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Abstract. Frequent episode mining is a popular data mining task for
analyzing a sequence of events. It consists of identifying all subsequences
of events that appear at least minsup times. Though traditional episode
mining algorithms have many applications, a major problem is that set-
ting the minsup parameter is not intuitive. If set too low, algorithms can
have long execution times and find too many episodes, while if set too
high, algorithms may find few patterns, and hence miss important infor-
mation. Choosing minsup to find enough but not too many episodes is
typically done by trial and error, which is time-consuming. As a solution,
this paper redefines the task of frequent episode mining as top-k frequent
episode mining, where the user can directly set the number of episodes k
to be found. A fast algorithm named TKE is presented to find the top-
k episodes in an event sequence. Experiments on benchmark datasets
shows that TKE performs well and that it is a valuable alternative to
traditional frequent episode mining algorithms.
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1 Introduction

Sequences of symbols or events are a fundamental type of data, found in many do-
mains. For example, a sequence can model daily purchases made by a customer,
a set of locations visited by a tourist, a text (a sequence of words), a time-
ordered list of alarms generated by a computer system, and moves in a game
such as chess. Several data mining tasks have been proposed to find patterns
in sequences of events (symbols). While some tasks such as sequential pattern
mining were proposed to find patterns common to multiple sequences [11, 27] or
across sequences [29], other tasks have been studied to find patterns in a single
long sequence of events. For example, this is the case of tasks such as periodic
pattern mining (finding patterns appearing with regularity in a sequence) [17]
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and peak pattern mining (finding patterns that have a high importance during a
specific non-predefined time period) [13]. But the task that is arguably the most
popular of this type is frequent episode mining (FEM) [15, 23], which consists
of identifying all episodes (subsequences of events) that appear at least minsup
times in a sequence of events. FEM can be applied to two types of input se-
quences, which are simple sequences (sequences where each event has a unique
timestamp) and complex sequences (where simultaneous events are allowed).
From this data, three types of episodes are mainly extracted, which are (1) par-
allel episodes (sets of events appearing simultaneously), (2) serial episodes (sets
of events that are totally ordered by time), and (3) composite episodes (where
parallel and serial episodes may be combined) [23]. The first algorithms for FEM
are WINEPI and MINEPI [23]. WINEPI mines all parallel and serial episodes
by performing a breadth-first search and using a sliding window. It counts the
support (occurrence frequency) of an episode as the number of windows where
the episode appears. However, this window-based frequency has the problem that
an occurrence may be counted more than once [16]. MINEPI adopts a breadth-
first search approach but only look for minimal occurrences of episodes [23].
To avoid the problem of the window-based frequency, two algorithms named
MINEPI+ and EMMA [15] adopt the head frequency measure [16]. EMMA uti-
lizes a depth-first search and a memory anchor technique. It was shown that
EMMA outperforms MINEPI [23] and MINEPI+ [15]. Episode mining is an ac-
tive research area and many algorithms and extensions are developed every year
such as to mine online episodes [3] and high utility episodes [21, 30].

Though episode mining has many applications [15, 23], it is a difficult task
because the search space can be very large. Although efficient algorithms were
designed, a major limitation of traditional frequent episode mining algorithms
is that setting the minsup parameter is difficult. If minsup is set too high,
few episodes are found, and important episodes may not be discovered. But if
minsup is set too low, an algorithm may become extremely slow, find too many
episodes, and may even run out of memory or storage space. Because users typi-
cally have limited time and storage space to analyze episodes, they are generally
interested in finding enough but not too many episodes. But selecting an appro-
priate minsup value to find just enough episodes is not easy as it depends on
database characteristics that are initially unknown to the user. Hence, a user will
typically apply an episode mining algorithm many times with various minsup
values until just enough episodes are found, which is time-consuming.

To address this issue, this paper redefines the problem of frequent episode
mining as that of top-k frequent episode mining, where the goal is to find the
k most frequent episodes. The advantage of this definition is that the user can
directly set k, the number of patterns to be found rather than setting the minsup
parameter. To efficiently identify the top-k episodes in an event sequence, this
paper presents an algorithm named TKE (Top-K Episode mining). It uses an
internalminsup threshold that is initially set to 1. Then, TKE starts to search for
episodes and gradually increases that threshold as frequent episodes are found.
To increase that threshold as quickly as possible to reduce the search space,
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TKE applies a concept of dynamic search, which consists of exploring the most
promising patterns first. Experiments were done on various types of sequences
to evaluate TKE’s performance. Results have shown that TKE is efficient and
is a valuable alternative to traditional episode mining algorithms.

The rest of this paper is organized as follows. Section 2 introduces the prob-
lem of frequent episode mining and presents the proposed problem definition.
Section 3 describes the proposed algorithm. Then, Section 4 presents the exper-
imental evaluation. Finally, Section 5 draws a conclusion and discuss research
opportunities for extending this work.

2 Problem Definition

The traditional problem of frequent episode mining is defined as follows [15, 23].
Let E = {i1, i2, . . . , im} be a finite set of events or symbols, also called items.
An event set X is a subset of E, that is X ⊆ E. A complex event sequence
S = 〈(SEt1 , t1), (SEt2 , t2), . . . , (SEtn , tn)〉 is a time-ordered list of tuples of the
form (SEti , ti) where SEti ⊆ E is the set of events appearing at timestamp
ti, and ti < tj for any integers 1 ≤ i < j ≤ n. A set of events SEti is called a
simultaneous event set because they occurred at the same time. A complex event
sequence where each event set contains a single event is called a simple event
sequence. For the sake of brevity, in the following, timestamps having empty
event sets are omitted when describing a complex event sequence.

For instance, Fig. 1 (left) illustrates the complex event sequence S = 〈({a, c},
t1), ({a}, t2), ({a, b}, t3), ({a}, t6), ({a, b}, t7), ({c}, t8), ({b}, t9), ({d}, t11)〉. That
sequence indicates that a appeared with c at time t1, was followed by event a at
t2, then a and b at t3, then a at t6, then a and b at t7, then c at t8, then b at t9,
and finally d at t11. That sequence will be used as running example. This type
of sequence can model various data such as alarm sequences [23], cloud data [2],
network data [18], stock data [21], malicious attacks [26], movements [14], and
customer transactions [1, 3, 4, 7].

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Events: a,c a a,b a a,b c b d

Timestamps:

Fig. 1: A complex event sequence

Frequent episode mining aims at discovering all subsequences of events called
episodes [23, 15] that have a high support (many occurrences) in a sequence.
Formally, an episode (also called composite episode) α is a non-empty totally
ordered set of simultaneous events of the form 〈X1, X2, . . . , Xp〉, where Xi ⊆ E
and Xi appears before Xj for any integers 1 ≤ i < j ≤ p. An episode containing
a single event set is called a parallel episode, while an episode where each event
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set contains a single event is called a serial episode. Thus, parallel episodes and
serial episodes are special types of composite episodes.

There are different ways to calculate the support of an episode in a se-
quence. In this paper, we use the head frequency support, used by MINEPI+
and EMMA [16], which was argued to be more useful than prior measures [15].
The support is defined based on a concept of occurrence.

Definition 1 (Occurrence). Let there be a complex event sequence S = 〈(SEt1 ,
t1), (SEt2 , t2), . . . , (SEtn , tn)〉. An occurrence of the episode α in S is a time
interval [ts, te] such that there exist integers ts = z1 < z2 < . . . < zw = te such
that X1 ⊆ SEz1 , X2 ⊆ SEz2 , . . . , Xp ⊆ SEzw . The timestamps ts and te are
called the start and end points of [ts, te], respectively. The set of all occurrences
of α in a complex event sequence is denoted as occSet(α).

For instance, the set of all occurrences of the composite episode 〈{a}, {a, b}}〉
is occSet(〈{a}, {a, b}}〉) = {[t1, t3], [t1, t7], [t2, t3], [t2, t7], [t6, t7]}.

Definition 2 (Support). The support of an episode α is the number of dis-
tinct start points for its occurrences. It is denoted and defined as sup(α) =
|{ts|[ts, te] ∈ occSet(α)}| [15].

For instance, if winlen = 6, the occurrences of the episode α = 〈{a}, {a, b}〉
are [t1, t3], [t2, t3], [t3, t7] and [t6, t7]. Because α has four distinct start points
(t1, t2, t3, and t6) and sup(α) = 4. The problem of FEM is defined as follows.

Definition 3 (Frequent Episode mining). Let there be a user-defined win-
dow length winlen > 0, a threshold minsup > 0 and a complex event sequence S.
The problem of frequent episode mining consists of finding all frequent episodes,
that is episodes having a support that is no less than minsup [15].

For example, the frequent episodes found in the sequence of Fig. 1 forminsup =
2 and winlen = 2 are 〈{a, b}〉, 〈{a}, {b}〉, 〈{a}, {a, b}〉, 〈{a}, {a}〉, 〈{a}〉, 〈{b}〉,
and 〈{c}〉. Their support values are 2, 2, 2, 3, 5, 3, and 2 respectively.

To solve the problem of FEM, previous papers have relied on the downward
closure property of the support, which states that the support of an episode is
less than or equal to that of its prefix episodes [15].

This paper redefines the problem of FEM as that of identifying the top-k
frequent episodes, where minsup is replaced by a parameter k.

Definition 4 (Top-k Frequent Episode mining). Let there be a user-defined
window winlen, an integer k > 0 and a complex event sequence S. The problem
of top-k frequent episode mining consists of finding a set T of k episodes such
that their support is greater or equal to that of any other episodes not in T .

For example, the top-3 frequent subgraphs found in the complex event se-
quences of Fig. 1 are 〈{a}, {a}〉, 〈{a}〉, and 〈{b}〉.

One should note that in the case where multiple episodes have the same
support, the top-k frequent episode mining problem can have multiple solutions
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(different sets of episodes may form a set of top-k episodes). Moreover, for some
datasets and winlen values, less than k episodes may be found.

The proposed problem is more difficult than traditional frequent episode
mining since it is not known beforehand for which minsup value, the top-k
episodes will be obtained. Hence, an algorithm may have to consider all episodes
having a support greater than zero to identify the top-k episodes. Thus, the
search space of top-k frequent episode mining is always equal or larger than that
of traditional frequent episode mining with an optimal minsup value.

3 The TKE algorithm

To efficiently solve the problem of top-k frequent episode mining, this paper
proposes an algorithm named TKE (Top-k Episode Mining). It searches for
frequent episodes while keeping a list of the current best episodes found until
now. TKE relies on an internal minsup threshold initially set to 1, which is
then gradually increased as more patterns are found. Increasing the internal
threshold allows to reduce the search space. When the algorithm terminates the
top-k episodes are found. TKE (Algorithm 1) has three input parameters: an
input sequence, k and winlen. The output is a set of top-k frequent episodes.
TKE consists of four phases, which are inspired by the EMMA algorithm [15]
but adapted for efficient top-k episode mining. EMMA was chosen as basis for
TKE because it is one of the most efficient episode mining algorithms [15].

Step 1. Finding the top-k events. TKE first sets minsup = 1. Then, the
algorithm scans the input sequence S once to count the support of each event.
Then, the minsup threshold is set to that of the k-th most frequent event. In-
creasing the support at this step is an optimization called Single Episode Increase
(SEI). Then, TKE removes all events having a support less than minsup from
S, or ignore them from further processing. Then, TKE scans the database again
to create a vertical structure called location list for each remaining (frequent)
event. The set of frequent events is denoted as E′. The location list structure is
defined as follows.

Definition 5 (Location list). Consider a sequence S = 〈(SEt1 , t1), (SEt2 , t2),
. . . , (SEtn , tn)〉. Without loss of generality, assume that each event set is sorted
according to a total order on events ≺ (e.g. the lexicographical order a ≺ b ≺ c ≺
d). Consider that an event e appears in an event set SEti of S. It is then said
that event e appears at the position

∑
w=1,...,i−1 |SEtw | +|{y|y ∈ SEti ∧ y ≺ e}|

of sequence S. Then, the location list of an event e is denoted as locList(e) and
defined as the list of all its positions in S. The support of an event can be derived
from its location list as sup(e) = |locList(e)|.

For instance, consider the input sequence S = 〈({a, c}, t1), ({a}, t2), ({a, b}, t3),
({a}, t6), ({a, b}, t7), ({c}, t8), ({b}, t9), ({d}, t11)〉, that k = 3 and winlen = 2.
After the first scan, it is found that the support of events a, b, c and d are 5, 3,
2 and 1, respectively. Then, minsup is set to the support of the k-th most fre-
quent event, that is minsup = 2. After removing infrequent events, the sequence
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S becomes S = 〈({a, c}, t1), ({a}, t2), ({a, b}, t3), ({a}, t6), ({a, b}, t7), ({c}, t8),
({b}, t9)〉 Then, the location lists of a, b and c are built because their support is
no less than 2. These lists are locList(a) = {0, 2, 3, 5, 6}, locList(b) = {4, 7, 9}
and locList(c) = {1, 8}.

Step 2. Finding the top-k parallel episodes. The second step consists
of finding the top-k parallel episodes by combining frequent events found in
Step 1. This is implemented as follows. First, all the frequent events are in-
serted into a set PEpisodes. Then, TKE attempts to join each frequent episode
ep ∈ PEpisodes with each frequent event e ∈ E′|e 6∈ ep ∧ ∀f ∈ ep, f ≺ e to
generate a larger parallel episode newE = ep ∪ {e}, called a parallel extension
of ep. The location list of newE is created, which is defined as locList(newE) =
{p|p ∈ locList(e) ∧ ∃q ∈ locList(ep)|t(p) = t(q)}, where t(p) denotes the times-
tamp corresponding to position p in S. Then, if the support of newE is no less
than minsup according to its location list, then newE is inserted in PEpisodes,
and then minsup is set to the support of the k-th most frequent episode in
PEpisodes. Finally, all episodes in PEpisodes having a support less thanminsup
are removed. Then, PEpisodes contains the top-k frequent parallel episodes.

Consider the running example. The parallel extension of episode 〈{a}〉 with
event b is done to obtain the episode 〈{a, b}〉 and its location list locList(〈{a, b}〉)
= {4, 7}. Thus, sup(〈{a, b}〉) = |locList(〈{a, b}〉)| = 2. This process is performed
to generate other parallel extensions such as 〈{a, c}〉 and calculate their support
values. After Step 2, the top-k parallel episodes are: 〈{a}〉, 〈{b}〉, 〈{c}〉, and
〈{a, b}〉, with support values of 5, 3, 2, 2, respectively, and minsup = 2.

Step 3. Re-encoding the input sequence using parallel episodes. The
next step is to re-encode the input sequence S using the top-k parallel episodes
to obtain a re-encoded sequence S′. This is done by replacing events in the input
sequences by the top-k parallel episodes found in Step 2. For this purpose, a
unique identifier is given to each top-k episode.

For instance, the IDs #1, #2, #3 and #4 are assigned to the top-k parallel
episodes 〈{a}〉, 〈{b}〉, 〈{c}〉, and 〈{a, b}〉, respectively. Then, the input sequence
is re-encoded as: S = 〈({#1#3}, t1), ({#1}, t2), ({#1,#2,#4}, t3), ({#1}, t6),
({#1,#2,#4}, t7), ({#3}, t8), ({#2}, t9)〉.

Step 4. Finding the top-k composite episodes. Then, the TKE al-
gorithm attempts to find the top-k composite episodes. First, the top-k par-
allel episodes are inserted into a set CEpisodes. Then, TKE attempts to join
each frequent composite episodes ep ∈ CEpisodes with each frequent event
e ∈ PEpisodes to generate a larger episode called a serial extension of ep by
e. Formally, the serial extension of an episode ep = 〈SE1, SE2, . . . , SEx〉 with
a parallel episode e yields the episode serialExtension(ep, e) = 〈SE1, SE2,
. . . , SEx, e〉. The bound list of newE is created, which is defined as follows:

Definition 6 (Bound list). Consider a re-encoded sequence S′ = 〈(SEt1 , t1),
(SEt2 , t2), . . . , (SEtn , tn)〉, a composite episode ep and a parallel episode e. The
bound list of e is denoted and defined as boundList(e) = {[t, t]|e ∈ SEt ∈ S′}.
The bound list of the serial extension of the composite episode ep with e is de-
fined as: boundList(serialExtension(ep, e)) = {[u,w]| [u, v] ∈ boundList(ep)
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∧[w,w] ∈ boundList(e) ∧w − u < winlen ∧v < w}. The support of a com-
posite episode ep can be derived from its bound list as sup(ep) = |{ts|[ts, te] ∈
boundList(ep)}|.

If the support of newE is no less thanminsup according to its bound list, then
newE is inserted in CEpisodes, and then minsup is set to the support of the k-th
most frequent episode in CEpisodes. Finally, all episodes in CEpisodes having
a support less than minsup are removed. At the end of this step, CEpisodes
contains the top-k frequent composite episodes and the algorithm terminates.

For instance, the bound-list of S = 〈{a}, {a}〉 is boundList(〈{a}, {a}〉) =
{[t1, t2], [t2, t3], [t6, t7]}. Thus, sup(〈{a}, {a}〉) = |{t1, t2, t6}| = 3. Then, TKE
considers other serial extensions and calculate their support values in the same
way. After Step 4, minsup = 3 and the top-k composite episodes are: 〈{a}〉,
〈{b}〉 and 〈{a}, {a}〉, with a support of 5, 4, and 3 respectively (the final result).

Completeness. It is easy to see that the TKE algorithm only eliminates
episodes that are not top-k episodes since it starts from minsup = 1 and grad-
ually raises the minsup threshold when k episodes are found. Thus, TKE can
be considered complete. However, it is interesting to notice that due to the def-
inition of support, mining the top-k episodes may result in a set of episodes
that is slightly different from that obtained by running EMMA with an optimal
minimum support. The reason is that extending a frequent episode with an infre-
quent episode can result in a frequent episode. For example, if minsup = 3 and
winlen = 6, sup(〈{a}〉) = 5, and can be extended with 〈{a, b}〉 having a support
of 2 to generate the episode 〈{a}, {a, b}〉 having a support of 4 > 2. Because
EMMA has a fixed threshold, it eliminates 〈{a, b}〉 early and ignore this exten-
sion, while TKE may consider this extension since it starts from minsup = 1
and may not increase minsup to a value greater than 2 before 〈{a}, {a, b}〉 is
generated. Hence, TKE can find episodes not found by EMMA.

Implementation details. To have an efficient top-k algorithm, data struc-
tures are important. An operation that is performed many times is to update
the current list of top-k events/episodes and retrieve the support of the k most
frequent one. To optimize this step, the list of top-k events, PEpisodes and
CEpisodes are implemented as priority queues (heaps).

Dynamic search optimization. It can also be observed that the search or-
der is important. If TKE finds episodes having a high support early, the minsup
threshold may be raised more quickly and a larger part of the search space may
be pruned. To take advantage of this observation, an optimization called dy-
namic search is used. It consists of maintaining at any time a priority queue
of episodes that can be extended to generate candidate episodes. Then, TKE
is modified to always extend the episode from that queue that has the highest
support before extending others. As it will be shown in the experiments, this
optimization can greatly reduce TKE’s runtime.
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Algorithm 1: The TKE algorithm
input : S: an input sequence, k: a user-specified number of patterns, winlen: the window

length
output: the top-k frequent episodes

1 minsup← 1;
2 Scan S to calculate sup(e) for each event e ∈ E;
3 minsup← support of the k-th most frequent event e ∈ E;

4 E′ ← {e|e ∈ E ∧ sup(e) ≥ minsup};
5 Remove (or thereafter ignore) each event e 6∈ E′ from S;

6 Scan S to create the location list of each frequent event e ∈ E′;

7 PEpisodes← E′;
8 foreach parallel episode ep ∈ PEpisodes such that sup(ep) ≥ minup do
9 foreach event e ∈ E′ such that sup(e) ≥ minup do

10 newE ← parallelExtension(ep, e);// and build newE’s location list
11 if sup(newE) ≥ minsup then
12 PEpisodes← PEpisodes ∪ {newE};
13 minsup← support of the k-th most frequent in PEpisodes;

14 end

15 end

16 end

17 Re-encode the sequence S into a sequence S′ using the parallel episodes;
18 CEpisodes← PEpisodes;
19 foreach composite episode ep ∈ CEpisodes such that sup(ep) ≥ minup do
20 foreach event e ∈ PEpisodes such that sup(e) ≥ minup do
21 newE ← serialExtension(ep, e);// and build newE’s bound list
22 if sup(newE) ≥ minsup then
23 CEpisodes← CEpisodes ∪ {newE};
24 minsup← support of the k-th most frequent episode in CEpisodes;

25 end

26 end

27 end
28 Return CEpisodes;

4 Experimental Evaluation

Experiments have been done to evaluate the performance of the TKE algorithm.
It has been implemented in Java and tested on a worsktation equipped with 32
GB of RAM and an Intel(R) Xeon(R) W-2123 processor. All memory measure-
ments were done using the Java API. Three benchmark datasets have been used,
named e-commerce, retail and kosarak. They are transaction databases having
varied characteristics, which are commonly used for evaluating itemset [13, 22]
and episode [3, 12, 30] mining algorithms. As in previous work, each item is con-
sidered as an event and each transaction as a simultaneous event set at a time
point. e-commerce and retail are sparse customer transaction datasets, where
each event set is a customer transaction and each event is a purchased item,
while kosarak is a sequence of clicks on an Hungarian online portal website,
which contains many long event sets. While e-commerce has real timestamps,
retail and kosarak do not. Hence, for these datasets, the timestamp i was as-
signed to the i-th event set. The three datasets are described in Table 1 in terms
of number of time points, number of distinct events, and average event set size.
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Table 1: Dataset characteristics

Dataset #Timestamps #Events Average Event Set Size

e-commerce 14,975 3,468 11.71

retail 88,162 16,470 10.30

kosarak 990,002 41,270 8.10

4.1 Influence of k and optimizations on TKE’s performance

A first experiment was done to (1) evaluate the influence of k on the runtime
and memory usage of TKE, and to (2) evaluate the influence of optimizations on
TKE’s performance. The winlen parameter was set to a fixed value of 10 on the
three datasets, while the value of k was increased until a clear trend was observed,
the runtime was too long or algorithms ran out of memory. Three versions of
TKE were compared: (1) TKE (with all optimizations), (2) TKE without the
SEI strategy and (3) TKE without dynamic search (using the depth-first search
of EMMA). Results in terms of runtime and memory usage are reported in Fig. 2.
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It is first observed that as k is increased, runtime and memory usage increase.
This is reasonable because more episodes must be found, and thus more episodes
must be considered as potential top-k episodes before minsup can be raised.

Second, it is observed that using the dynamic search greatly decreases run-
time. For example, on the koarak dataset, when k = 800 , TKE with dynamic
search can be twice faster than TKE with depth-first search, and on the retail
dataset, when k = 10000, TKE with dynamic search is up to 7.5 times faster
than TKE with depth-first search. These results are reasonable since the dynamic
search explores episodes having the highest support first, and thus the internal
minsup threshold may be raised more quickly than when using a depth-first
search, which helps reducing the search space and thus the runtime. But on the
e-commerce dataset, TKE with dynamic search is about as fast as TKE with
depth-first search. The reason is that this dataset is relatively small and the time
required for maintaining the candidate priority queue offset the benefits of using
the dynamic search.

Third, it is observed that TKE with dynamic search generally consumes
more memory than TKE without. This is because the former needs to maintain
a priority queue to store potential frequent episodes and their bound lists. Note
that on the e-commerce dataset, when k ≥ 4000, TKE without dynamic search
runs out of memory. Hence, results are not shown in Fig. 2.

Fourth, it is found that the SEI strategy generally slightly reduces the run-
time on these three datasets. This is because TKE raises the internal minsup
threshold early using that strategy after the first scan of the input sequence,
which helps to reduce the search space. Moreover, TKE with the SEI strategy
consumes a little more memory than TKE without the SEI strategy since the
former keeps a priority queue of size k to store the support of each frequent
event during Step 1 of the algorithm.

4.2 Performance comparison with EMMA set with an optimal
minsup threshold

A second experiment was done, to compare the performance of TKE with that of
EMMA. Because TKE and EMMA are not designed for the same task (mining
the top-k episodes and mining all the frequent episodes), it is difficult to compare
them. Nonetheless, to provide a comparison of TKE and EMMA’s performance,
we considered the scenario where the user would choose the optimal minsup
value for EMMA to produce the same number of episodes as TKE. In this
scenario, mining the top-k frequent episodes remains much more difficult than
mining frequent episodes because for the former problem, the internal minsup
threshold must be gradually increased from 1 during the search, while EMMA
can directly use the optimal minsup threshold to reduce the search space. For
this experiment, TKE without dynamic search was used. It was run with k
values from 1 to 1000 and winlen = 10 on kosarak, while EMMA was run with
minsup equal to the support of the least frequent episode found by TKE. It is
to be noted that EMMA with this optimal minsup value can find less frequent
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episodes than TKE because EMMA can ignore some extensions with infrequent
events, as mentioned in the previous section.

Results in terms of runtime, memory usage and number of patterns found
by EMMA for an optimal minsup value are shown in Table 2. Results for e-
commerce and retail are not shown but follow similar trends. It is observed that
the runtime of TKE is more than that of EMMA, which is reasonable, given
that top-k frequent episode mining is a more difficult than traditional frequent
episode mining. In terms of memory, TKE requires more memory than EMMA,
which is also reasonable since TKE needs to consider more potential patterns
and to keep priority queues in memory to store potential top-k episodes and
candidates.

It is important to notice that EMMA is run with an optimal minsup value.
But in real life, the user doesn’t know the optimal minsup value in advance.
To find a desired number of episodes, a user may need to try and adjust the
minsup threshold several times. For example, if the user wants between 400 to
600 frequent episodes, minsup must be set between 0.3293 and 0.3055. That is
to say, if the user doesn’t have any background knowledge about this dataset,
there is only 0.3293 - 0.3055 = 2.38% chance of setting minsup accurately, which
is a very narrow range of options. If the user sets the parameter slightly higher,
EMMA will generate too few episodes. And if the user sets minsup slightly lower,
EMMA may generate too many episodes and have a long runtime. For example,
for minsup = 0.1, EMMA will generate more than 62 times the number of de-
sired episodes and be almost 4 times slower than TKE. This clearly shows the
advantages of using TKE when the user doesn’t have enough background knowl-
edge about a dataset. Thus, to avoid using a trial-and-error approach to find a
desired number of frequent episodes, this paper proposed the TKE algorithm,
which directly let the user specify the number of episodes to be found.

Table 2: Comparison of TKE without dynamic search and EMMA with optimal minsup
threshold on the kosarak dataset

k minsup #patterns TKE EMMA TKE EMMA
runtime (s) runtime (s) memory (MB) memory (MB)

1 0.6075 1 3 3 644 239

200 0.3619 159 124 9 1066 788

400 0.3293 210 279 10 1321 2184

600 0.3055 511 473 24 2934 2077

800 0.2862 625 666 29 3038 2496

1000 0.2794 684 891 31 3702 1485

5 Conclusion

This paper has proposed to redefine the task of frequent episode mining as top-
k frequent episode mining, and presented an efficient algorithm named TKE
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for this task. To apply the algorithm a user is only required to set k, the de-
sired number of patterns. To increase its internal minsup threshold as quickly
as possibleng the most promising patterns first. to reduce the search space,
TKE applies a dynamic search, which consists of always explori A performance
evaluation on real-life data has shown that TKE is efficient and is a valuable
alternative to traditional episode mining algorithms. The source code of TKE
as well as datasets can be downloaded from the SPMF data mining software
http://www.philippe-fournier-viger.com/spmf/ [10]. For future work, ex-
tensions of TKE could be considered for variations such as mining episode using
a hierarchy [5], weighted closed episode mining [19, 31], high-utility episode min-
ing [12, 25, 21] and episode mining in a stream [20, 24]. Besides, we will consider
designing algorithms for other pattern mining problems such as discovering sig-
nificant trend sequences in dynamic attributed graphs [6], frequent subgraphs [8],
high utility patterns [28] and sequential patterns with cost/utility values [9].
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