A More Efficient Algorithm to Mine Skyline
Frequent-Utility Patterns

Jerry Chun-Wei Lin'®™) | Lu Yang', Philippe Fournier-Viger?,
Siddharth Dawar3, Vikram Goyal®, Ashish Sureka*, and Bay Vo®

1 School of Computer Science and Technology, Harbin Institute of Technology
Shenzhen Graduate School, Shenzhen, China
jerrylin@ieee.org, luyang@ikelab.net
2 School of Natural Sciences and Humanities, Harbin Institute of Technology
Shenzhen Graduate School, Shenzhen, China
philfv@hitsz.edu.cn
3 Indraprastha Institute of Information Technology, Delhi, India
{siddharthd,vikram}@iiitd.ac.in
4 ABB Corporate Research, Bangalore, India
ashish.sureka@in.abb.com
® Faculty of Information Technology, Ho Chi Minh City University of Technology,
Ho Chi Minh City, Vietnam
bayvodinh@gmail.com

Abstract. In the past, a SKYMINE approach was proposed to both
consider the aspects of utility and frequency of the itemsets to mine
the skyline frequency-utility skyline patterns (SFUPs). The SKYMINE
algorithm requires, however, the amounts of computation to mine the
SFUPs based on the utility-pattern (UP)-tree structure performing in a
level-wise manner. In this paper, we propose more effective algorithms
to mine the SFUPs based on the utility-list structure. Substantial exper-
iments are carried to show that the proposed algorithms outperform the
state-of-the-art SKYMINE to mine the SFUPs in terms of runtime and
memory usage.

Keywords: Skyline - Utility + Frequent - Umax - Utility-list

1 Introduction

The frequent itemset mining (FIM) is the fundamental task of Knowledge dis-
covery in database, which is used to identify the set of frequent itemsets (FIs)
[3,11,12,14,20,22]. In real-life situations, only frequency of the itemsets reveals
the insufficient information. To solve the limitation of FIM, high-utility item-
set mining (HUIM) [5,7,15,16,25] was proposed to discover the “useful” and
“profitable” itemsets from the quantitative database. Lin et al. then presented
the high-utility pattern (HUP)-tree algorithm [15] to mine the HUIs. The UP-
Growth+ algorithm [24] was further designed to adopt several pruning strategies
to speed up mining process based on the developed utility-pattern (UP)-tree.

(© Springer International Publishing AG 2017
J. Pan et al. (eds.), Genetic and Evolutionary Computing, Advances in Intelligent
Systems and Computing 536, DOI 10.1007/978-3-319-48490-7_16

128 J.C.-W. Lin et al.

Yeh et al. [26] first proposed the two-phase algorithms for mining high utility
and frequency itemsets. Podpecan et al. [21] then proposed a fast algorithm to
mine the utility-frequent itemsets. However, it is difficult to define appropri-
ate utility threshold and minimum support threshold for retrieving the required
information.

Skyline contains the dominance relationship between tuples based on multi-
dimensions. Borzsonyi et al. [6] addressed the first work of skylines in the con-
text of databases and developed several algorithms based on block nested loops,
divide-and-conquer, and index scanning mechanism. Chomicki et al. [9] employs
a certain ordering of tuples in the window to increase performance of [6]. Tan
et al. [23] proposed progressive (or on-line) algorithms that can progressively
output skyline points without scanning the entire dataset. Other related works
of skyline are still developed in progress [2,8,13,19].

Although FIM and HUIM have widely range in real-world applications, both
of them can only focus on one aspect by respectively considering the occurrence
frequency or the utility of the itemsets. Goyal et al. [10] first defined the sky-
line frequent-utility pattern (SFUP) and designed a SKYMINE algorithm to
mine the itemsets with high occurrence frequency and high utility. However, the
numerous candidates are required to be generated of the SKYMINE, which is
a time-consuming task. The problem of memory leakage also happens in the
SKYMINE since it is necessary to generate the numerous candidates for mining
SFUPs. To speed up the mining process and reduce the memory usage, we design
new algorithms to efficient mine the SFUPs. An efficient utility-list structure is
adopted in this paper to efficiently mine the SFUPs without candidate genera-
tion. Besides, an wmax array is further developed to keep the maximal utility
under the occurrence frequency. A pruning strategy is also developed to reduce
the search space for mining SFUPs. Extensive experiments on various databases
were conducted and the results showed that the proposed algorithm has better
performance than that of the SKYMINE for mining SFUPs.

2 Preliminaries and Problem Statement

Let I = {iy, i2, ..., im} be a finite set of m distinct items. A quantitative
database is a set of transactions D = {Ty, T>, ..., T,,}, where each transaction
T, € D (1 < g <n)isasubset of I and has a unique identifier ¢, called its TID.
Besides, each item 4; in a transaction Ty has its purchase quantity (internal
utility) and denoted as ¢(i;,Ty;). A profit table ptable = {pr(i1), pr(iz), ...,
pr(im)} indicates the profit value of each item i;. A set of k distinct items X =
{41, 12, ..., ix} such that X C I is said to be a k-itemset, where k is the length of
the itemset. An itemset X is said to be contained in a transaction T, if X C Tj,.

Definition 1. The occurrence frequency of an itemset X in D is denoted as
f(X), where X is a set of items and f(X) is defined as the number of transactions
T, in D containing X as:

f(X):HXgTq/\TqEDH' (1)

A More Efficient Algorithm to Mine Skyline Frequent-Utility Patterns 129

Definition 2. The utility of an item 4, in a transaction Ty, is denoted as u(i;, Ty)
and defined as:

u(iy, Ty) = q(i5,Ty) x pr(i;). (2)

Definition 3. The utility of an itemset X in a transaction 7j is denoted as
u(X,T,) and defined as:

u(X,Ty) = Z u(iy, Ty)- (3)

;CXAXCT,

Definition 4. The utility of an itemset X in a database D is denoted as u(X),

and defined as:
ux)= S wX.1). (4)
XCT AT,€D

Definition 5. The transaction utility of a transaction T, is denoted as tu(Ty)

and defined as:
tu(Tq) = E u(X, Tq)- (5)
XCT,

Definition 6. The transaction-weighted utility of an itemset X in D is denoted
as twu(X) and defined as:

twu(X) = Y tu(T). (6)
XCTyAT,€D

The above definitions are used to find whether the FIs or HUIs. The state-
of-the-art algorithms whether in FIM or HUIM cannot consider both frequency
and utility together. To obtain the skyline frequent-utility patterns (SFUPs),
the definitions are given below.

Definition 7. An itemset X dominates another itemset Y in D, denoted as
X =Y iff f(X)> f(Y)and u(X) > u(Y).

Definition 8. An itemset X in a database D is a skyline frequent-utility pat-
tern (SFUP) iff it is not dominated by any other itemset in the database by
considering both the frequency and utility factors.

Problem Statement: Based on the above definitions, we define the problem
of skyline frequent-utility pattern mining (SFUPM) as discovering the set of
non-dominated itemsets in the database by considering both the frequency and
utility factors.

3 Proposed Algorithms for Mining SFUPs

In this section, two efficient algorithms are designed for mining the set of sky-
line frequent-utility patterns (SFUPs). It is based on the well-known utility-list
structure to fast combine the itemsets by simple join operation. Details are given
as follows.

130 J.C.-W. Lin et al.

3.1 Utility-List Structure

Let > be an ascending order on the items in the databases. The utility-list [17]
of an itemset X in a database D is a set of tuples, in which each tuple consists
of three fields as (tid, iutil, rutil). The tid is the transaction ID containing the
itemset X. The tutil and rutil elements of a tuple respectively are the utility
of X in tid; i.e., u(X,T,) and the resting utility of the items except the itemset

X in tid, which can be defined as: Z u(i;, T,). Here is an example to
1 €T A EX
illustrate the construed utility-list shown in Fig. 1.

E C B A D
tid | iutil | rutil tid | iutil | rutil tid | iutil | rutil tid | iutil | rutil Tid | lutil | Rutil
2 4 14 1 2 7 1 2 5 2 4 5 1 5 0
4 4 2 2 3 11 2 2 9 3 4 5 2 5 0
5 8 14 3 2 9 5 4 10 5 5 5 3 5 0
4 2 0 6 8 3 6 3 0 5 5 0
6 1 11 7 5 0

Fig. 1. The constructed utility-lists.

In addition to keep the maximal utility of the frequency value, an utility-max
(umaz) array is then set in the beginning of the developed algorithm, which is
used to keep the maximal utility of the frequency value.

Definition 9. An umax array keeps the maximal utility of the frequency value
r, which is defined as umax(r).

Definition 10. An itemset X is considered as a potential SFUP (PSFUP) if its
frequency is equal to r and non-itemset having higher utility than u(X).

3.2 Pruning Strategy

To mine the SFUPs, the SKYMINE algorithm generates numerous candidates
from the UP-tree structure, and the upper bound of the itemsets is overestimated
based on the two-phase model. To solve above problems, we define a strategy to
speed up mining process of the SFUPs.

Pruning Strategy: Let X be an itemset, and let the extensions of X by append-
ing an item Y to X as (X UY) such that X o> Y. If the sum of sutil and rutil
values in the utility-list of X is less than wmaz(r), r = f(X), then all the
extensions of X are not SFUPs.

For each itemset X, it can be known that the frequency of its extensions is
higher than or equals to itself. Based on above pruning strategy, it can be found
that there must be an itemset Y dominates X’ having the same frequency with
X and same utility with umaxz(r), r = f(X). It indicates that X’ is not a SFUP.

A More Efficient Algorithm to Mine Skyline Frequent-Utility Patterns 131

3.3 Proposed Algorithms

In the designed algorithms, the utility-list structure is first constructed. The
transaction-weighted utility (twu) of all 1-itemsets is discovered and the 1-
itemsets in the database are also sorted in twu-ascending order. The sorted
database is then used to construct the initial utility-list of 1-itemsets. After
that, the P-Miner algorithm is used to find the potential SFUPs. The pseudo-
code of the P-Miner algorithm is described in Algorithm 1, which is used to
find the potential SFUPs.

Algorithm 1. P-Miner

Input: P.UL, the utility-list of the itemset P; P'ULs, the set of utility-lists of
P’s extensions; umaz, an array to keep the maximum utility of the
varied frequencies.

Output: PSFUISs; the set of P’s potential skyline frequent-utility itemsets.

1 for each X in P'ULs do

2 if sum(X.iutil) > umaz(f(X)) then

3 umaz(f(X)) «— sum(X.iutil);

4 PSFUIs + X;

5 remove Y from PSFUIs if (f(Y) == f(X));

6

7

8

9

if sum(X.iutil) + sum(X.rutil) > umax(f(X)) then
exULs := null;
for each utilit-list Y after X in P'ULs do

|_ exULs := exULs + construct(PUL.X,Y);

10 B P-Miner(X, exULs,umaz, PSFUPs);

After all PSFUPs are discovered, the proposed mining algorithm is then exe-
cuted to find the actual SFUPs from PSFUPs. The proposed mining algorithm
is shown in Algorithm 2.

Algorithm 2. Proposed mining algorithm

Input: PSFUPs, the set of potential SFUPs.
Output: SFUPs, the set of skyline frequent-utility itemsets.
1 for each X € PSFUPs do
for each’ Y € PSFUPs do
if u(X) > u(Y) A f(X) > f(V)[[u(X) > u(Y) A f(X) = f(Y) then
SFUPs «+— X USFUPs;
L remove Y from PSFU Ps;

Uk W N

6 return SFUPs;

132 J.C.-W. Lin et al.

4 Experimental Results

In this section, substantial experiments were conducted to evaluate the proposed
algorithm for mining SFUPs on several datasets. Note that only one existing
algorithm called SKYMINE [10] was proposed to mine the SFUPs by consid-
ering both the frequency and utility of the itemsets. Four real-world datasets
called chess [1], mushroom [1], foodmart [18] and retail [1] and one synthetic
T10I4N4KDXK dataset [4] were used in the experiments to evaluate the perfor-
mance of the proposed algorithm. In the experiments, the program is terminated
if the runtime exceeds 2 x 102 s or the memory leakage occurred.

4.1 Runtime

The proposed algorithm was compared with the state-of-the-art SKYMINE algo-
rithm [10] on five datasets and the results are shown in Table 1.

Table 1. Runtime of the compared algorithms.

Proposed mining algorithm | SKYMINE
Chess 202.69s -
Mushroom 10.57s 202.82s
Foodmart 2.64s 98.59s
Retail 117.57s -
T10I4N4KD100K | 57.32s 346.45s

From Table 1, it can be observed that there are no results of the SKYMINE
algorithm on chess and retail datasets. The reason is that the memory leak-
age occurred for those two datasets and the algorithm is terminated. We also
can observe that the proposed algorithm outperforms the SKYMINE algorithm
and generally up to almost one or two orders of magnitude faster than the
SKYMINE algorithm. The proposed algorithm always has better results than
that of SKYMINE algorithm since the proposed algorithm can directly exact the
actual utility of the itemsets with only two scans of dataset. The SKYMINE algo-
rithm generates, however, many redundant candidates with the overestimated
value of the itemsets. Thus, the SKYMINE algorithm requires more time for
generating the candidates and determining the actual SFUPs.

4.2 Memory Usage

In this section, the memory usage of the proposed algorithm and the SKYMINE
algorithm were also compared. The results on all datasets are shown in Table 2.

From Table 2, there are no results for the memory usage of the SKYMINE
algorithm on chess and retail datasets since the memory leakage occurred.

A More Efficient Algorithm to Mine Skyline Frequent-Utility Patterns 133

Table 2. Memory usage of the compared algorithms.

Proposed mining algorithm | SKYMINE
Chess 137.00 M -
Mushroom 188.87M 423.80 M
Foodmart 32.13M 667.46 M
Retail 143.68 M -
T10I4N4KD100K | 234.30 M 446.69 M

It can be clearly seen that the proposed algorithm requires less memory com-
pared to the SKYMINE algorithm on all datasets. The reason is that the
SKYMINE algorithm mines, however, the SFUPs based on UP-Growth algo-
rithm, which requires to generate the numerous candidates and it is not an
efficient way to mine the SFPUs.

5 Conclusion

In this paper, more efficient algorithms are proposed to mine a set of skyline
frequent-utility itemsets without candidate generation by considering the fre-
quency and utility factors. The designed algorithms rely on the utility-list struc-
ture and the wmax array for mining SFUPs. A pruning strategy are used to
early prune the unpromising candidates for deriving the SFUPs. Based on the
designed algorithms, it is unnecessary to pre-defined the minimum support or
utility thresholds but the set of useful and meaning information can be returned
and discovered. Substantial experiments were conducted on both real-life and
synthetic datasets to asses the performance of the proposed algorithm in terms
of runtime and memory usages.

Acknowledgment. This research was partially supported by the National Natural
Science Foundation of China (NSFC) under grant No. 6150309.

References

1. Frequent itemset mining dataset repository (2012). http://fimi.ua.ac.be/data/

2. Afrati, F.N., Koutris, P., Suciu, D., Ullman, J.D.: Parallel skyline queries. Theory
Comput. Syst. 57(4), 1008-1037 (2015)

3. Agrawal, R., Srikant, R.: Fast algorithm for mining association rules. In: Interna-
tional Conference on Very Large Data Bases, pp. 487-499 (1994)

4. Agrawal, R., Srikant, R.: Quest synthetic data generator (1994). http://www.
Almaden.ibm.com/cs/quest /syndata.html

5. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Le, Y.K.: Efficient tree structures for
high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data
Eng. 21(12), 17081721 (2009)

134

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

J.C.-W. Lin et al.

Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: International
Conference on Data Engineering, pp. 421-430 (2001)

Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: IEEE Interna-
tional Conference on Data Mining, pp. 19-26 (2003)

Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-
dominant skylines in high dimensional space. In: ACM SIGMOD International
Conference on Management of Data, pp. 503-514 (2006)

Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Inter-
national Conference on Data Engineering, pp. 717-720 (2003)

Goyal, V., Sureka, A., Patel, D.: Efficient skyline itemsets mining. In: The Interna-
tional C* Conference on Computer Science & Software Engineering, pp. 119-124
(2015)

Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In:
IEEE ICDM Workshop on Frequent Itemset Mining Implementations (2003)
Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: ACM SIGKDD International Conference on Management of Data, pp. 1-12
(2000)

Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm
for skyline queries. In: International Conference on Very Large Data Bases, pp.
275-286 (2002)

Lin, C.W., Hong, T.P., Lu, W.H.: The pre-FUFP algorithm for incremental mining.
Expert Syst. Appl. 36(5), 9498-9505 (2009)

Lin, C.W., Hong, T.P., Lu, W.H.: An effective tree structure for mining high utility
itemsets. Expert Syst. Appl. 38(6), 7419-7424 (2011)

Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of
high utility itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005.
LNCS (LNAI), vol. 3518, pp. 689—695. Springer, Heidelberg (2005). doi:10.1007/
11430919-79

Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In:
ACM International Conference on Information and Knowledge Management, pp.
55-64 (2012)

Microsoft, Example database foodmart of Microsoft analysis services. http://msdn.
microsoft.com/en-us/library /aa217032(SQL.80).aspx

Papadias, D., Tao, Y., Seeger, B.: Progressive skyline computation in database
systems. ACM Trans. Database Syst. 30(1), 41-82 (2005)

Park, J.S., Chen, M.S., Yu, P.S.: An effective hash based algorithm for mining
association rules. In: ACM SIGMOD International Conference on Management of
Data, pp. 175-186 (1995)

Podpecan, V., Lavrac, N., Kononenko, I.: A fast algorithm for mining utility-
frequent itemsets. In: International workshop on Constraint-based Mining and
Learning, pp. 9-20 (2007)

Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining associa-
tion rules in large databases. In: International Conference on Very Large Databases,
pp. 432-444 (1995)

Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In:
International Conference on Very Large Data Bases, pp. 301-310 (2001)

Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high
utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng.
25(8), 1772-1786 (2012)

A More Efficient Algorithm to Mine Skyline Frequent-Utility Patterns 135

25. Yao, H., Hamilton, H.J., Geng, L.: A unified framework for utility-based measures
for mining itemsets. In: ACM SIGKDD International Conference on Utility-Based
Data Mining, pp. 28—37 (2006)

26. Yeh, J.-S., Li, Y.-C., Chang, C.-C.: Two-phase algorithms for a novel utility-
frequent mining model. In: Washio, T., et al. (eds.) PAKDD 2007. LNCS
(LNAI), vol. 4819, pp. 433-444. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-77018-3_43

