EFIM: A Highly Efficient Algorithm for
High-Utility Itemset Mining

Souleymane Zida!, Philippe Fournier-Viger®, Jerry Chun-Wei Lin?,
Cheng-Wei Wu?, Vincent S. Tseng?

! Dept. of Computer Science, University of Moncton, Canada
2 School of Computer Science and Technology, Harbin Institute of Technology
Shenzhen Graduate School, China
3 Dept. of Computer Science, National Chiao Tung University, Taiwan
esz2233Q@umoncton.ca, philippe.fournier-viger@umoncton.ca,
jerrylin@ieee.org, silvemoonfox@gmail.com, vtseng@cs.nctu.edu.tw

Abstract. High-utility itemset mining (HUIM) is an important data
mining task with wide applications. In this paper, we propose a novel
algorithm named EFIM (EFficient high-utility Itemset Mining), which
introduces several new ideas to more efficiently discovers high-utility
itemsets both in terms of execution time and memory. EFIM relies on
two upper-bounds named sub-tree utility and local utility to more ef-
fectively prune the search space. It also introduces a novel array-based
utility counting technique named Fast Utility Counting to calculate these
upper-bounds in linear time and space. Moreover, to reduce the cost of
database scans, EFIM proposes efficient database projection and trans-
action merging techniques. An extensive experimental study on various
datasets shows that EFIM is in general two to three orders of magnitude
faster and consumes up to eight times less memory than the state-of-art
algorithms d?HUP, HUI-Miner, HUP-Miner, FHM and UP-Growth+.

Keywords: high-utility mining, itemset mining, pattern mining.

1 Introduction

Frequent Itemset Mining (FIM) [1] is a popular data mining task that is essential
to a wide range of applications. Given a transaction database, FIM consists of
discovering frequent itemsets. i.e. groups of items (itemsets) appearing frequently
in transactions [1, 14]. However, an important limitation of FIM is that it assumes
that each item cannot appear more than once in each transaction and that all
items have the same importance (weight, unit profit or value). To address these
issues, the problem of High-Utility Itemset Mining (HUIM) has been defined [2,
6-9, 11, 12]. As opposed to FIM [1, 14], HUIM counsiders the case where items can
appear more than once in each transaction and where each item has a weight
(e.g. unit profit). Therefore, it can be used to discover itemsets having a high-
utility (e.g. high profit), that is High-Utility Itemsets. HUIM has a wide range of
applications [2,7,12]. The problem of HUIM is more difficult than the problem



2 Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., V.S. Tseng

of FIM because the utility of an itemset is neither monotonic or anti-monotonic
(a HUI may have a superset or subset with lower, equal or higher utility) [2,7,
12]. Thus techniques to prune the search space developed in FIM based on the
anti-monotonicity of the support cannot be directly applied to HUIM.

Several algorithms have been proposed for HUIM. A popular approach to
HUIM is to discover high-utility itemsets in two phases. This approach is adopted
by algorithms such as PB [6], Two-Phase [9], BAHUI [11], UP-Growth and
UP-Growth+ [12]. However, the two-phase model suffers from the problem of
generating a huge amount of candidates and repeatedly scanning the database.
Recently, to avoid the problem of candidate generation, the HUI-Miner [7] and
d?HUP [8] algorithms were proposed to mine high-utility itemsets directly using
a single phase. Then, improved versions of HUI-Miner named HUP-Miner [8] and
FHM [2] were proposed, and are to our knowledge the current best algorithms
for HUIM. However, despite all these research efforts, the task of high-utility
itemset mining remains very computationally expensive.

In this paper, we address this need for more efficient HUIM algorithms by
proposing a one-phase algorithm named EFIM (EFficient high-utility Itemset
Mining), which introduces several novel ideas to greatly decrease the time and
memory required for HUIM. First, we propose two new techniques to reduce the
cost of database scans. EFIM performs database projection and merges trans-
actions that are identical in each projected database using a linear time and
space implementation. Both operations reduce the size of the database as larger
itemsets are explored. Second, we propose two new upper-bounds on the utility
of itemsets named sub-tree utility and local utility to more effectively prune the
search space. Third, we introduce a novel array-based utility counting technique
named Fast Utility Counting (FAC) to calculate these upper-bounds in linear
time and space.

We conducted an extensive experimental study to compare the performance
of EFIM with the state-of-the-art algorithms d?HUP, HUI-Miner, HUP-Miner,
FHM and UP-Growth+ on various datasets. Results show that EFIM is in gen-
eral two to three orders of magnitude faster than these algorithms, consumes up
to eight times less memory.

The rest of this paper is organized as follows. Sections 2, 3, 4, 5 and 6 respec-
tively presents the problem of HUIM, the related work, the EFIM algorithm, the
experimental evaluation and the conclusion.

2 Problem Statement

The problem of high-utility itemset mining is defined as follows. Let I be a finite
set of items (symbols). An itemset X is a finite set of items such that X C I. A
transaction database is a multiset of transactions D = {11, T, ..., T}, } such that
for each transaction T,., T, C I and T, has a unique identifier ¢ called its TID
(Transaction ID). Each item ¢ € I is associated with a positive number p(i),
called its external utility (e.g. unit profit). Every item ¢ appearing in a transac-
tion T, has a positive number ¢(i,T,), called its internal utility (e.g. purchase



EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining 3

quantity). For example, consider the database in Table 1, which will be used as
the running example. It contains five transactions (77, Ts...,T5). Transaction T
indicates that items a, ¢, e and g appear in this transaction with an internal
utility of respectively 2, 6, 2 and 5. Table 2 indicates that the external utility of
these items are respectively 5, 1, 3 and 1.

Table 1. A transaction database Table 2. External utility values
TID|Transaction Itemlabcde f g

Ty |(a, 1)(c,1)(d, 1) Profit[52123 1 1

T, (a’ 2) (C7 6) (67 2) (97 5)

T3 (a7 1)(b7 2)(65 1)(da 6)(65 1)(f7 5)

Ty | (b,4)(c,3)(d, 3) (e, 1)

Ts (b7 2)(07 2)(67 1)(97 2)

Definition 1 (Utility of an item/itemset). The utility of an item i in a
transaction T, is denoted as u(i,T.) and defined as p(i) x ¢(¢,T;) if i € T,.. The
utility of an itemset X in a transaction T, is denoted as u(X,T.) and defined
as u(X,Te) = Y ;e x u(i, Tc) if X C Te. The utility of an itemset X is denoted
as u(X) and defined as u(X) = Y 7 ¢ (x) (X, Tc), where g(X) is the set of
transactions containing X.

For example, the utility of item a in T3 is u(a,T2) = 5 x 2 = 10. The utility
of the itemset {a,c} in Ty is u({a, c}, To) = u(a,Tz) + u(c,T2) =5 x2+1x 6 =
16. Furthermore, the utility of the itemset {a,c} is u({a,c}) = w({a,c}, T1) +
u({a,c}t, To)+u({a,c}, T3) = u(a, Th) +u(e, Th) +u(a, Tz) +u(e, Ta) + ula, T3) +
w(e,T3) =5+1+10+6+5+1 = 28.

Definition 2 (Problem definition). An itemset X is a high-utility itemset
if w(X) > minutil. Otherwise, X is a low-utility itemset. The problem of high-
utility itemset mining is to discover all high-utility itemsets.

For example, if minutil = 30, the high-utility itemsets in the database of
the running example are {b,d}, {a,c,e}, {b,¢c,d}, {b,c,e}, {b,d,e}, {b,c,d, e},
{a,b,c, d, e, f} with respectively a utility of 30, 31, 34, 31, 36, 40 and 30.

3 Related Work

HUIM is harder than FIM since the utility measure is not monotonic or anti-
monotonic [9, 12], i.e. the utility of an itemset may be lower, equal or higher than
the utility of its subsets. Thus, strategies used in FIM to prune the search space
based on the anti-monotonicity of the frequency cannot be applied to the utility
measure to discover high-utility itemsets. Several HUIM algorithms circumvent
this problem by overestimating the utility of itemsets using the Transaction-
Weighted Utilization (TWU) measure [6,9,11, 12], which is anti-monotonic, and
defined as follows.



4 Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., V.S. Tseng

Definition 3 (Transaction weighted utilization (TWU)). The transaction
utility of a transaction T, is defined as TU (1) = > o7 u(z,Tc). The TWU of
an itemset X is defined as TWU(X) =37 ¢ (x) TU(To).

Ezxample 1. The TU of transactions T, T, T3, Ty and T5 for our running example
are respectively 8, 27, 30, 20 and 11. TWU (a) = TU(Ty) + TU (T) + TU(T3) =
8 + 274 30 = 65.

For any itemset X, it can be shown that TWU(X) > w(Y)VY D X (the
TWU of X is an upper-bound on the utility of X and its supersets) [9]. The
following properties of the TWU is used to prune the search space.

Property 1 (Pruning search space using TWU). For any itemset X, if TWU (X)
< minutil, then X is a low-utility itemset as well as all its supersets [9].

Algorithms such as PB [6], Two-Phase [9], BAHUI [11], UP-Growth and
UP-Growth+ [12] utilize Property 1 to prune the search space. They operate in
two phases. In the first phase, they identify candidate high-utility itemsets by
calculating their TWUs. In the second phase, they scan the database to calculate
the exact utility of all candidates to filter low-utility itemsets. UP-Growth is one
of the fastest two-phase algorithm. Recent two-phase algorithms such as PB and
BAHUI only provide a small speed improvement.

Recently, algorithms that mine high-utility itemsets using a single phase were
proposed to avoid the problem of candidate generation. The d2HUP and HUI-
Miner algorithms were reported to be respectively up to 10 and 100 times faster
than UP-Growth [7,8]. Then, improved versions of HUI-Miner named HUP-
Miner [8] and FHM [2] were proposed to reduce the number of join operations
performed by HUI-Miner, and are to our knowledge the current best algorithm
for HUIM. In HUI-Miner, HUP-Miner and FHM, each itemset is associated with
a structure named wutility-list [2,7]. Utility-lists allow calculating the utility of an
itemset by making join operations with utility-lists of smaller itemsets. Utility-
lists are defined as follows.

Definition 4 (Remaining utility). Let > be a total order on items from I,
and X be an itemset. The remaining utility of X in a transaction T, is defined
asre(X,T.) =>, i, Te).

i€TNimaVreX u(

Definition 5 (Utility-list). The wutility-list of an itemset X in a database D
is a set of tuples such that there is a tuple (c, tutil, rutil) for each transaction T
containing X . The jutil and rutil elements of a tuple respectively are the utility
of X in T, (u(X,T.)) and the remaining utility of X in T, (re(X,T,)).

For example, assume the lexicographical order (i.e. ¢ > d > ¢ > b > a). The
utility-list of {a, e} is {(T%,16,5), (15,8,5)}.

To discover high-utility itemsets, HUI-Miner, HUP-Miner and FHM perform
a database scan to create utility-lists of patterns containing single items. Then,
larger patterns are obtained by joining utility-lists of smaller patterns (see [7, 8]
for details). Pruning the search space is done using the following properties.



EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining 5

Definition 6 (Remaining utility upper-bound). Let X be an itemset. Let
the extensions of X be the itemsets that can be obtained by appending an item
i to X such that i > x, Vo € X. The remaining utility upper-bound of X is
defined as reu(X) = u(X) + re(X), and can be computed by summing the jutil
and rutil values in the utility-list of X.

Property 2 (Pruning search space using utility-lists). If reu(X) < minutil, then
X is a low-utility itemset as well as all its extensions [7].

One-phase algorithms [2,7,8,10] are faster and generally more memory effi-
cient than two phase algorithms. However, mining HUIs remains very computa-
tionally expensive. For example, HUI-Miner, HUP-Miner, and FHM still suffer
from a high space and time complexity. The size of each utility-list is in the worst
case O(n), where n is the number of transactions (when a utility-list contains
an entry for each transaction). The complexity of building a utility-list is also
very high [2]. In general, it requires to join three utility-lists of smaller itemsets,
which thus requires O(n?) time in the worst case.

4 The EFIM Algorithm

We next present our proposal, the EFIM algorithm. It is a one-phase algorithm,
which introduces several novel ideas to reduce the time and memory required for
HUIM. Subsection 4.1 briefly reviews definitions related to the depth-first search
of itemsets. Subsection 4.2 and 4.3 respectively explain how EFIM reduces the
cost of database scans using an efficient implementation of database projection
and transaction merging. Subsection 4.4 presents two new upper-bounds used
by EFIM to prune the search space. Subsection 4.5 presents a new array-based
utility counting technique named Fast Utility Counting to efficiently calculate
these upper-bounds in linear time and space. Finally, subsection 4.6 gives the
pseudocode of EFIM.

4.1 The Search Space

Let > be any total order on items from I. According to this order, the search
space of all itemsets 2 can be represented as a set-enumeration tree. For exam-
ple, the set-enumeration tree of I = {a,b,c,d} for the lexicographical order is
shown in Fig. 1. The EFIM algorithm explores this search space using a depth-
first search starting from the root (the empty set). During this depth-first search,
for any itemset «, EFIM recursively appends one item at a time to « according
to the > order, to generate larger itemsets. In our implementation, the > or-
der is defined as the order of increasing TWU because it generally reduces the
search space for HUIM (2, 7,12]. However, we henceforth assume that > is the
lexicographical order, for the sake of simplicity. We next introduce definitions
related to the depth-first search exploration of itemsets.



6 Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., V.S. Tseng

P ANANE

{a,b} {a,c} {a,d} {b,c} {b,d} {cd}
{a,b,c} {a,b,d} {a,c,d} {bcd}
{a,b,c,d}

Fig. 1. Set-enumeration tree for I = {a, b, c,d}

Definition 7 (Items that can extend an itemset). Let be an itemset «.
Let E(a) denote the set of all items that can be used to extend « according to
the depth-first search, that is E(a) = {z|z € I A z > z,Vz € a}.

Definition 8 (Extension of an itemset). Let be an itemset c. An itemset
Z is an extension of « (appears in a sub-tree of « in the set-enumeration tree) if
Z = oUW for an itemset W € 2%(®) such that W # §. Furthermore, an itemset
Z is a single-item extension of « (is a child of « in the set-enumeration tree) if
Z =aU{z} for an item z € E(a).

For example, consider the database of our running example and a = {d}.
The set E(a) is {e, f, g}. Single-item extensions of « are {d, e}, {d, f} and {d, g}
Other extensions of « are {d, e, f}, {d, f,g} and {d,e, f, g}.

4.2 Reducing the Cost of Database Scans using Projections

As we will explain, EFIM performs database scans to calculate the utility of
itemsets and upper-bounds on their utility. To reduce the cost of database scans,
it is desirable to reduce the database size. An observation is that when an itemset
« is considered during the depth-first search, all items x ¢ FE(«) can be ignored
when scanning the database to calculate the utility of itemsets in the sub-tree
of a, or upper-bounds on their utility. A database without these items is called
a projected database.

Definition 9 (Projected database). The projection of a transaction T using
an itemset « is denoted as - T and defined as a-T = {i|i € T Ai € E(a)}. The
projection of a database D using an itemset « is denoted as a-D and defined as
the multiset a-D = {a-T|T € D A a-T # 0}.

For example, consider database D of the running example and o = {b}.
The projected database a-D contains three transactions: a-T5 = {c¢,d,e, [},
a-Ty ={c,d,e} and o-T5 = {c, e, g}.



EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining 7

Database projections generally greatly reduce the cost of database scans since
transactions become smaller as larger itemsets are explored. However, an impor-
tant issue is how to implement database projection efficiently. A naive and in-
efficient approach is to make physical copies of transactions for each projection.
An efficient approach used in EFIM is to sort each transaction in the original
database according to the > total order beforehand. Then, a projection is per-
formed as a pseudo-projection, that is each projected transaction is represented
by an offset pointer on the corresponding original transaction. The complexity of
calculating the projection a-D of a database D is linear in time and space with
respect to the number of transactions. The proposed database projection tech-
nique generalizes the concept of database projection from pattern mining [14]
for the case of transactions with internal /external utility values. Note that FP-
growth based HUIM algorithms [6,12] and hyper-link based HUIM algorithms
[8] also perform projections but differently than the proposed EFIM algorithm.

4.3 Reducing the Cost of Database Scans by Transaction Merging

To further reduce the cost of database scans, EFIM also introduce an efficient
transaction merging technique. It is based on the observation that transaction
databases often contain identical transactions. The technique consists of iden-
tifying these transactions and to replace them with single transactions. In this
context, a transaction T, is said to be identical to a transaction Tj if it contains
the same items as Tj, (i.e. T, = Tp) (but not necessarily the same internal utility
values).

Definition 10 (Transaction merging). Transaction merging consists of re-
placing a set of identical transactions Tri,Trs,...Tr, in a database D by a
single new transaction Ty; = Tr; = Tre = ... = T'r,, where the quantity of each
item i € Ty is defined as (i, Tar) = Dy, 4(3, Ty).

But to achieve higher database reduction, we also merge transactions in pro-
jected databases. This generally achieves a much higher reduction because pro-
jected transactions are smaller than original transactions, and thus are more
likely to be identical.

Definition 11 (Projected transaction merging). Projected transaction
merging consists of replacing a set of identical transactions Try, Trs,...T7Ty, in a
database a-D by a single new transaction Tyy = Try = Tre = ... = T'r,;, where
the quantity of each item ¢ € Ty is defined as q(4,Tar) =Yy, (3, Try).

For example, consider database D of our running example and o = {c}.
The projected database a-D contains transactions a-T; = {d}, a-Ts = {e, g},
a-Ts ={d,e, f}, a-Ty = {d, e} and o-T5 = {e, g}. Transactions a-T5 and «-T5
can be replaced by a new transaction Ty = {e,g} where g(e,Tps) = 3 and
q(g,Tnm) =T.

Transaction merging is obviously desirable. However, a key problem is to
implement it efficiently. The naive approach to identify identical transactions is



8 Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., V.S. Tseng

to compare all transactions with each other. But this is inefficient (O(n?), where
n is the number of transactions). To find identical transactions in O(n) time, we
propose the following approach. We initially sort the original database according
to a new total order > on transactions. Sorting is achieved in O(n log(n)) time,
and is performed only once.

Definition 12 (Total order on transactions). The > order is defined as
the lexicographical order when the transactions are read backwards. Formally,
let be two transactions T, = {1,142, ...i;, } and T, = {J1, j2, ...Jk - The total order
> is defined by four cases. The first case is that T}, > Ty, if both transactions are
identical and Ty is greater than the TID of T,,. The second case is that Ty =1 Ty,
if Kk > m and i,,—; = jr—, for any integer x such that 0 < z < m. The third case
is that Ty, =7 T, if there exists an integer = such that 0 < z < min(m, k), where
Jk—z > im—g and iy—y = jr_, for all integer y such that < y < min(m, k).
The fourth case is that otherwise T, =71 T}.

For example, let be transactions T, = {b,c}, T, = {a,b,c} and T, = {a, b, e}.
We have that T, =7 Ty =7 Tf.

A database sorted according to the > order provides the following property
(proof omitted due to space limitation).

Property 3 (Order of identical transactions in a =7 sorted database). Let be a
7 sorted database D and an itemset «. Identical transactions appear consecu-
tively in the projected database a-D.

Using the above property, all identical transactions in a (projected) database
can be identified by only comparing each transaction with the next transac-
tion in the database. Thus, using this scheme, transaction merging can be done
very efficiently by scanning a (projected) database only once (linear time). It is
interesting to note that transaction merging as proposed in EFIM cannot be im-
plemented efficiently in utility-list based algorithms (e.g. FHM and HUP-Miner)
and hyperlink-based algorithms (e.g. d2HUP) due to their database representa-
tions.

4.4 Pruning Search Space using Sub-tree Utility and Local Utility

To propose an efficient HUIM algorithm, a key problem is to design an effective
pruning mechanism. For this purpose, we introduce in EFIM two new upper-
bounds on the utility of itemsets named sub-tree utility and local utility. The key
difference with previous upper-bounds is that they are defined w.r.t the sub-tree
of an itemset « in the search-enumeration tree.

Definition 13 (Sub-tree utility). Let be an itemset a and an item z that can
extend « according to the depth-first search (z € E(«)). The Sub-tree Utility of z

w.rt. avls su(e, 2) = Y ey auay W T) +u(z,T) + 3 crpicpaugsy) wli; T)]-

Ezample 2. Consider the running example and « = {a}. We have that su(«, ¢)
=(5+1+2) +(10+6+11) +(5+1+420) = 61, su(a,d) = 25 and su(a, e) = 34.



EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining 9

The following theorem of the sub-tree utility is proposed in EFIM to prune
the search space (proof ommited due to space limitation).

Property 4 (Overestimation using the sub-tree utility). Let be an itemset « and
an item z € E(«). The relationship su(a,z) > u(a U {z}) holds. And more

generally, su(a, z) > u(Z) holds for any extension Z of aU {z}.

Theorem 1 (Pruning a sub-tree using the sub-tree utility). Let be an
itemset « and an item z € E(a). If su(a,z) < minutil, then the single item
extension aoU{z} and its extensions are low-utility. In other words, the sub-tree
of U {z} in the set-enumeration tree can be pruned.

Thus, using Theorem 1, we can prune some sub-trees of an itemset «, which
reduces the number of sub-trees to be explored. To further reduce the search
space, we also identify items that should not be explored in any sub-trees.

Definition 14 (Local utility). Let be an itemset o and an item z € FE(«).
The Local Utility of z w.r.t. o is lu(a, 2) = > pegaugey [ulen T) + re(a, T)].

Ezample 3. Consider the running example and o = {a}. We have that lu(a, ¢)
= (84 27+ 30) = 65, lu(a,d) = 30 and lu(a, e) = 57.

Property 5 (Overestimation using the local utility). Let be an itemset o and an
item z € E(a). Let Z be an extension of a such that z € Z. The relationship
lu(a, z) > u(Z) holds.

Theorem 2 (Pruning an item from all sub-trees using the local util-
ity). Let be an itemset a and an item z € E(«a). If lu(a, z) < minutil, then
all extensions of « containing z are low-utility. In other words, item z can be
ignored when exploring all sub-trees of «.

The relationship between the proposed upper-bounds and the main ones used
in previous work is the following.

Property 6 (Relationships between upper-bounds). Let be an itemset Y = aU{z}.
The relationship TWU(Y') > lu(a, z) > reu(Y) = su(a, z) holds.

Given, the above relationship, it can be seen that the proposed local utility
upper-bound is a tighter upper-bound on the utility of ¥ and its extensions
compared to the TWU, which is commonly used in two-phase HUIM algorithms.
Thus the local utility can be more effective for pruning the search space. Besides,
one can ask what is the difference between the proposed su upper-bound and
the reu upper-bound of HUI-Miner and FHM since they are mathematically
equivalent. The major difference is that su is calculated when the depth-first
search is at itemset « in the search tree rather than at the child itemset Y.
Thus, if su(a,z) < minutil, EFIM prunes the whole sub-tree of z including
node Y rather than only pruning the descendant nodes of Y. Thus, using su
instead of reu is more effective for pruning the search space. In the rest of the
paper, for a given itemset «, we respectively refer to items having a sub-tree
utility and local-utility no less than minutil as primary and secondary items.



10 Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., V.S. Tseng

Definition 15 (Primary and secondary items). Let be an itemset a. The
primary items of « is the set of items defined as Primary(a) = {z|z € E(a) A
su(a, z) > minutil}. The secondary items of « is the set of items defined as
Secondary(a) = {z]z € E(a) Nlu(a, z) > minutil}. Because lu(w, 2) > su(a, z),
Primary(a) C Secondary(a).

For example, consider the running example and o = {a}. Primary(a) =
{c,e}. Secondary(a) = {c,d,e}.

4.5 Calculating Upper-Bounds Efficiently using Fast Utility
Counting

In the previous subsection, we introduced two new upper-bounds on the utility
of itemsets to prune the search space. We now present a novel efficient array-
based approach to compute these upper-bounds in linear time and space that
we call Fast Utility Counting (FUC). It relies on a novel array structure called
utility-bin.

Definition 16 (Utility-Bin). Let be the set of items I appearing in a database
D. A utility-bin array U for database D is an array of length |I|, having an entry
denoted as U|z] for each item z € I. Each entry is called a utility-bin and is used
to store a utility value (an integer in our implementation, initialized to 0).

A utility-bin array can be used to efficiently calculate the following upper-
bounds in O(n) time (recall that n is the number of transactions), as follows.

Calculating the TWU of all items. A utility-bin array U is initialized.
Then, for each transaction T of the database, the utility-bin U][z] for each item
z € T is updated as U[z] = U[z] + TU(T). At the end of the database scan, for
each item k € I, the utility-bin U[k] contains TWU (k).

Calculating the sub-tree utility w.r.t. an itemset «. A utility-bin array
U is initialized. Then, for each transaction 7' of the database, the utility-bin
Ulz] for each item z € T'N E(«) is updated as Ulz] = Ulz] + u(a, T) +u(z,T) +
Y icrnis» U(i, T). Thereafter, we have U[k] = su(a, k) Vk € I.

Calculating the local utility w.r.t. an itemset a. A utility-bin array U
is initialized. Then, for each transaction T of the database, the utility-bin U]z]
for each item z € T N E(«) is updated as Ulz] = Ulz] + u(a,T) + re(a, T).
Thereafter, we have Ulk] = lu(a, k) Vk € 1.

Thus, by the above approach, the three upper-bounds can be calculated
for all items that can extend an itemset « with only one (projected) database
scan. Furthermore, it can be observed that utility-bins are a very compact data
structure (O(]I]) size). To utilize utility-bins more efficiently, we propose three
optimizations. First, all items in the database are renamed as consecutive inte-
gers. Then, in a utility-bin array U, the utility-bin U[i] for an item i is stored
in the i-th position of the array. This allows to access the utility-bin of an item
in O(1) time. Second, it is possible to reuse the same utility-bin array multiple
times by reinitializing it with zero values before each use. This avoids creating



EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining 11

multiple arrays and thus reduces memory usage. In our implementation, only
three utility-bin arrays are created, to respectively calculate the TWU, sub-tree
utility and local utility. Third, when reinitializing a utility-bin array to calculate
the sub-tree utility or the local utility of single-item extensions of an itemset
a, only utility-bins corresponding to items in E(a) are reset to 0, for faster
reinitialization of the utility-bin array.

4.6 The Proposed Algorithm

In this subsection, we present the EFIM algorithm, which combines all the ideas
presented in the previous section. The main procedure (Algorithm 1) takes as
input a transaction database and the minutil threshold. The algorithm initially
considers that the current itemset « is the empty set. The algorithm then scans
the database once to calculate the local utility of each item w.r.t. «, using a
utility-bin array. Note that in the case where o = (), the local utility of an item
is its TWU. Then, the local utility of each item is compared with minutil to
obtain the secondary items w.r.t to «, that is items that should be considered
in extensions of a. Then, these items are sorted by ascending order of TWU
and that order is thereafter used as the > order (as suggested in [2,7]). The
database is then scanned once to remove all items that are not secondary items
w.r.t to « since they cannot be part of any high-utility itemsets by Theorem
2. If a transaction becomes empty, it is removed from the database. Then, the
database is scanned again to sort transactions by the »>7 order to allow O(n)
transaction merging, thereafter. Then, the algorithm scans the database again to
calculate the sub-tree utility of each secondary item w.r.t. «;, using a utility-bin
array. Thereafter, the algorithm calls the recursive procedure Search to perform
the depth first search starting from a.

Algorithm 1: The EFIM algorithm

input : D: a transaction database, minutil: a user-specified threshold
output: the set of high-utility itemsets

a=0;

Calculate lu(a, 1) for all items ¢ € I by scanning D, using a utility-bin array;

Secondary(a) = {i|i € I A lu(a,i) > minutil};

Let > be the total order of TWU ascending values on Secondary(a);

Scan D to remove each item i ¢ Secondary(a) from the transactions, and delete

empty transactions;

Sort transactions in D according to >r;

7 Calculate the sub-tree utility su(a, ) of each item i € Secondary(a) by
scanning D, using a utility-bin array;

8 Primary(a) = {i|i € Secondary(a) A su(a,i) > minutil};

9 Search («, D, Primary(a), Secondary(a), minutil);

Uk W N

(=)




12 Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., V.S. Tseng

The Search procedure (Algorithm 2) takes as parameters the current itemset
to be extended «, the o projected database, the primary and secondary items
w.r.t a and the minutil threshold. The procedure performs a loop to consider
each single-item extension of « of the form § = aU{i}, where i is a primary item
w.r.t « (since only these single-item extensions of « should be explored according
to Theorem 1). For each such extension S, a database scan is performed to
calculate the utility of 8 and at the same time construct the 3 projected database.
Note that transaction merging is performed whilst the § projected database is
constructed. If the utility of 8 is no less than minutil, § is output as a high-
utility itemset. Then, the database is scanned again to calculate the sub-tree
and local utility w.r.t 8 of each item z that could extend § (the secondary items
w.r.t to @), using two utility-bin arrays. This allows determining the primary and
secondary items of 5. Then, the Search procedure is recursively called with g to
continue the depth-first search by extending /3. Based on properties and theorems
presented in previous sections, it can be seen that when EFIM terminates, all
and only the high-utility itemsets have been output.

Complexity. A rough analysis of the complexity is as follows. To process
each primary itemset a encountered during the depth-first search, EFIM per-
forms database projection, transaction merging and upper-bound calculation in
O(n) time. In terms of space, utility-bin arrays are created once and require
O(]I]) space. The database projection performed for each primary itemset « re-
quires at most O(n) space. In practice, this is small considering that projected
databases become smaller as larger itemsets are explored, and are implemented
using offset pointers.

Algorithm 2: The Search procedure

input : «: an itemset, a-D: the a projected database, Primary(a): the
primary items of «, Secondary(a): the secondary items of «, the
manutil threshold

output: the set of high-utility itemsets that are extensions of «

foreach item i € Primary(o) do

B =aU{i}

Scan a-D to calculate u(5) and create 5-D; // uses transaction merging
if u(B) > minutil then output S;

Calculate su(f, z) and lu(g, z) for all item z € Secondary(c«) by scanning
B-D once, using two utility-bin arrays;

Primary(B) = {z € Secondary(a)|su(B, z) > minutil};

Secondary(B) = {z € Secondary(a)|lu(s, z) > minutil};

Search (8, 8-D, Primary(B), Secondary(B), minutil);

end

Gk W N =

© 0 N o




EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining 13

5 Experimental Results

We performed experiments to evaluate the performance of the proposed EFIM
algorithm. Experiments were carried out on a computer with a fourth generation
64 bit core i7 processor running Windows 8.1 and 16 GB of RAM. We compared
the performance of EFIM with the state-of-the-art algorithms UP-Growth+,
HUP-Miner, d>HUP, HUI-Miner and FHM.

Algorithms were implemented in Java and memory measurements were done
using the Java API. Experiments were performed using a set of standard datasets
used in the HUIM literature for evaluating HUIM algorithms, namely (Acci-
dent, BMS, Chess, Connect, Foodmart and Mushroom). Table 3 summarizes
their characteristics. Foodmart contains real external/internal utility values. For
other datasets, external/internal utility values have been respectively generated
in the [1,000] and [1, 5] intervals using a log-normal distribution, as done in pre-
vious state-of-the-art HUIM studies [2,7,12]. The datasets and the source code
of the compared algorithms can be downloaded as part of the SPMF data mining
library http://goo.gl/rIKIub [3].

Table 3. Dataset characteristics

Dataset  |# Transactions|# Distinct items|Avg. trans. length
Accident 340,183 468 33.8

BMS 59,601 497 4.8

Chess 3,196 75 37.0

Connect |67,557 129 43.0

Foodmart |4,141 1,559 4.4
Mushroom|8,124 119 23.0

Influence of the minutil threshold on execution time. We first compare
execution times of the various algorithms. We ran the algorithms on each dataset
while decreasing the minutil threshold until algorithms were too slow, ran out
of memory or a clear winner was observed. Execution times are shown in Fig. 2.
Note that for UP-Growth+, no result is shown for the connect dataset and that
some results are missing for the chess dataset because UP-Growth+ exceeded
the 16 GB memory limit. It can be observed that EFIM clearly outperforms UP-
Growth+, HUP-Miner, d2HUP, HUI-Miner and FHM on all datasets. EFIM is in
general about two to three orders of magnitude faster than these algorithms. For
Accident, BMS, Chess, Connect, Foodmart and Mushroom, EFIM is respectively
up to 15,334, 2, 33,028, —, 17 and 3,855 times faster than UP-Growth+, 154,
741, 323, 22,636, 2 and 85 times faster than HUP-Miner, 89, 1,490, 109, 2,587,
1 and 15 times faster than d?HUP, 236, 2,370, 482, 10,586, 3 and 110 times
faster than HUI-Miner and 145, 227, 321, 6,606, 1 and 90 times faster than
FHM. An important reason why EFIM performs so well is that the proposed
upper-bounds allows EFIM to prune a larger part of the search space compared



14 Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., V.S. Tseng

to other algorithms (as will be shown). The second reason is that the proposed
transaction merging technique often greatly reduces the cost of database scans.
It was observed that EFIM on Chess, Connect and Mushroom, EFIM is up to
116, 3,790 and 55 and times faster than a version of EFIM without transaction
merging. For other datasets, transaction merging reduces execution times but
by a lesser amount (EFIM is up to 90, 2 and 2 times than a version of EFIM
without transaction merging on Accident, BMS and Foodmart). The third reason
is that the calculation of upper-bounds is done in linear time using utility-bins.
It is also interesting to note that transaction merging cannot be implemented
efficiently in utility-list based algorithms such as HUP-Miner, HUI-Miner and
FHM, due to their vertical database representation, and also for hyperlink-based
algorithms such as the d2HUP algorithm.

Accident BMS Chess

1000000 10000 10000

100000
1000 1000
10000

1} 100

1000 100

10
y 4
1] :—"__‘/’/‘
1 1 $-

27500K 25000K 22500K 20000K 17500K 2280K 2270K 2260K 2250K 2240K 600K 550K 500K 400K 350K

Runtime (s)
Runtime (s)

100

Runtime (s)

10

Minimum Utility Threshold Minimum Utllity Threshold Minimum Utility Threshold
Connect Foodmart Mushroom
100000 10 100000
s
10000 000, o o —o—9
1000 ]

=
1)
<]
S

Runtime(s)
Runtime (s)
.
= (=3
o o
H '

Runtime (s)
[
5

100

10

1
16000K 15000K 14000K 13000K 3000 2500 2000 1000 1

1
100K 95K 90K 85K 80K
Minimum Utility Threshold Minimum Utility Threshold Minimum Utility Threshold

—o—EFIM —8—FHM —#— HUI-MINER HUP-MINER —A— D2HUP —@— UP-Growth+

Fig. 2. Execution times on different datasets

Influence of the minutil threshold on memory usage. In terms of
memory usage, EFIM also clearly outperforms other algorithms as shown in
Table 4. For Accident, BMS, Chess, Connect, Foodmart and Mushroom, EFIM
uses 1.8, 4.4, 14.9, 27.0, 1.3 and 6.5 times less memory than the second fastest
algorithm (d?HUP). Moreover, EFIM uses 1.6, 9.2, 4.6, 8.1, 3.2 and 3.1 times
less memory than the third fastest algorithm (FHM). It is also interesting that
EFIM utilizes less than 100 MB on four out of the six datasets, and never more
than 1 GB, while other algorithms often exceed 1 GB.

A reason why EFIM is so memory efficient is that it use a simple database
representation, which does not requires to maintain much information in mem-
ory (only pointers for pseudo-projections). Other algorithms relies on complex
structures such as tree-structures (e.g. UPGrowth+) and list-structures (e.g.



EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining 15

HUP-Miner, HUI-Miner and FHM), which requires additional memory. More-
over, projected databases generated by EFIM are often very small due to transac-
tion merging. Another reason is that the number of projected databases created
by EFIM is small, because EFIM visits less nodes of the search-enumeration tree
(as we will show later). EFIM is also more efficient than two-phase algorithms
such as UPGrowth+ since it is a one-phase algorithm. Lastly, another important
characteristic of EFIM in terms of memory efficiency is that it reuses some of
its data structures. For example, FAC only requires to create three arrays that
are reused to calculate the upper-bounds of each itemset considered during the
depth-first search.

Table 4. Comparison of maximum memory usage (MB)

Dataset |HUI-MINER|FHM[EFIM|UP-Growth+|HUP-Miner[d?HUP
Accident 1,656 1,480|895 |765 1,787 1,691
BMS 210 590 |64 64 758 282
Chess 405 305 |65 - 406 970
Connect 2,565 3,141|385 |- 1,204 1,734
Foodmart 808 211 |64 819 68 84
Mushroom 194 224 |71 1,507 196 468

Comparison of the number of visited nodes. We also performed an
experiment to compare the ability at pruning the search space of EFIM to other
algorithm. Table 5 shows the number of nodes of the search-enumeration tree
(itemsets) visited by EFIM, UP-Growth+, HUP-Miner, dHUP, HUI-Miner and
FHM for the lowest minutil values on the same datasets. It can be observed
that EFIM is much more effective at pruning the search space than the other
algorithms, thanks to its proposed sub-tree utility and local utility upper-bounds.

Table 5. Comparison of visited node count

Dataset |HUL-MINER |FHM EFIM UP-Growth-+|HUP-Miner|d?HUP
Accident |131,300 128,135  |51,883 [3,234,611  [113,608  |119,427
BMS 2,205,782,168|212,800,883|323 91,195 205,556,936 (220,323,377
Chess 6,311,753  |6,271,900 |2,875,166|— 6,099,484 |5,967,414
Connect |3,444,785 (3,420,253 |1,366,893|— 3,385,134 (3,051,789
Foodmart 55,172,950 |1,880,740 [233,231 233,231 1,258,820 233,231
Mushroom|3,329,191  [3,089,819 |2,453,683(13,779,114 (3,054,253 |2,919,842




16 Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., V.S. Tseng
6 Conclusion

We have presented a novel algorithm for high-utility itemset mining named
EFIM. It relies on two new upper-bounds named sub-tree utility and local utility.
It also introduces a novel array-based utility counting approach named Fast Util-
ity Counting to calculate these upper-bounds in linear time and space. Moreover,
to reduce the cost of database scans, EFIM introduces techniques for database
projection and transaction merging, also performed in linear time and space. An
extensive experimental study on various datasets shows that EFIM is in general
two to three orders of magnitude faster and consumes up to eight times less
memory than the state-of-art algorithms UP-Growth+, HUP-Miner, d?HUP,
HUI-Miner and FHM. The source code of all algorithms and datasets used in
the experiments can be downloaded as part of the SPMF data mining library
goo.gl/rIKIub [3]. For future work, we will extend EFIM for popular varia-
tions of the HUIM problem such as mining closed+ high-utility itemset [13],
generators of high-utility itemsets [5], and on-shelf high-utility itemsets [4].

Acknowledgement This work is financed by a National Science and Engineer-
ing Research Council (NSERC) of Canada research grant.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. Intern. Conf. Very Large Databases, pp. 487-499 (1994)

2. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V. S.: FHM: Faster high-utility
itemset mining using estimated utility co-occurrence pruning. In: Proc. 21st Intern.
Symp. on Methodologies for Intell. Syst., pp. 83-92 (2014)

3. Fournier-Viger, P, Gomariz, A., Gueniche, T., Soltani, A., Wu., C.-W., Tseng, V. S.:
SPMF: a Java Open-Source Pattern Mining Library. Journal of Machine Learning
Research, 15, 3389-3393 (2014)

4. Fournier-Viger, P., Zida, S.: Foshu: Faster On-Shelf High Utility Itemset Mining with
or without negative unit profit. Proc. 30th ACM Symposium on Applied Computing,
pp. 857-864 (2015)

5. Fournier-Viger, P., Wu, C.-W., Tseng, V. S. : Novel Concise Representations of
High Utility Itemsets using Generator Patterns. Proc. of 10th Intern. Conference
on Advanced Data Mining and Applications, pp. 30-43 (2014)

6. Lan, G. C., Hong, T. P., Tseng, V. S.: An efficient projection-based indexing ap-
proach for mining high utility itemsets. Knowl. and Inform. Syst. 38(1), 85-107
(2014)

7. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proc.
22nd ACM Intern. Conf. Info. and Know. Management, pp. 55-64 (2012)

8. Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert
Systems with Applications, 42(5), 2371-2381 (2015)

9. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Proc. 9th Pacific-Asia Conf. on Knowl. Discovery and Data
Mining, pp. 689-695 (2005)



EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining 17

10. Liu, J., Wang, K., Fung, B.: Direct discovery of high utility itemsets without can-
didate generation. Proc. 12th IEEE Intern. Conf. Data Mining, pp. 984-989 (2012)

11. Song, W., Liu, Y., Li, J.: BAHUI: Fast and memory efficient mining of high utility
itemsets based on bitmap. Intern. Journal of Data Warehousing and Mining. 10(1),
1-15 (2014)

12. Tseng, V. S., Shie, B.-E., Wu, C.-W., Yu., P. S.: Efficient algorithms for mining
high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng.
25(8), 1772-1786 (2013)

13. Tseng, V., Wu, C., Fournier-Viger, P., Yu, P.: Efficient algorithms for mining the
concise and lossless representation of closed+ high utility itemsets. IEEE Trans.
Knowl. Data Eng. 27(3), 726-739 (2015)

14. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: Efficient mining algorithms for fre-
quent/closed/maximal itemsets. In: Proc. ICDM’04 Workshop on Frequent Itemset
Mining Implementations, CEUR (2004)

15. Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J. C. W., Tseng, V.S.: Efficient mining
of high utility sequential rules. in: Proc. 11th Intern. Conf. Machine Learning and
Data Mining, pp. 1-15 (2015)



