal best, pbest) and its previous
best particle by considering its neighborhoods (global best,
gbest). The updating process of the particles based on PSO
is decided by the velocity, which is an easier way for imple-
mentation and faster to find the optimal solutions compared
to the GA-based approach. Besides, it is a non-trivial task
to set the appropriate rates of crossover and mutation for
GA-based approach. Moreover, PSO is not sensitive to the
number of population, which indicates that the PSO-based
approach can still find faster the optimal solutions when the
number of the population is set lower. The steps of PSO can
be illustrated as follows:

1. Initialize the velocities of particles by randomization.
2. The velocity of each particle in the dimension of search

space is thus adjusted and updated based on the gbest and
pbest.

3. Each particle in the dimension of search space is thus
adjusted and updated by its previous results and the
updated velocity.

4. Each updated particle is then evaluated by the pre-defined
fitness function to update pbest and gbest for next popu-
lation.

5. This iteration is repeatedly processed until the termina-
tion criteria is reached.

The PSO was originally defined to solve the continuous
valued spaces. In the updating process of PSO, the corre-
sponding particle and velocity are described as follows:

vid(t + 1) = w1 × vid(t) + c1 × rand() × (pbest

− xid(t)) + c2 × rand() × (gbest − xid(t)).
(1)

xid(t + 1) = xid(t) + vid(t). (2)

In Eqs. (1) and (2), t represents current number of itera-
tions; w1 plays a balancing role between global search and
local search; vid(t) is represented the id-th particle velocity;
xid(t) is represented the id-th particle; rand() is the random
number in range of (0, 1); c1 is the individual factor; and
c2 is the social factor, which is usually set as 2. In the past,
PSO has been adopted to various real-world applications.
Kuo et al. designed an algorithm tomine the association rules
(ARs) from the investor’s stock purchase behavior using the
IR value instead of the specific minimum support and min-
imum confidence thresholds (Kuo et al. 2011). Pears and
Koh presented a feasible method to mine the weighted asso-
ciation rules based on PSO (Pears and Koh 2012). More
meaningful weights are assigned to the items for revealing
useful weighted ARs. For the traditional PSO algorithm, it
was designed to handle the continuous-valued search spaces,
which could not be used to optimize for a discrete-valued
search spaces. In real-world situations, many problems are
set as the discrete variable spaces such as scheduling and
routing problems.Kennedy andEberhart then also designed a
discrete (binary) PSO (BPSO) (Kennedy and Eberhart 1997)
to solve the limitation of continuous PSO. Each particle in
BPSO is represented as a set of binary variables. The velocity
in the BPSO is updated by the probabilities of sigmoid func-
tion. Sarath and Ravi then applied the BPSO optimization
approach to discover ARs (Sarath and Ravi 2013). Liang et
al. proposed an adaptive PSO based on clustering, by consid-
ering the population topology and individual behavior control
together to balance local and global search in an optimiza-
tion process (Liang et al. 2014). Li et al. proposed a global

123

J. C-W. Lin et al.

optimization algorithm inspired by PSO and based on the
cuckoo search (CS) algorithm to solve a wide range of real-
world optimization problems (Li and Yin 2015). Tsai et al.
proposed a high-performance method to solve the clustering
problem based on PSO (Tsai et al. 2015). Other applications
by adopting PSO to mine the required information are still
in progress (Agrawal and Silakari 2013; Menhas et al. 2011;
Nouaouria et al. 2013). Besides of PSO, several evolutionary
algorithms such as differential evolution (Gong et al. 2010;
Storn and Price 1997) were developed and designed for solv-
ing the optimization problem.

2.2 High-utility itemset mining

High-utility itemset mining (HUIM) (Yao et al. 2004; Yao
and Hamilton 2006) is a critical issue and an emerging topic
in recent decades, which can be concerned as the extension
of frequent itemset mining (FIM), but more factors such
as quantity and profit are considered in it. The purpose of
HUIM is to discover the complete set of high-utility item-
sets (HUIs) in which the utility of an itemset is no less than
the pre-defined minimum utility threshold. The discovered
HUIs are concerned as the profitable itemsets which can be
used to aid managers or decision makers for making the effi-
cient sales strategies. Chan et al. first developed a mining
framework to discover the top-k closed utility patterns (Chan
et al. 2003). Not only the complete set of HUIs but also the
FIs are discovered based on their designed approach. Yao
et al. then designed an approach to discover the profitable
itemsets by considering both the purchase quantity (also
considered as internal utility) and profit (also considered as
external utility) of items to reveal HUIs (Yao et al. 2004;
Yao and Hamilton 2006). queryPlease consider rephrasing
the following sentence: Since the above algorithms suffer
the “combinational problem” to discover HUIs, Liu et al.
then developed a two-phase (TWU) model and designed the
transaction-weighted downward closure (TWDC) property
to early prune the unpromisingHUIs but still can discover the
complete HUIsSince the above algorithms suffer the “combi-
national problem” to discoverHUIs, Liu et al. then developed
a two-phase (TWU) model and designed the transaction-
weighted downward closure (TWDC) property to early prune
the unpromising HUIs but still can discover the complete
HUIs (Liu et al. 2005). To facilitate the problem of inter-
active and incremental HUIM, Ahmed et al. then developed
an IHUP algorithm with a designed tree structure to mine
HUIs (Ahmed et al. 2009). In the past, Lin et al. designed
a high-utility-pattern (HUP)-tree for discovering HUIs (Lin
et al. 2011). It first finds the high-transaction-weighted uti-
lization 1-itemsets (1-HTWUIs) based on TWU model. The
kept 1-HTWUIs are then used to build the HUP-tree based
on the FP-tree-like approach (Han et al. 2004). Tseng et al.

presented the UP-tree structure and UP-growth (Tseng et al.
2010) algorithm for discovering HUIs.

Since the tree-based algorithms limit the memory usage,
Lan et al. developed an projection-based algorithm based on
the index mechanism to fast mine HUIs (Lan et al. 2013.
A novel list-based algorithm, called HUI-Miner, was also
developed tomineHUIswithout candidate generation,which
requires less memory usage but can still efficiently retrieve
theHUIs (Liu andQu2012). Each entity of a designed utility-
list structure keeps three elements: transaction ids (tids), the
utility value of an item in a transaction (iutil), and the resting
utility value of items in a transaction (rutil). Fournier-Viger
et al. then presented an improved algorithm, namely FHM,
to quickly mine HUIs based on the built Estimated Util-
ity Co-occurrence Structure (EUCS) (Fournier-Viger et al.
2014). The EUCS keeps the relationships of 2-itemsets,
which can be used to reduce the computations of database
scans. Other related algorithms are also developed in the
progress (Wu et al. 2012; Zihayat and An 2014). Instead
of traditional HUIM, Kannimuthua and Premalatha first
designed the GA-based algorithm to mine HUIs with the
rankedmutation (Kannimuthu and Premalatha 2014). In their
approach, it is not easy to find the initial 1-HTWUIs as the
chromosome tofindHUIs.Avery huge computation is neces-
sary to initially set the appropriate chromosomes. Moreover,
the parameters of crossover and mutation are required in
the evolution process of GAs. In this paper, a high-utility
itemset mining based on binary particle swarm optimization
(HUIM-BPSO) algorithm is developed and an OR/NOR-tree
structure is further designed to avoid the invalid combina-
tions, thus improving the efficiency to discover HUIs.

3 Preliminaries and problem statement

3.1 Preliminaries

Let I = {i1, i2, . . . , im} be a finite set of m distinct
items. A quantitative database is a set of transactions D =
{T1, T2, . . . , Tn}, where each transaction Tq ∈ D (1 ≤ q ≤
n) is a subset of I and has a unique identifier q, called its TID.
Besides, each item i j in a transaction Tq has a purchase quan-
tity (internal utility) denoted as q(i j , Tq). Each profit of an
item i j is represented as pr(i j), and shown in a profit table.
A set of k distinct items X = {i1, i2, . . . , ik} such that X ⊆ I
is said to be a k-itemset, where k is the length of the itemset.
An itemset X is said to be contained in a transaction Tq if
X ⊆ Tq . A minimum utility threshold is set as δ according
to users’ preference.

An illustrated example is stated in Table 1 as the running
example in this paper. In Table 1, it has ten transactions and
six distinct items, denoted from (a) to (f). The profit value

123

A binary PSO approach to mine high-utility itemsets

Table 1 A quantitative database

TID Transaction (item, quantity)

T1 a:1, c:18, e:1,

T2 b:6, d:1, e:1, f :1

T3 a:2, c:1, e:1

T4 d:1, e:1

T5 c:4, e:2

T6 b:1, f :1

T7 b:10, d:1, e:1

T8 a:3, c:25, d:3, e:1

T9 a:1, b:1, f :3

T10 b:6, c:2, e:2, f :4

Table 2 A profit table Item Profit

a 3

b 9

c 1

d 5

e 6

f 1

(external utility) of each item is shown in Table 2 as the profit
table. The minimum utility threshold is set as (δ = 30%).

Definition 1 The utility of an item i j in a transaction Tq is
denoted as u(i j , Tq) and is defined as

u(i j , Tq) = q(i j , Tq) × pr(i j). (3)

For example, the utility of items (a), (c) and (e) in transac-
tion T1 are, respectively, calculated as u(a, T1) = q(a, T1)×
pr(a) = 1 × 3(=3), u(c, T1) = q(c, T1) × pr(c) = 18 × 1
(=18), and u(e, T1) = q(e, T1) × pr(e) = 1 × 6(=6).

Definition 2 The utility of an itemset X in transaction Tq is
denoted as u(X, Tq), and defined as

u(X, Tq) =
∑

i j⊆X∧X⊆Tq

u(i j , Tq). (4)

For example, the utility of the itemsets (ac) and (ace)
in transaction T1 are, respectively, calculated as u(ac, T1) =
u(a, T1)+u(c, T1) = q(a, T1)× pr(a)+q(c, T1)× pr(c) =
1×3+18×1(= 21) and u(ace, T1) = u(a, T1)+u(c, T1)+
u(e, T1) = q(a, T1)× pr(a)+q(c, T1)× pr(c)+q(e, T1)×
pr(e) = 1 × 3 + 18 × 1 + 1 × 6(= 27).

Definition 3 The utility of an itemset X in a database D is
denoted as u(X), and defined as

u(X) =
∑

X⊆Tq∧Tq∈D
u(X, Tq). (5)

For example, the utility of itemsets (b) and (bc) in D are,
respectively, calculated as u(b) = u(b, T2) + u(b, T6) +
u(b, T7)+u(b, T9)+u(b, T10) = 54+9+90+9+54(=216),
and u(bc) = u(bc, T10)(=56).

Definition 4 The transaction utility of a transaction Tq is
denoted as tu(Tq) and defined as

tu(Tq) =
∑

X⊆Tq

u(X, Tq). (6)

For example, tu(T1) = u(a, T1) + u(c, T1) + u(e, T1) =
3 + 18 + 6 (=27). The resting transactions from T2 to T10
are, respectively, calculated as tu(T2)(=66), tu(T3) (=13),
tu(T4)(=11), tu(T5) (=16), tu(T6) (=10), tu(T7) (=101),
tu(T8)(=55), tu(T9) (=15), and tu(T10) (=72).

Definition 5 The total utility of a database D is denoted as
TU and defined as:

TU =
∑

Tq∈D
tu(Tq). (7)

For example, the total utility in a database D is calculated
as TU = 27+ 66+ 13+ 11+ 16+ 10+ 101+ 55+ 15+
72(= 386).

Definition 6 An itemset X in a database D is a high-utility
itemset (HUI) iff its utility is no less than theminimum utility
count as

HU I ← {X |u(X) ≥ TU × δ}. (8)

For example, the utility of itemsets (b) and (bc) are,
respectively, calculated as u(b) (=216) and u(bc) (=56).
Thus, the itemset (b) is a HUI since u(b) = 216 > 386 × 0.3
= 115.8. The itemset (bc) is not a HUI since u(bc) = 56 <

115.8.

3.2 Problem statement

Based on the above definitions, we define the problem of
HUIM as follows (Yao et al. 2004; Yao and Hamilton 2006):
LetD be a quantitative transactional database, its profit table
ptable, and a user-specific minimum utility threshold δ. The
problem of HUIM from D is to find the set of high-utility
itemsets, in which the utility of an itemset X is no less than
(TU × δ).

123

J. C-W. Lin et al.

4 Proposed BPSO-based framework of HUIM

In the designed binary PSO (BPSO)-based model (Kennedy
and Eberhart 1997) for mining HUIs, it consists of pre-
processing, particle encoding, fitness evaluation, and the
updating processes to mine HUIs. In the first pre-processing
process, the high-transaction-weighted utilization 1-itemsets
(1-HTWUIs) (Liu et al. 2005) are first discovered based
on TWU model (Liu et al. 2005). This process can greatly
reduce the invalid itemsets based on the transaction-weighted
downward closure (TWDC) property. In the second particle
encoding process, the items of 1-HTWUIs are sorted in their
alphabetic-ascending order corresponding to the j-th position
of a particle. The particle is thus encoded as the set of binary
variables corresponding to the sorted order of 1-HTWUIs. In
the fitness evaluation, the particles are then evaluated to find
the pbest and gbest particles in the evolution process. For
the last updating process, the particles are correspondingly
updated by velocities, pbest, gbest, and the sigmoid function.
If the fitness value of the particle is no less than the minimum
utility count, it is concerned as a HUI and put into the set of
HUIs. This iteration is repeated until the termination criteria
are achieved. After that, the set of HUIs is discovered. Details
of the four phases are respectively described below.

4.1 Pre-processing phase

In the designed HUIM-BPSO algorithm, the TWU model
(Liu et al. 2005) of traditional HUIM is first adopted
to discover high-transaction-weighted utilization 1-itemsets
(1-HTWUIs). Based on the transaction-weighted downward
closure (TWDC) property of HTWUIs, the unpromising
items can be efficiently pruned. Thus, the computations for
discovering HUIs can be greatly improved. The phase to dis-
cover 1-HTWUIs is described below. First, the utility of items
of each transaction is calculated as the transaction utility (tu).
The transaction-weighted utility of an item is thus calculated
by summing up the transaction utility if an item appearing in
the transaction. This process is used to estimate the upper-
bound value of an item. If the transaction-weighted utility of
an item is no less than the minimum utility count, it is con-
sidered as a HTWUI. In this example, the minimum utility
count is calculated as (386 × 0.3 = 115.8). The discovered
1-HTWUIs are shown in Table 3.

4.2 Particle encoding phase

Each particle in the designed approach is to present a set of
itemsets, forming the potential HUI. The size of the particle
is the number of 1-HTWUIs found in the first pre-processing
phase. Each particle is composed by a set of binary vari-
ables as 0 or 1, which indicates that a correspondingly item
is present or absent in a particle. If the corresponding j-th

Table 3 Discovered 1-HTWUIs Item TWU 1-HTWUIs

(a) 110 No

(b) 264 Yes

(c) 183 Yes

(d) 233 Yes

(e) 361 Yes

(f) 163 Yes

1 0 0 1 1

0 1 0 0 1

0 0 1 0 0

…
 …

0 1 0 1 0

b c d e f
p1

p2

p3

pn

Fig. 1 Encoding of particles

position of a particle is set as 1, it indicates that the an item
in j-th position is presented as a potentialHUI; otherwise, this
item is not included and cannot be a potential HUI. Note that
the discovered 1-HTWUIs are sorted in alphabetic-ascending
order corresponding to the positions in the particle. Initially,
the discoveredTWUvalues of 1-HTWUIswill be normalized
as the probabilities to initialize the particles in the popula-
tion. The velocities of particles in a population are randomly
generated in the range of (0, 1). In this example, the size of a
particle is set as 5, which was shown in Table 3. The particles
can be represented in Fig. 1.

4.3 Evaluation phase

The fitness function in the designed algorithm is utilized to
evaluate the utility value of each particle, which is the same
as the traditional HUIM to discover HUIs as

Fitness(pi) = u(X), (9)

in which X is the union of the j-th item in the particle if its
value is set as 1. In this example, the itemset of particle p1
is (bef), and the particle p2 is (cf). Thus, if the utility value
of a particle is no less than the minimum utility count, it is
considered as a HUI and will be put in the set of HUIs.

4.4 Updating phase

After the evaluation process of the particles in a population,
the velocities of the particles are updated according to the
traditional PSO approach, shown in the Eq. (1). The parti-
cles are updated based on sigmoid function used in BPSO

123

A binary PSO approach to mine high-utility itemsets

approach (Kennedy and Eberhart 1997). The obtained equa-
tion for updating the particles is shown as follows:

xid(t + 1) =
{
1 rand() < sig(vid(t + 1)) = 1

1+e−vid (t)

0 otherwise

(10)

From the above Eq. (10), the sigmoid function is used for
normalization. The rand() function is a uniform distribution
in the range of (0, 1). This equation is used to determine
the probability of the (j-th) position of a particle. When the
generated rand() is less than the sig(vid(t + 1)), the value
of the corresponding j-th position of a particle is set as 1;
otherwise, it is set as 0.

4.5 An improved strategy of combination

Although the adopted TWU model (Liu et al. 2005) for gen-
erating 1-HTWUIs can be used to eliminate the unpromising
HUIs, several redundant and meaningless combinations not
existing in the databases are still produced in the evolution
process. To improve the efficiency and reduce the invalid
combinations of the 1-HTWUIs in the particles, an enu-
meration OR/NOR-tree is designed and built in the initial
step for generating the valid combinations of particles. First,
each transaction is then revised to keep only the discov-
ered 1-HTWUIs inalphabetic-ascendingorder. Themaximal
patterns (itemsets) of the database are then retrieved. This
approach can be used to compress the patterns if it is con-
tained within its superset, thus reducing the size of the
designed OR/NOR-tree structure.

Definition 7 For two patterns (a) and (b), (a) is considered
as a maximal pattern if (b) ⊆ (a).

For the itemset (ce) in T1 shown in Table 1, (ce) is
contained within the itemset (cde) and (bce f); (cde) and
(bce f) are the maximal patterns since (ce) ⊆ (cde), and
(ce) ⊆ (bce f). In this example, the itemsets (bde f), (cde),
and (bce f) are the maximal patterns in D.

After that, the revised transactions are then processed
tuple-by-tuple from the first transaction to the last one
to construct the OR/NOR-tree structure. The correspond-
ing position of 1-HTWUIs in a particle is sorted as the
alphabetic-ascending order. This OR/NOR-tree structure is
used to determine whether the combined items of a particle
exist in the database, which can be used to avoid the redun-
dant combinations in the evolution process. From the given
example, the constructed OR/NOR-tree structure is shown in
Fig. 2.

In the designed OR/NOR-tree structure, the OR operator
indicates that an item can be presented or absent in the par-
ticle, in which either value 0 or 1 in the j-th position of a

c

b

f

e

d

f

e

d

f

e

d

c

NOROR

OR

OR

OR

NOR

null

NOR

OR

OR

OR

null

OR

NOR

OR

OR

null

root

b

c

d

e

f

Fig. 2 The designed OR/NOR-tree structure

particle will return a true value by ∨ (union) operator. The
NOR operator indicates that an item can be only absent in the
particle, in which only 0 value on the j-th position of a parti-
cle will return true value by ↓ (NOR) operator. For example,
an itemset (bcd) cannot be generated since this particle can
be encoded as (11100); it does not match any branches in
the developed OR/NOR-tree structure since the second posi-
tion of a particle should be certainly set as 0 for the maximal
pattern as (bde f); the third position of a particle should be
certainly set as 0 for the maximal pattern as (bce f), and the
first position of a particle should be certainty set as 0 for the
maximal pattern as (cde). Based on the designed OR/NOR-
tree, the computations of particles in the evolution process
can be greatly improved since the invalid combinations can
be avoided in the evolution process.

4.6 The designed algorithm

The above phase is then repeatedly processed until the termi-
nation condition is reached. The algorithm of the designed
HUIM-BPSO is shown in Algorithm 1.

In the designed HUIM-BPSO algorithm, the set of 1-
HTWUIs is first discovered as the size of particles in the
evolution process (Lines 1 to 7). The OR/NOR-tree is then
constructed according to the discovered maximal patterns
(Line 8). The particles are initialized based on the OR/NOR-
tree and random number (Line 11). After that, the velocities
are also generated by uniform distribution in the range of (0,
1) (Line 12). If the fitness (utility) of the initial particle is no
less than the minimum utility count, the items of the particle

123

J. C-W. Lin et al.

Algorithm 1: HUIM-BPSO
Input: D, a quantitative database; ptable, a profit table, δ, the

minimum utility threshold; M, the number of particles of
each iteration.

Output: HUIs, a set of high-utility itemsets.
for each Tq ∈ D do1

for each i j ⊆ Tq do2
tu(Tq) = q(i j , Tq) × ptable(i j);3

calculate twu(i j) = ∑
i j⊆Tq tu(Tq);4

TU = ∑
Tq∈D tu(Tq);5

find 1-HTWUIs← {i j |twu(i j) ≥ TU × δ};6
set k = |1-HTWUIs| //*7
set particle size construct OR/NOR-tree;8
for i ← 1 to M do9

for j ← 1 to k do10

initialize p j
i (t) = either 0 or 1 //*11

initial the particles according to OR/NOR-tree initialize12

v
j
i (t) = rand() //*

initial the velocity of particles in (0, 1)13

if f i tness(pi (t)) ≥ TU × δ then14
HU Is ← Get I tem(pi (t)) ∪ HU Is //*15
find a HUI16

find pbest (t) of each M particle //*17
update pbest find gbest (t) among M pbest particles and18
gbest (t) //*

update gbest19

while termination criteria is not reached do20
for i ← 1, M do21

update the vi (t + 1) velocities of M particles //*22
by equation (1) for j ← 1 to k do23

check the OR/NOR-tree to return the true value of the24

j-th position of p j
i (t + 1);

update the p j
i (t + 1) of M particles //*25

by equation (10)26

if f i tness(pi (t + 1)) ≥ TU × δ then27
HU Is ← Get I tem(pi (t + 1)) ∪ HU Is //*28
find a HUI29

find pbest (t + 1) of each M particle //*30
update pbest find gbest (t + 1) among M pbest particles31
and gbest (t) //*

update gbest32

set t ← t + 1;33

return HUIs;34

is then outputted and concerned as the high-utility itemset
(Lines 13 to 14). The pbest and gbest are also initialized
from the generated particles (Lines 15 to 16). The updat-
ing process of velocities is the same as the traditional PSO
approach (Line 19). The particles are updated according to
the BPSO approach (Kennedy and Eberhart 1997) based on
sigmoid function and the developed OR/NOR-tree structure
to find the valid particles (Lines 21 to 22). If the fitness (util-
ity) of a particle is no less than the minimum utility count,
the items of the particle are then outputted and considered as
the high-utility itemset (Lines 23 to 24). This process is then

repeated until the termination criteria is achieved (Lines 17
to 27). After that, the set of discovered HUIs is then returned
(Line 28). The flowchart of the designed algorithm is shown
in Fig. 3.

5 An illustrated example

In this section, a database shown in Table 1 and the profit
table shown in Table 2 are used as the running example to
illustrate the procedure of the designed HUI-BPSO algo-
rithm. The minimum utility threshold is set as δ(=30%).
Thus, the minimum utility count is calculated as (TU × δ)
(=386×0.3) (=115.8). The quantitative database in Table 1
is first scanned to find the 1-HTWUIs, which was shown in
Table 3. Thus, the size of each particle in the designed algo-
rithm is set as 5, which is equal to the number of discovered
1-HTWUIs. Based on the transaction-weighted downward
closure (TWDC) property, this process can be used to elim-
inate the combinational process for discovering HUIs. After
that, the number of particles in the population is initially set
as 10, as well as the number of iterations. Note that those two
parameters can be adjusted by users’ preferences.

Themaximal patterns inD are then discovered to construct
the developed OR/NOR-tree structure. From the running
example, the results are (bdef), (cde), and (bcef). The con-
structed OR/NOR-tree structure was shown in Fig. 2. The
initial particles are then randomly generated based on the
valid combinations of theOR/NOR-tree structure. The veloc-
ity of each particle is also generated in the range of (0, 1). The
results of the generated particles and velocities are, respec-
tively, shown in Figs. 4 and 5.

After that, the fitness of each particle in Fig. 4 is then
calculated. The results are shown in Table 4.

From the results of Fig. 4, it can be observed that the p9 has
the highest fitness value and larger than the minimum utility
count; p9 is thus set as the global best (gbest) in this iteration.
The velocity of each particle is thus updated according to the
Eq. (1). In this example, the particles p3, p6, and p9 are put
in the set of HUIs since their utility values are no less than the
minimumutility count. In the given example, c1 and c2 are set
the same as 1, which can be adjusted by users’ preferences.
The updated velocity is shown thus in Fig. 6. In this step, the
discovered set of HUIs = {bef, b}.

The particles are then updated based on the designed
OR/NOR-tree structure and Eq. (10). For example, the first
level of (b) has two branches, which indicates that the item
(b) can be either 0 or 1. Thus, a determination of Eq. (10)
is applied to set the binary value of (b); if (b) is set as 1, it
uses the OR operator (the left side branch of OR/NOR-tree
structure shown in Fig. 2) to return the true value of (b).
Otherwise, (b) is set as 0 and the NOR operator (the right
side branch of OR/NOR-tree structure shown in Fig. 2) is

123

A binary PSO approach to mine high-utility itemsets

PSO Initialization
(velocity and)

each particle

update velocity v(t + 1)

update position by
OR/NOR-tree and
sigmoid(v(t + 1))

evaluate fitness(x)

Next particle

Termination
criterion

f(x) > f(pbest) pbest = x

f(pbest) > f(gbest) gbest = pbest

Next iteration

Y

Y

Y

N

N

N

if f(x) > minutil HUIsY

N

output HUIs

position

Fig. 3 The flowchart of the designed algorithm

p1 0 0 1 0 1

p7 0 0 0 1 1

p8 0 1 0 1 0

p9 1 0 0 0 0

p10 0 0 1 1 0

p2 0 1 0 1 0

p3 1 0 0 1 1

p4 0 0 1 1 1

p5 0 1 0 1 0

b c d e f

p6 1 0 0 0 0

b c d e f

Fig. 4 Initial particles

used to return the true value of (b). Based on the designed
OR/NOR-tree structure, each j-th position of a particle must
return the true (1) value as a valid particle based on the given
OR and NOR operators. The results of the updated particles
are shown in Fig. 7 and the fitness values of the updated
particles are shown in Table 5.

From Table 5, if the fitness value of a particle is no
less than minimum utility count, it is concerned as a HUI

and put into the set of HUIs. In this example, the fitness
values of p1(=b) and p8(=b) are no less than minimum
utility count (=115.8), but they are the same and already
existing in the set of HUIs; nothing has to be done in
this step. After that, the evolution and updating process are
repeated and corresponding updated until the termination cri-
teria ia achieved. Finally, the discovered HUIs are shown in
Table 6.

123

J. C-W. Lin et al.

v1 0.33 0.92 0.26 0.36 0.84

v2 0.40 0.22 0.74 0.61 0.16

v3 0.64 0.94 0.76 0.94 0.76

v4 0.76 0.24 0.53 0.18 0.87

v5 0.40 0.58 0.83 0.60 0.60

b c d e f

v6 0.74 0.13 0.01 0.61 0.26

v7 0.75 0.02 0.99 0.84 0.20

v8 0.67 0.33 0.05 0.51 0.61

v9 0.01 0.91 0.77 0.99 0.59

v10 0.95 0.08 0.20 0.27 0.57

b c d e f

Fig. 5 Initial velocities

Table 4 Fitness value of each particle

Particle Item Fitness

p1 (=00101) (df) 6

p2 (=01010) (ce) 92

p3 (=10011) (bef) 131

p4 (=00111) (def) 12

p5 (=01010) (ce) 92

p6 (=10000) (b) 216

p7 (=00011) (ef) 23

p8 (=01010) (ce) 92

p9 (=10000) (b) 216

p10 (=00110) (de) 54

6 Experimental results

Substantial experiments were conducted to verify the effec-
tiveness and efficiency of the proposed the HUIM-BPSO
algorithm with and without the developed OR/NOR-tree
structure compared to the state-of-the-art HUPEumu-GRAM
algorithm (Kannimuthu and Premalatha 2014). The
HUPEumu-GRAM algorithm prunes the unpromising item-
sets based on the transaction-weighted downward closure
(TWDC) property of HTWUIs in the first step, which is the
same with the proposed algorithm. The effective OR/NOR-
tree structure is developed of the designed HUIM-BPSO
algorithm, which can be used to reduce the invalid combina-
tions of the 1-HTWUIs in the particles. This tree structure
can also be adopted in theGA-basedHUPEumu-GRAMalgo-
rithm but only in the pre-processing phase since the updating
process of the GA-based algorithm still adopts the muta-
tion and crossover operations to generate the candidates for
next iteration. The updating process of the particles for the
designed HUIM-BPSO algorithm can be modified bit by
bit based on the OR/NOR-tree structure, which is totally
different than that of the GA-based approach. Besides, the
original HUPEumu-GRAM algorithm requires the HUIs as
the initial particles for later evolution process, which needs
very large computations to find the initial particles. We have

thus improved this approach by adopting our designed pre-
processingphase to reduce the computations of the traditional
HUPEumu-GRAM algorithm.

In the conducted experiments, theHUPEumu-GRAMalgo-
rithm with the designed OR/NOR-tree structure is named as
HUPEumu -GRAM+; the original HUPEumu-GRAM algo-
rithm without the designed OR/NOR-tree structure is named
as HUPEumu-GRAM−; the HUIM-BPSO algorithm with the
OR/NOR-tree structure is named as HUIM-BPSO+; and the
HUIM-BPSO algorithm without OR/NOR-tree structure is
named as HUIM-BPSO− algorithm. The algorithms in the
experimentswere implemented inC++ language, performing
on a PC with an Intel Core2 i3-4160 CPU and 4GB of RAM,
running the 64-bit Microsoft Windows 7 operating system.
Six real-world datasets, called chess (Frequent itemset min-
ing dataset repository 2012), mushroom (Frequent itemset
mining dataset repository 2012), connect (Frequent itemset
mining dataset repository 2012), accidents (Frequent itemset
mining dataset repository 2012), foodmart (Microsoft 1996),
and retail (Frequent itemset mining dataset repository 2012),
are used in the experiments, which were widely used in the
issue of high-utility itemset mining (HUIM) (Fournier-Viger
et al. 2014; Fournier-Viger and Zida 2015; Lin et al. 2015,
2011; Liu and Qu 2012; Tseng et al. 2010; Zida et al. 2015).
A simulation model (Liu et al. 2005) was developed to gen-
erate the quantities and profit values of items in transactions
for all datasets except foodmart which already has real util-
ity values. A log-normal distribution was used to randomly
assign quantities in the [1,5] interval, and item profit values
in the [1,1000] interval. Parameters and characteristics of the
datasets used in the experiments are, respectively, shown in
Tables 7 and 8.

In the conducted experiments for mining HUIs, the num-
ber of populations and iterations is set at 10,000 and the
population size is set as 20. We have also ran five times
the experiments to show the optimal results from it. Both
HUPEumu-GRAM− andHUPEumu-GRAM+ algorithms also
adopt the binary encodingmechanism, aswell as the designed
binary PSO-based algorithm. For the HUIM-BPSO+ and
HUIM-BPSO− algorithms, w1 is set as 0.9; the individual

123

A binary PSO approach to mine high-utility itemsets

v1 0.86 0.92 -0.27 0.36 0.30

v2 0.54 0.08 0.74 0.47 0.16

v3 0.64 0.94 0.76 0.50 0.32

v4 1.56 0.24 -0.26 -0.62 0.06

v5 0.82 0.16 0.83 0.17 0.60

b c d e f

v6 0.74 0.13 0.01 0.61 0.26

v7 0.87 0.02 0.99 0.72 0.08

v8 1.40 -0.39 0.05 -0.21 0.61

v9 0.01 0.91 0.77 0.99 0.59

v10 1.62 0.08 -0.46 -0.39 0.57

b c d e f

Fig. 6 Updated velocities

p1 1 0 0 0 0

p7 1 0 1 0 1

p8 1 0 0 0 0

p9 1 0 1 1 1

p10 0 1 1 0 0

p2 0 0 1 0 0

p3 1 1 0 1 0

p4 0 1 0 1 0

p5 0 0 0 1 0

b c d e f

p6 0 0 0 1 0

b c d e f

Fig. 7 Updated particles

Table 5 Fitness value of each updated particle

Particle Item Fitness

p1 (=10000) (b) 216

p2 (=00100) (d) 30

p3 (=11010) (bce) 68

p4 (=01010) (ce) 92

p5 (=00010) (e) 60

p6 (=00010) (e) 60

p7 (=10101) (bd) 60

p8 (=10000) (b) 216

p9 (=10111) (bdef) 66

p10 (=01100) (cd) 40

Table 6 Discovered HUIs

Particle Item Fitness

p1 (=10010) (be) 222

p2 (=10000) (b) 216

p3 (=10110) (bde) 166

p4 (=10100) (bd) 154

p5 (=10001) (bf) 135

p6 (=10011) (bef) 131

factor c1 and the social factor c2 are both set as 2. The parame-
ters used in the HUPEumu-GRAM+ and HUPEumu-GRAM−
algorithms, respectively, are roulette wheel selection, one-

Table 7 Parameters of used datasets

#|D| Total number of transactions

#|I | Number of distinct items

AvgLen Average transaction length

MaxLen Maximal length transactions

Type Dataset type

Table 8 Characteristics of used datasets

Dataset #|D| #|I | AvgLen MaxLen Type

Chess 3196 76 37 37 Dense

Mushroom 8124 120 23 23 Dense

Connect 67,557 129 43 43 Dense

Accidents_10% 34,018 469 34 46 Dense

Foodmart 21,557 1559 4 11 Sparse

Retail 88,162 16,470 10 76 Sparse

point crossover, and ranked mutation. The crossover rate is
initially set as 0.9 in the experiment. Since the HUPEumu-
GRAM+ adopts the ranked mutation mechanism, the muta-
tion rate is dynamically changed based on the ranking score
of the chromosomes. The algorithms are then compared in
terms of execution time, number of HUIs, number of deter-
mined nodes, and the convergence as follows:

123

J. C-W. Lin et al.

25 25.5 26 26.5 27

1

1.05

1.1
x 104 (a) chess

Minimum utility threshold (%)

R
un

tim
e(

s)

14 14.5 15
1.65

1.7

1.75

1.8

1.85
x 104 (b) mushroom

Minimum utility threshold (%)

R
un

tim
e(

s)

28.9 29.1 29.3 29.5 29.7
2.32

2.325

2.33

2.335

2.34
x 105 (c) connect

Minimum utility threshold (%)

R
un

tim
e(

s)

13.1 13.4 13.7 14 14.3

1.1

1.15

1.2

1.25

x 105 (d) accidents_10%

Minimum utility threshold (%)

R
un

tim
e(

s)

0.11 0.12 0.13 0.14 0.15
2

2.2

2.4

2.6

x 105 (e) foodmart

Minimum utility threshold (%)

R
un

tim
e(

s)

0.3 0.4 0.5 0.6 0.7

4.4

4.6

4.8

5
x 105 (f) retail

Minimum utility threshold (%)

R
un

tim
e(

s)

HUPEumu−GRAM+ HUPEumu−GRAM− HUIM−BPSO+ HUIM−BPSO−

Fig. 8 Runtime w.r.t variants of minimum utility thresholds

6.1 Runtime

In the conducted experiments of runtime in six datasets,
the four algorithms are then compared w.r.t. variants of
minimum utility thresholds. The results are shown in
Fig. 8.

From Fig. 8, it can be seen that both the HUIM-BPSO−
and HUIM-BPSO+ algorithms outperform the HUPEumu-
GRAM+ and HUPEumu-GRAM− algorithms w.r.t. different
minimum thresholds in six datasets. For example in Fig.
8a, the runtimes of the HUPEumu-GRAM+, the HUPEumu-
GRAM−, the HUIM-BPSO−, and the HUIM-BPSO+ were
10,795, 10,764, 10,568, and 9913 seconds at 10,000 itera-
tion in chess dataset. The HUIM-BPSO+ algorithm always
has better results than that of the HUIM-BPSO− algo-
rithm since the HUIM-BPSO+ algorithm only generates
the valid combinations of itemsets existing in the data-
base, which can greatly avoid the combinational problem
in the evolution process. The HUIM-BPSO− algorithm
still requires, however, to generate the invalid itemsets not
existing in the database for discovering HUIs. Overall, the
proposed HUIM-BPSO+ has better performance than the
improvedHUPEumu-GRAM+ andHUPEumu-GRAM− algo-
rithms in six different datasets. From the above results, it also
can be found that the HUPEumu-GRAM+ algorithm needs
more time to construct the OR/NOR-tree structure for later
mining process than that of the HUPEumu-GRAM− algo-
rithm.

6.2 Number of HUIs

In this section, the number of HUIs is evaluated to show
the performance of the compared algorithms. The TWU
model (Liu et al. 2005) is used to discover the actual and
complete HUIs from the quantitative databases. Experiments
are conducted and shown in Fig. 9.

From Fig. 9a–d, it can be seen that the proposed HUIM-
BPSO+ algorithmgenerates nearly the same number ofHUIs
as the TWU model especially when the minimum utility
threshold is set high in the condense datasets. The reason is
that the size of a particle is associated with the number of 1-
HTWUIs; less computations are requiredwhen theminimum
utility threshold is set higher. For more condensed datasets
such as chess,mushroom, connect, and accidents datasets, the
number of 1-HTWUIs is close to the number of discovered
HUIs with higher minimum utility threshold; the number of
generated HUIs of the designed HUIM-BPSO+ algorithms
is close to the traditional way for mining the complete HUIs.
For example, in Fig. 9a under the 25% minimum utility
threshold, the number of HUIs of the HUPEumu-GRAM+
algorithm, the HUPEumu-GRAM− algorithm, the HUIM-
BPSO− algorithm, the HUIM-BPSO+ algorithm, and the
TWU model were, respectively, found as 11, 12, 75, 83,
and 98. The HUIM-BPSO+ and HUIM-BPSO−algorithms
have nearly the same number of HUIs as the TWU model
when the minimum utility threshold is set higher than 25%,
which can be observed in Fig. 9a. From Fig. 9b–d, it can be

123

A binary PSO approach to mine high-utility itemsets

25 25.5 26 26.5 27
0

20

40

60

80

100
(a) chess

Minimum utility threshold (%)

N
um

be
r o

f H
U

Is

14 14.25 14.5 14.75 15
0

20

40

60

80
(b) mushroom

Minimum utility threshold (%)

N
um

be
r o

f H
U

Is

28.9 29.1 29.3 29.5 29.7
0

20

40

60

80

100
(c) connect

Minimum utility threshold (%)

N
um

be
r o

f H
U

Is

13.1 13.4 13.7 14 14.3
0

20

40

60

80

100
(d) accidents_10%

Minimum utility threshold (%)

N
um

be
r o

f H
U

Is

0.11 0.12 0.13 0.14 0.15
1

20
40
60
80

100
120
140

(c) foodmart

Minimum utility threshold (%)

N
um

be
r o

f H
U

Is

0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100
(d) retail

Minimum utility threshold (%)

N
um

be
r o

f H
U

Is

HUPEumu−GRAM+ HUPEumu−GRAM− HUIM−BPSO+ HUIM−BPSO− TWU model

Fig. 9 Number of HUIs w.r.t variants of minimum utility thresholds

observed that the HUIM-BPSO+ algorithm discovers more
number of HUIs than the HUPEumu-GRAM+ algorithm and
the HUPEumu-GRAM− algorithm. From the above experi-
ments, it can be found that results of the HUPEumu-GRAM+
andHUPEumu-GRAM− algorithms are similar. The reason is
that the OR/NOR-tree structure is useless in the HUPEumu-
GRAM+ algorithm since it can only be used once in the
pre-processing step. The updating process of HUPEumu-
GRAM+ algorithm still, however, requires the mutation
and crossover operations. Thus, the designed OR/NOR-tree
structure is useless to the GA-based approach.

For the conducted experiments shown in Fig. 9e, f, it
can be obviously found that the number of HUIs for the
HUPEumu-GRAM+ algorithm, HUPEumu-GRAM− algo-
rithm, and the HUIM-BPSO− algorithm is close to zero.
The HUIM-BPSO+ algorithm can still, however, discover
the HUIs in the evolution process. The reason is that for
a very sparse datasets such as foodmart dataset, the num-
ber of generated 1-HTWUIs is very large but the number
of actual HUIs is quite low. The HUIM-BPSO− algorithm
has to generate the potential itemsets of each iteration, thus
requiring more computations to discover the actual HUIs.
Thus, it can be concluded that the evolutionary algorithms
are insufficient to discover the HUIs in the sparse dataset,
especially when the minimum utility threshold is set low.
The HUIM-BPSO+ algorithm can still, however, discover
partial HUIs compared to the TWUmodel algorithm and still
outperform the HUPEumu-GRAM+ and HUPEumu-GRAM−
algorithms.

From Tables 9 and 10, it showed the accuracy of the
number of HUIs discovered by different algorithms com-
paring with the traditional TWU model. From the results
shown in Tables 9 and 10, it is obvious that the designed
HUIM-BPSO+ algorithm can mine nearly the same num-
ber of the HUIs as the TWU model in the chess and connect
datasets, especiallywhen theminimumutility threshold is set
higher. For the mushroom and accidents datasets, the HUIM-
BPSO+ algorithm can generate more than 50% of HUIs,
but the HUPEumu-GRAM− and HUPEumu-GRAM+ algo-
rithms could not generate anyHUIs even theminimumutility
threshold is set higher. The reason is that the valid HUIs are
retrieved from the 1-HTWUIs, and it has higher possibility to
generate more HUIs when the minimum utility threshold is
set lower of the HUPEumu-GRAM− algorithm. From Figs. 9
and 10, it can be observed that the state-of-the-art HUPEumu-
GRAM− algorithm cannot produce the valid HUIs from
the 1-HTWUIs under variants of minimum utility threshold.
For the foodmart and retail datasets, the proposed HUIM-
BPSO+ algorithm can generate about 30% of HUIs. The
HUIM-BPSO−, the HUPEumu-GRAM+, and the HUPEumu-
GRAM− algorithms, however, could not generate any HUIs.
Overall, when the number of iterations is increased, the pro-
posedHUIM-BPSO+ algorithm can achieve higher accuracy
to generate the same number of HUIs as the traditional TWU
model.

Table 11 shows the average standard scores of exper-
iments running five times w.r.t. variants minimum utility
thresholds in six datasets. For example, when the minimum

123

J. C-W. Lin et al.

Table 9 Percentages of
discovered HUIs of the
BPSO-based approaches

Algorithm HUIM-BPSO+ HUIM-BPSO−

Dataset δ (%) Best (%) Average (%) Worst (%) Best (%) Average (%) Worst (%)

Chess 25 88.77 86.78 84.69 76.53 74.53 69.38

25.5 100 100 100 95.12 92.24 87.80

26 100 100 100 100 100 100

26.5 100 100 100 100 100 100

27 100 100 100 100 100 100

Mushroom 14 62.68 54.22 49.25 40.29 38.90 35.82

14.25 68.42 64.15 55.26 47.36 41.47 34.21

14.5 78.94 65.55 52.63 42.10 35.57 26.31

14.75 100 83 60 50 42 30

15 100 100 100 100 100 50

Connect 28.9 98.76 94.82 90.12 83.18 81.48 80.24

29.1 100 98.50 95 92.50 89.50 85

29.3 100 100 100 100 100 100

29.5 100 100 100 100 100 100

29.7 100 100 100 100 100 100

Accidents 13.1 69.14 67.95 61.70 48.93 47.96 46.80

13.4 74.13 71.68 68.96 55.17 54.14 50

13.7 94.28 86.72 80 60 58.14 51.43

14 100 95.75 81.25 75 69.75 62.50

14.3 100 82.72 54.54 54.54 47.45 36.36

Foodmart 0.11 38.46 37.15 34.61 0 0 0

0.12 31.34 30.15 28.35 0 0 0

0.13 35.89 32.76 28.20 0 0 0

0.14 43.75 39.50 31.25 0 0 0

0.15 40 25 0 0 0 0

Retail 0.3 41.41 40.38 36.36 0 0 0

0.4 37.09 35.87 32.25 0 0 0

0.5 51.21 48.90 39.02 0 0 0

0.6 43.33 42 36.66 0 0 0

0.7 26.08 23.73 13.04 0 0 0

utility threshold is set as 25%, the average standard score
of the discovered HUIs by the HUIM-BPSO+ algorithm is
1.0405, which indicates that the number of HUIs mined by
HUIM-BPSO+ has 1.0405 standard deviations of the dis-
covered HUIs among the four algorithms. From Table 11,
it can be seen that the all standard scores of the HUIM-
BPSO+ algorithm are more than zero, which shows that the
number of HUIs mined by the HUIM-BPSO+ is more than
the other algorithms. The standard scores of the HUPEumu-
GRAM− and the HUPEumu-GRAM+ algorithms are all less
than zero, which showed that the number of HUIs mined by
the HUPEumu-GRAM+ and HUPEumu-GRAM− algorithms
are all less than the other algorithms. Overall, the standard
scores, respectively, for HUIM-BPSO+ and HUIM-BPSO−

algorithms are both better than the HUPEumu-GRAM− and
HUPEumu-GRAM+ algorithms in terms of the number of the
discovered HUIs.

From the above results, it can be also observed that the
HUPEumu-GRAM+ algorithm performs sometimes worse
than the HUPEumu-GRAM− algorithm. This is reasonable
since the designed OR/NOR-tree can only be used in the ini-
tial phase of the HUPEumu-GRAM+ algorithm. The main
procedure of those two algorithms is still the same by per-
forming the crossover and mutation operations to randomly
generate the next solutions in the evolution process. Thus, the
designed OR/NOR-tree is insufficient to improve the perfor-
mance the GA-based approaches.

123

A binary PSO approach to mine high-utility itemsets

Table 10 Percentages of
discovered HUIs of the
GA-based approaches

Algorithm HUPEumu -GRAM+ HUPEumu-GRAM−

Dataset δ (%) Best (%) Average (%) Worst (%) Best (%) Average (%) Worst (%)

Chess 25 % 16.32 14.10 11.22 15.41 14.06 12.24

25.5 26.82 25.39 21.95 26.82 22.05 19.51

26% 37.50 25.5 18.75 31.25 18.95 12.50

26.5 40 22 20 40 21.5 0

27 0 0 0 0 0 0

Mushroom 14 16.41 13.78 11.94 14.92 12.01 10.44

14.25 21.05 16.02 10.52 18.42 13.25 10.52

14.5 15.78 11.15 5.26 15.78 11.01 0

14.75 0 0 0 0 0 0

15 0 0 0 0 0 0

Connect 28.9 18.51 14.83 12.34 17.28 14.81 13.58

29.1 25 23.5 17.5 25 22.6 17.5

29.3 25 16.2 10 30 19 15

29.5 25 12.6 12.5 12.5 5.6 0

29.7 0 0 0 0 0 0

Accidents 13.1 8.51 7.54 7.44 9.57 7.34 6.38

13.4 8.62 6.89 6.89 6.91 5.17 5.11

13.7 5.71 2.85 2.93 2.85 2.85 2.85

14 0 0 0 0 0 0

14.3 0 0 0 0 0 0

Foodmart 0.11 0 0 0 0 0 0

0.12 0 0 0 0 0 0

0.13 0 0 0 0 0 0

0.14 0 0 0 0 0 0

0.15 0 0 0 0 0 0

Retail 0.3 0 0 0 0 0 0

0.4 0 0 0 0 0 0

0.5 0 0 0 0 0 0

0.6 0 0 0 0 0 0

0.7 0 0 0 0 0 0

6.3 Number of determined patterns

In this section, the number ofHUIs, 1-HTWUIs, andmaximal
patterns of different dataset w.r.t. variants of minimum utility
thresholds is evaluated. The results are shown in Fig. 10.

From Fig. 10a–d it can be seen that the difference between
the number of HUIs and the number of 1-HTWUIs is very
large in all datasets. For the HUIM-BPSO− algorithm, the
valid HUIs are retried from the permutations of 1-HTWUIs.
This process takes all possible combinations and some of
them may not exist in the database, especially in the sparse
one. For the developed HUIM-BPSO+ algorithm, the valid
HUIs are determined by the designed OR/NOR-tree, which
can greatly reduce the number of invalid (not existing in
database) combinations. Thus, the proposed HUIM-BPSO+
algorithm has better results than HUIM-BPSO− algorithm.

From Fig. 10e–f, it is also found that the difference between
the number of HUIs and the number of 1-HTWUIs in sparse
dataset is also very large. The same results can be also
observed from the difference between the number of HUIs
and the number of maximal patterns. For example, the num-
ber of HUIs, the number of 1-HTWUIs, and the number of
maximal patterns of chess dataset with minimum support
threshold 26% are, respectively, 16, 51, and 1409. It indi-
cates that the size of chromosome is set as 51 in the designed
algorithm. For the developed HUIM-BPSO+ algorithm, the
actual HUIs from 1409 patterns of the OR/NOR-tree need
to be found. The other algorithms have to, however, dis-
cover the actual HUIs from the combinational process of 51
patterns, which require more computations than that of the
HUIM-BPSO+ algorithm. From the observed results in Fig.
10,we can conclude that the evolutionprocess of the designed

123

J. C-W. Lin et al.

25 25.5 26 26.5 27
100

102

103

104
(a) chess

Minimum utility threshold (%)

N
um

be
r

14 14.25 14.5 14.75 15
100

102

103

104
(b) mushroom

Minimum utility threshold (%)

N
um

be
r

28.9 29.1 29.3 29.5 29.7
100

102

103

104
(c) connect

Minimum utility threshold (%)

N
um

be
r

13.1 13.4 13.7 14 14.3
100

101

102

103

104

105
(d) accident_10%

Minimum utility threshold (%)

N
um

be
r

0.11 0.12 0.13 0.14 0.15
100

101

102

103

104

105
(e) foodmart

Minimum utility threshold (%)

N
um

be
r

0.3 0.4 0.5 0.6 0.7
100

101

102

103

104

105
(f) retail

Minimum utility threshold (%)

N
um

be
r

HUIs 1−HTWUIs Maximal patterns

Fig. 10 Number of determined patterns w.r.t. variants of minimum utility thresholds

HUIM-BPSO+ algorithm can efficiently find the actualHUIs
from very large combinations, and the designed HUIM-
BPSO+ algorithm can limit the search space for retrieving
the valid itemsets from the maximal patterns, thus speeding
up the computations than the HUIM-BPSO− algorithm and
the other two GA-based algorithms.

6.4 Convergence

In this section, the convergence of the four algorithms are
evaluated in different datasets. The results are shown in Fig.
11.

From Fig. 11, it can be observed that the speed of conver-
gence of the improved HUPEumu-GRAM+ and HUPEumu-
GRAM− are both slower than that of the designed HUIM-
BPSO+ algorithm, and the developed HUIM-BPSO+ algo-
rithm has better performance than the HUIM-BPSO− algo-
rithm. The reason is that theHUIM-BPSO+ algorithm adopts
the developed OR/NOR-tree structure to avoid the invalid
combinations; the generated itemsets of the HUIM-BPSO+
algorithm can be concerned as the highly potential HUIs.
From the conducted results shown in Fig. 11a, c, it can
be found that the HUIM-BPSO+ algorithm can efficiently
discover the same number of HUIs as the TWU model.
From Fig. 11b, d, the HUIM-BPSO+ algorithm still has
better results than the HUPEumu-GRAM+ and HUPEumu-
GRAM− algorithms and the number of discovered HUIs is
steadily increased along with the number of iterations. For

a very sparse foodmart dataset, the HUPEumu-GRAM+ and
HUPEumu-GRAM− algorithms generate, however, no HUIs
since the number of 1-HTWUIs is very high but only fewer
HUIs can be discovered from a very sparse dataset. Both
the HUPEumu-GRAM+ and HUPEumu-GRAM− algorithms
suffer the combinational explosion in the evolution process.
The proposed HUIM-BPSO+ algorithm still generates the
HUIs and is steadily increased along with the number of iter-
ations. Overall, the proposed HUIM-PSO+ algorithm has
better convergence than the other algorithms.

7 Conclusions

High-utility itemsetmining (HUIM) is emerging as an impor-
tant topic in recent years since it can reveal the highly
profitable products instead of the frequent itemset mining
(FIM). Several algorithms have been proposed to efficiently
mine the high-utility itemsets (HUIs) from the quantitative
databases and most of them applied the statistical analysis
to discover the required information. This process may take
very large computations when the number of distinct items
or the size of the database is very large. In the past, a GA-
based approach, namely HUPEumu-GRAM, was proposed to
mine HUIs based on genetic algorithm. It suffers the com-
binational problem of the generated itemsets and requires
several parameters in the evolution process.

In this paper, the particle swarm optimization (PSO)-
based HUIM-BPSO algorithm is proposed to efficiently

123

A binary PSO approach to mine high-utility itemsets

Table 11 Standard scores of the discovered HUIs

Algorithm HUIM-BPSO+ HUIM-BPSO− HUPEumu-GRAM+ HUPEumu-GRAM−

Dataset δ (%) Standard score Standard score Standard score Standard score

Chess 25 1.0405 0.6715 −0.8561 −0.8561

25.5 0.9786 0.7449 −0.8326 −0.8910

26 0.8646 0.8646 −0.7954 −0.9338

26.5 0.8660 0.8660 −0.8660 −0.8660

27 0.8660 0.8660 −0.8660 −0.8660

Mushroom 14 1.1928 0.4587 −0.7891 −0.8625

14.25 1.2938 0.2812 −0.7313 −0.8438

14.5 1.3754 0.1058 −0.7406 −0.7406

14.75 1.3055 0.2611 −0.7833 −0.7833

15 1.3055 0.2611 −0.7833 −0.7833

Connect 28.9 1.0056 0.7141 −0.8598 −0.8598

29.1 0.9847 0.7385 −0.8616 −0.8616

29.3 0.8652 0.8652 −0.9176 −0.8127

29.5 0.8622 0.8622 −0.7472 −0.9771

29.7 0.8660 0.8660 −0.8660 −0.8660

Accidents 13.1 1.1449 0.5319 −0.8384 −0.8384

13.4 1.1063 0.5857 −0.8200 −0.8720

13.7 1.1768 0.4845 −0.8307 −0.8307

14 1.1066 0.5858 −0.8462 −0.8462

14.3 1.2032 0.4433 −0.8232 −0.8232

Foodmart 0.11 1.5 −0.5 −0.5 −0.5

0.12 1.5 −0.5 −0.5 −0.5

0.13 1.5 −0.5 −0.5 −0.5

0.14 1.5 −0.5 −0.5 −0.5

0.15 1.5 −0.5 −0.5 −0.5

Retail 0.3 1.5 −0.5 −0.5 −0.5

0.4 1.5 −0.5 −0.5 −0.5

0.5 1.5 −0.5 −0.5 −0.5

0.6 1.5 −0.5 −0.5 −0.5

0.7 1.5 −0.5 −0.5 −0.5

mine HUIs. The designed algorithm first adopts the TWU
model to find the number of high-transaction-weighted uti-
lization 1-itemsets (1-HTWUIs) as the particle size, which
can greatly reduce the combinational problem in the evolu-
tion process. The sigmoid function of the discrete (binary)
PSO (BPSO) is adopted to mine the HUIs in the evolution
process. An OR/NOR-tree structure is further designed to
avoid the invalid combinations of the particles, thus speeding
up the computations for discovering the HUIs. From the con-
ducted experiments, the proposed HUIM-BPSO algorithm
has better results than the GA-based algorithms in terms of
execution time, the ability for discovering HUIs, and the con-
vergence.

Up to now, only few works were proposed to mine high-
utility itemsets based on evolutionary computation. In this

paper, we address the issue of HUIM using the binary PSO
mechanism with the developed OR/NOR-tree structure to
efficiently mine the HUIs. The reason is that the PSO-based
approach can be easily implemented without the trivial task
to set the appropriate crossover and mutation rates as the
GA-based algorithmdoes. The other optimization algorithms
such as artificial immune system, ant colony optimization,
and artificial bee colony mechanism could also be adopted
and modified to efficiently mine the HUIs. However, it is
a non-trivial task since some algorithms can only be used
to handle the continuous problem and some algorithms
perform the operations with randomization; the designed
algorithm cannot be directly applied to handle the issue of
HUIM.Moremechanisms can be further studied as our future
works.

123

J. C-W. Lin et al.

0 2000 4000 6000 8000 10000
0

5

10

15

20
(a) chess 26%

Iterations

N
um

be
r o

f H
U

Is

0 2000 4000 6000 8000 10000
0

5

10

15

20
(b) mushroom 14.5%

Iterations

N
um

be
r o

f H
U

Is

0 2000 4000 6000 8000 10000
0

5

10

15

20

25
(c) connect 29.3%

Iterations

N
um

be
r o

f H
U

Is

0 2000 4000 6000 8000 10000
0

20

40

60

80

100
(d) accidents_10% 13.1%

Iterations

N
um

be
r o

f H
U

Is

0 2000 4000 6000 8000 10000
0

5

10

15

20
(e) foodmart 0.14%

Iterations

N
um

be
r o

f H
U

Is

0 2000 4000 6000 8000 10000
0

10

20

30

(f) retail 0.6%

Iterations

N
um

be
r o

f H
U

Is

HUPEumu−GRAM+ HUPEumu−GRAM− HUIM−BPSO+ HUIM−BPSO− TWU model

Fig. 11 Convergence w.r.t variants of iterations

Acknowledgments This research was partially supported by the
Shenzhen Peacock Project, China, under Grant KQC201109020055A,
by the National Natural Science Foundation of China (NSFC) under
Grant No. 61503092, by the Natural Scientific Research Innovation
Foundation in Harbin Institute of Technology under Grant HIT.NSRIF.
2014100, and by the Shenzhen Strategic Emerging Industries Program
under Grant ZDSY20120613125016389.

Compliance with ethical standards

Conflict of interest The authors declare that there are no conflicts of
interest in this paper.

Ethical approval This article does not contain any studieswith human
participants performed by any of the authors.

References

Agrawal S, Silakari S (2013) FRPSO: Fletcher-Reeves based particle
swarm optimization for multimodal function optimization. Soft
Comput 18(11):2227–2243

Agrawal R, Srikant R (1994) Fast algorithms for mining association
rules in large databases. IntConfVeryLargeDataBases 1215:487–
499

Ahmed CF, Tanbeer SK, Jeong BS, Le YK (2009) Efficient tree struc-
tures for high utility patternmining in incremental databases. IEEE
Trans Knowl Data Eng 21(12):1708–1721

Cattral R, Oppacher F, GrahamKJL (2009) Techniques for evolutionary
rule discovery in data mining. IEEE Congr Evolut Comput :1737–
1744

Chan R, Yang Q, Shen YD (2003) Minging high utility itemsets. IEEE
Int Conf Data Mining :19–26

Chen MS, Han J, Yu PS (1996) Data mining: an overview from a data-
base perspective. IEEE Trans Knowl Data Eng 8(6):866–883

Fournier-Viger P, Wu CW, Zida S, Tseng VS (2014) FHM: Faster
high-utility itemset mining using estimated utility co-occurrence
pruning. Found Intell Syst 8502:83–92

Fournier-Viger P, Wu CW, Tseng VS (2014) Novel concise represen-
tations of high utility itemsets using generator patterns. Adv Data
Mining Appl 8933:30–43

Fournier-Viger P, Zida S (2015) FOSHU: faster on-shelf high utility
itemsets mining with or without negative unit profit. ACM Symp
Appl Comput :857–864

Frequent itemset mining dataset repository (2012). http://fimi.ua.ac.be/
data/

Gong W, Cai Z, Ling CX (2010) DE/BBO: a hybrid differential evolu-
tion with biogeography-based optimization for global numerical
optimization. Soft Comput 15(4):645–665

Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without
candidate generation: a frequent-pattern tree approach. Data Min
Knowl Disc 8(1):53–87

Holland J (1975) Adaptation in Natural and Artificial Systems, Cam-
bridge. MIT Press, USA

Kannimuthu S, Premalatha K (2014) Discovery of high utility itemsets
using genetic algorithm with ranked mutation. Appl Artif Intell
28(4):337–359

Kennedy J, Eberhart R (1997) A discrete binary version of particle
swarm algorithm. IEEE Int Conf Syst Man Cybern 5:4104–4108

Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE Int
Conf Neural Netw 4:1942–1948

Kuo RJ, Chao CM, Chiu YT (2011) Application of particle swarm
optimization to association rule mining. Appl Soft Comput
11(1):326336

Lan GC, Hong TP, Tseng VS (2013) An efficient projection-based
indexing approach for mining high utility itemsets. Knowl Inf Syst
38(1):85–107

123

http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/

A binary PSO approach to mine high-utility itemsets

Li XT, Yin MH (2015) A particle swarm inspired cuckoo search algo-
rithm for real parameter optimization. Soft Comput :1–25

LiangXL,LiWF,ZhangY,ZhouMC(2014)Anadaptive particle swarm
optimizationmethod based on clustering. Soft Comput 19(2):431–
448

Lin CW, Gan WS, Fournier-Viger P, Hong TP (2015) Mining high-
utility itemsets with multiple minimum utility thresholds. Int C*
Conf Comput Sci Softw Eng :9–17

Lin JCW, Yang L, Fournier-Viger P, Wu MT, Hong TP, Wang LSL
(2015) A Swarm-based approach to mine high-utility itemsets.
Multidiscip Int Soc Netw Conf

Lin CW, Hong TP, LuWH (2011) An effective tree structure for mining
high utility itemsets. Expert Syst Appl 38(6):7419–7424

Liu Y, Liao WK, Choudhary A (2005) A two-phase algorithm for fast
discovery of high utility itemsets. Lecture Notes Comput Sci :689–
695

Liu M, Qu J (2012) Mining high utility itemsets without candidate
generation. ACM Int Conf Inf Knowl Manag :55–64

Martnez-Ballesteros M, Martnez-lvarez F, Riquelme JC (2010) Mining
quantitative association rules based on evolutionary computation
and its application to atmospheric pollution. Integr Comput Aided
Eng 17(3):227–242

Menhas MI, Fei M, Wang L, Fu X (2011) A novel hybrid binary PSO
algorithm. Lect Notes Comput Sci 6728:93–100

Microsoft (1996) Example database foodmart ofMicrosoft analysis ser-
vices. http://msdn.microsoft.com/en-us/library/aa217032(SQL.
80).aspx

Nouaouria N, BoukadoumaM, Proulx R (2013) Particle swarm classifi-
cation: a survey and positioning. Pattern Recogn 46(7):20282044

Pears R,KohYS (2012)Weighted association rulemining using particle
swarm pptimization. Lect Notes Comput Sci 7104:327–338

Salleb-Aouissi A, Vrain C, Nortet C (2007) QuantMiner: a genetic
algorithm for mining quantitative association rules. Int Jt Conf
Artif Intell 7:1035–1040

Sarath KNVD, Ravi V (2013) Association rule mining using binary
particle swarm optimization. Eng Appl Artif Intell 26:1832–1840

Storn R, Price K (1997) Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. J Global
Optim 11(4):341–359

Tsai CW, Huang KW, Yang CS, Chiang MC (2015) A fast particle
swarm optimization for clustering. Soft Comput 19(2):321–338

Tseng VS, Wu CW, Shie BE, Yu PS (2010) UP-growth: an efficient
algorithm for high utility itemset mining. In: ACMSIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
pp 253–262

Wu CW, Shie BE, Tseng VS, Yu PS (2012) Mining top-k high utility
itemsets. In: ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp 78–86

Yao H, Hamilton HJ, Butz CJ (2004) A foundational approach to min-
ing itemset utilities from databases. SIAM Int Conf Data Mining
4:211–225

Yao H, Hamilton HJ (2006) Mining itemset utilities from transaction
databases. Data Knowl Eng 59(3):603–626

YenSJ, LeeYS (2007)Mining high utility quantitative association rules.
Lect Notes Comput Sci 4654:283–292

Zida S, Fournier-Viger P, Lin CW, Wu CW, Tseng VS (2015) EFIM:
a highly efficient algorithm for high-utility itemset mining. In:
Mexican International Conference on Artificial Intelligence

Zihayat M, An A (2014) Mining top-k high utility patterns over data
streams. Inf Sci 285:138–161

123

http://msdn.microsoft.com/en-us/library/aa217032(SQL.80).aspx
http://msdn.microsoft.com/en-us/library/aa217032(SQL.80).aspx

	A binary PSO approach to mine high-utility itemsets
	Abstract
	1 Introduction
	2 Related work
	2.1 Particle swarm optimization
	2.2 High-utility itemset mining

	3 Preliminaries and problem statement
	3.1 Preliminaries
	3.2 Problem statement

	4 Proposed BPSO-based framework of HUIM
	4.1 Pre-processing phase
	4.2 Particle encoding phase
	4.3 Evaluation phase
	4.4 Updating phase
	4.5 An improved strategy of combination
	4.6 The designed algorithm

	5 An illustrated example
	6 Experimental results
	6.1 Runtime
	6.2 Number of HUIs
	6.3 Number of determined patterns
	6.4 Convergence

	7 Conclusions
	Acknowledgments
	References

