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Abstract

Discovering patterns in graphs has many applications such as social network, biological and chemistry data
analysis. Although many algorithms were proposed to identify interesting patterns in graphs, most of
them consider simple types of graphs such as static graphs or graphs having a single attribute per vertice.
Recently, studies have considered discovering frequent patterns in dynamic attributed graphs. These graphs
can represent not only relationships between entities but also how they evolve over time, and describe
entities with multiple attributes. Algorithms for mining frequent patterns in dynamic attributed graphs
select patterns based on their occurrence frequency. But a major drawback of this approach is that many
frequent patterns may contain entities that are weakly correlated. Thus, numerous frequent but spurious
patterns may be shown to the user. To allows discovering strongly correlated patterns in dynamic attributed
graphs, this paper proposes a novel significance measure named Sequence Virtual Growth Rate. It allows
evaluating if a pattern represents entities that are correlated in terms of their proximity in a graph over
time. Based on this measure a novel type of graph patterns is defined called Significant Trend Sequence. To
efficiently mine these patterns, two algorithms named TSeqMinerdfs−bfs and TSeqMinerdfs−dfs are proposed.
They rely on a novel upper bound and pruning strategy to reduce the search space. Experimental results
show that the proposed algorithms are efficient and can identify interesting patterns in real-world social
network and flight data.
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1. Introduction

In the last decades, analyzing graphs has received an increasing amount of attention from the data
mining community. The reason is that graphs naturally capture the structure of data in many domains [1].
In particular, graph data is collected in many emerging applications such as social network [2], wireless
sensor network [3] and biological network [4, 5] analysis. To analyze graphs, various techniques have been5

proposed such as to detect communities [6], outliers [7] and patterns in graphs. Traditional techniques to
mine patterns in graphs discover structures such as subgraphs or trees that frequently appear in a graph or
multiple graphs [8, 9]. Discovered patterns can then be used to understand the structure of graphs, and for
decision-making [10].
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Figure 1: Examples of a) a graph, b) a dynamic graph, c) an attributed graph.

Several algorithms have been proposed for mining interesting subgraphs. However, many algorithms can10

only analyze simple graph structures such as static graphs (graphs that do not change over time) [11, 12, 13,
14], and graphs where vertices and edges are described using a single attribute [15, 16]. For instance, Fig. 1 a)
presents a small graph representing relationships between people in a social network, where nodes represent
people, uniquely identified using positive numbers, and edges represent friendship links. Not considering the
time dimension allows to design very efficient algorithms to analyze graphs but fails to capture the dynamics15

of the graph, that is how the graph has evolved over time (e.g. how friendship relationships are formed).
To consider the time dimension in graph pattern mining, recent studies have considered discovering

patterns in dynamic graphs [17, 18, 19]. A dynamic graph is a time-ordered sequence of graph snapshots
where edges and nodes can be inserted, removed, and attribute values may change at each timestamp.
Dynamic graphs are widely used to model social networks because relationships (edges) between persons20

(nodes) evolve over time. For instance, consider the dynamic graph depicted in Fig. 1 b). It shows how a
graph has evolved during three consecutive timestamps. In particular, in this dynamic graph, a new edge has
appeared and one has been removed at the second timestamp. Studying how such dynamic graph evolves
over time can provide various useful insights such as how communities are formed, and how persons influences
others. Besides social networks, dynamic graphs can be used to model data in many other applications. such25

as changes in ontologies [20], processes in complex systems [21], computer networks [22], spatio-temporal
changes observed in satellite images [23] and movements of vehicles [24].

Although discovering patterns in dynamic graphs is useful, several work consider that no more than a
single attribute can be used to describe vertices and edges. But in several domains such as social networks,
edges and vertices can have multiple attributes. For example, a person in a social graph may be described30

using numerous attributes such as age, country and gender. Ignoring some of these attributes or combining
them in a single attribute results in not discovering some interesting patterns involving multiple attributes
or a subset of these attributes. To address this issue, some recent papers have considered mining patterns in
attributed graphs, that is graphs where multiple attributes are used to describe vertices and edges [25, 26, 27].
To illustrate the concept of attributed graph, Fig. 1 c) shows a social graph where three numeric attributes35

denoted as a1, a2 and a3 are used to describe persons (nodes). For instance, the node 1 has values 5, 3 and
7 for the attributes a1, a2 and a3, respectively. Discovering patterns in an attributed graph can be used to
find relationships between nodes and edges that involves attribute values. For example, patterns could be
found indicating that people having similar values for a given attribute tend to be friends.

Discovering patterns in dynamic graphs and in attributed graphs is useful as they can respectively capture40

how the relationships and characteristics of graph entities evolve over time. But for many applications, it is
necessary to jointly consider both of these aspects. For example, in social network analysis, it is useful to
consider not only attributes of persons but also how the social graph (nodes, edges and attributes) evolves
over time, to analyze the complex interactions between nodes. Hence, several studies have recently proposed
algorithms to find interesting patterns in dynamic attributed graphs [28, 23], that is graphs that are both45

dynamic and attributed. Several of these algorithms find patterns indicating trends for sets of nodes [28, 23].
A trend means that the value of a given attribute has increased or decreased for some nodes over consec-

utive timestamps.For example, consider a social network graph such as DBLP where each node (person) is
described using attributes indicating the number of papers published in some top conferences such as KDD.
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Figure 2: Illustration of a) a cohesive co-evolution pattern, represented as a triple (V={1, 2, 3}, T=〈t1, t4, t9〉, A={a1+}) and b)
a recurrent pattern, (〈(1 : {a1+}|2: {a3+}|3: {a2−})(1 : {a2+}|2: {a3+}|4: {a1−, a3+})(1 : {a3+}|3: {a3−}|4: {a1+, a2−})〉,
t1, t4, t9).

Algorithms such as [28, 23] can find a type of patterns called co-evolution patterns indicating that several50

nodes display a similar trend of an increased/decreased number of conference papers from one year (times-
tamp) to the next. Such pattern is illustrated in Fig. 2 a). It indicates that the value of the attribute a1 has
increased for three nodes labelled as 1, 2 and 3 and that this pattern appeared in the first time interval t1
(from the first to the second timestamp), the fourth time interval t4 (from the fourth to the fifth timestamp)
and the ninth time interval t9 (from the ninth to the tenth timestamp). Recently, Cheng et al. [29] extended55

these studies by considering the evolution of not only trends but also vertices in a dynamic attributed graph,
to discover a type of patterns called recurrent pattern representing the evolution of subgraphs in a dynamic
attributed graph. The designed algorithm was used to analyze the evolution of co-authorship relationships
between researchers in an academic social network and the impact of a hurricane on US flight delays [30]. An
example of recurrent pattern is shown in Fig. 2 b). It indicates that during a time interval t1, the attribute60

a1 of vertex 1 increased, the attribute a3 of vertex 2 increased, and the attribute a2 of vertex 3 decreased.
Then, it was followed by a time interval t2 where the attribute a2 of vertex 1 increased, the attribute a3
of vertex 2 increased, the attribute a1 of vertex 4 decreased, and the attribute a3 of vertex 4 increased.
Then, it was followed by another time interval t3 as depicted in Fig. 2 b). Such pattern can be seen as a
generalization of the concept of co-evolution patterns.65

Although current algorithms for mining patterns in dynamic attributed graphs such as those above
were shown to be useful, most algorithms evaluate patterns based on their occurrence frequency, and aim
to find frequent patterns. Using the frequency as main criterion to select patterns has the advantage of
filtering some noise (patterns that are insignificant because they seldomly appear in a graph). But using
the frequency as main selection criterion can result in discovering many weakly correlated frequent patterns.70

For example, it could be found that values of two attributes tend to increase together for some nodes of a
dynamic attributed graph over consecutive timestamps. However, it is possible that this pattern exists just
because these two attributes generally often increase in the database, rather than because of a correlation
between these attributes for these nodes. Thus, generally, frequent patterns can be misleading as they do
not ensure that values appearing in a frequent pattern have a strong correlation between them. A frequent75

pattern mining algorithm may thus find many frequent but weakly correlated patterns and ignore many not
so frequent but strongly correlated patterns.

The importance of finding correlated patterns is illustrated with an example. Consider Fig. 3, which will
be used as running example. It depicts the evolution of a dynamic attributed graph over six timestamps
(1, 2, . . . 6) representing consecutive years. Consider that this is an academic social graph where nodes80

represent researchers labelled using numbers from 1 to 5, and attributes a1, a2 and a3 respectively denote
the number of papers published in the KDD, ICDE and ICDM conferences. To study how attribute values
change over time in such dynamic attributed graph, several studies propose to convert it into a trend
graph [23, 31]. The trend graph corresponding to Fig. 3 is shown in Fig. 4. Fig. 4 a), b), c), d) and e)
repectively depict the evolution of the graph from the 1st to 2nd, 2nd to 3rd, 3rd to 4th, 4th to 5th, and 5th85

to 6th timestamp. Attribute variations (trends) are represented using the “+”, or “-” symbols to indicate
whether each attribute value has increased or decreased since the previous timestamp (year), respectively.
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Figure 3: A dynamic attributed graph with 6 timestamps (G3 and G4 are not shown), from which the trend graph of Fig. 4
is derived.

Note that the symbol “=” could also be used to represent no significant change, but it is not considered in
the examples of this paper. Now consider that one wants to find patterns indicating that a vertex influences
the trends of its neighbors for the following timestamp, and in particular whether an increase in the number90

of KDD publications (a1+) of a researcher influences the number of publications of one of its neighbor the
following year for KDD (a1), ICDE (a2) and ICDM (a3). By observing Fig. 4, it is found that the trend
{a1+} appear for several vertices such as vertex 1 and 3 at t1, and vertex 4 at timestamp t2. Consider the
occurrence of {a1+} for vertex 1 at timestamp t1. That vertex is connected with vertices 2 and 3 at t1.
Consider the influence of a1+ of vertex 1 on vertices 2 and 3 at t2. If only the frequency is considered to95

find patterns in that graph, patterns such as 〈{a1+}, {a3+}〉 can be found, which indicates that an increase
of attribute a1 for a vertex is followed by an increase of a3 for a neighbor. However, since {a3+} appears
almost everywhere in the graph, the pattern 〈{a1+}, {a3+}〉 is weakly correlated (it may simply appear by
chance), and is uninteresting. Now consider the pattern 〈{a1+, a2+}, {a3−}〉, which indicates that if the
number of papers of a researcher in KDD and ICDE increases ({a1+, a2+}), then the number of ICDM100

papers of one of its collaborator will decrease ( {a3−}) at the next timestamp. This pattern is interesting
because although it has a relatively low support, there is a strong correlation between {a1+, a2+} and
{a3−}. In fact, the trend {a3-} does not frequently appear globally but it often locally appears following
the trends {a1+, a2+}. Thus this pattern may represent a significant trend providing insights about how
attributes of nodes evolve in that dynamic attributed graph.105

As shown in the above example, to reveal meaningful patterns, it is desirable to measure not only the
frequency but how significant or correlated values in a pattern are. Therefore, to filter the many spurious
weakly correlated patterns and present meaningful patterns to the user, a novel significance measure is
needed. Such measure would allow to find that {a3-} is more likely to appear after the observation {a1+,
a2+} than {a3+} is likely to follow {a1+}.110

In the field of pattern mining several measures have been proposed to assess whether values are correlated
in a database. For example, in frequent itemset mining, measures such as the bond, affinity, coherence and
all-confidence are used [32]. But these measures are not designed for graphs or spatial data. Huang et
al. proposed to mine sequential patterns [33] in spatio-temporal data using a significance measure [34].
Although this framework is useful, it is not designed for graphs and cannot be easily extended for it.115

Besides, considering the time dimension to evaluate the significance of patterns in graphs is an important
challenge.
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Figure 4: A sequence of graphs derived from preprocessing a dynamic attributed graph with 6 timestamps, which indicate
significant pattern < {a1+, a2+}, {c−} >. Subgraph a) depict trend during time section 1. Each vertex is associated with a
set of attribute trends with not significant trends ignored.

This paper addresses the above issues of previous work by proposing the novel problem of mining signif-
icant trend sequences in dynamic attributed graphs. The contributions of this paper are as follows:

• A novel significance measure is introduced, named Sequence Virtual Growth Rate(SVGR), to evaluate120

if a trend sequence represents entities that are strongly correlated when considering time and space.
This measure was developped by drawing inspiration from the concept of growth rate in emerging
pattern mining [35, 36, 31] and the concept of spatio-temporal correlation in spatial data mining [34].

• Based on the proposed measure, a new type of patterns is defined, called Significant Trend Sequence.
A significant trend sequence in a dynamic attributed graph is a sequence of trends, in which each125

trend has a strong correlation with its neighbors from the previous time interval. The concept of
neigborhood is defined based on the proximity of vertices in a graph and can be parameterized. The
problem of mining significant trend sequences is formalized and its properties are studied.

• Two efficient algorithms are developed to mine the proposed patterns, named TSeqMinerdfs−dfs and
TSeqMinerdfs−bfs, respectively. They rely on a novel efficient pruning technique and constraints to130

reduce the search space.

• To evaluate the performance of the algorithms, a quantitative study is performed. Results show that
the pruning techniques are effective and that the algorithms are efficient. Moreover, an analysis of
patterns found confirm that insightful patterns are discovered in real data.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 introduces135

preliminaries and defines the proposed problem. Section 4 presents the algorithms. Section 5 reports results
of the quantitative experiments and the analysis of patterns found. Finally, section 6 concludes the paper.

2. Related work

This section gives an overview of relevant related work for mining patterns in dynamic attributed graphs,
discovering emerging patterns, and spatio-temporal data mining. Moreover, a brief overview of other tech-140

niques for capturing changes in dynamic graphs is presented.
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2.1. Mining trends in dynamic attributed graphs

Analyzing trends in social networks is an important task for both the commercial and scientific communi-
ties [37]. Unlike supervised learning techniques such as classification models [38], pattern mining techniques
rarely require labeled data and can provide results that are interpretable by humans. Recently, much atten-145

tion has been given to mining patterns representing trends in graphs, which capture the evolutions of both
entity relationships and entity attributes. To discover patterns containing trends from a dynamic attributed
graph having continuous attributes, a graph is first transformed into a trend graph (in a preprocessing step)
to then mine patterns representing trends from the graph [23, 30, 39]. In a trend graph, each vertex is
described by trends or attribute variations. For example, Fig. 4 shows a trend graph, where a trend is an150

increase (+) or decrease (−) of an attribute value during a time interval of consecutive timestamps. In the
following paragraphs, the discussion assumes that dynamic attributed graphs are transformed into trend
graphs.

Different from most studies on complex networks that focus mainly on network topology, Jin et al. [28]
considered a dynamic network where each vertex has a weight, i.e. a dynamic attributed graph with a single155

attribute. They proposed an algorithm to discover connected subgraphs whose vertices show the same trend
during a time interval of two consecutive timestamps. Such pattern can reveal important changes occurring
in a dynamic system. However, an important limitation of this work is that it considers a single attribute
with only two trend types, that is an increase (+) or decrease (-), which restricts its applications. A second
limitation is that it enforces a strict constraint that timestamps must be consecutive for each considered160

time interval.
To address these two limitations, Desmier et al. [28] generalized this work by considering a novel type

of patterns called cohesive co-evolution patterns. A cohesive co-evolution pattern is a set of vertices that
are similar (as measured by a similarity measure) and display the same trends for some attributes during a
time interval. But differently from the work of Jing et al., each node is described using multiple attributes,165

and time intervals consisting of non consecutive timestamps are also considered. An example co-evolution
pattern is shown in Fig. 2 a). A co-evolution pattern may appear multiple times in a dynamic attributed
graph, where each occurrence consists of time intervals formed by different pairs of timestamps. Desmier et
al. also introduced additional constraints to filter uninteresting patterns by considering the graph structure.

Recently, Cheng et al. [30] generalized the concept of cohesive co-evolution patterns by proposing a new170

type of patterns called recurrent patterns. While a cohesive pattern describes how attribute values changed
in a time interval for some vertices, a recurrent pattern describes how attribute values changed for a set of
vertices over several time intervals. Thus, while a cohesive pattern is a subgraph, a recurrent pattern is a
sequence of subgraphs, which can be each described using different trends. For instance, Fig. 2 b) shows
a recurrent pattern indicating successive changes over three time intervals t1, t2 and t3. Note that it is175

required that each recurrent pattern is frequent (occurs at least a minimum number of times), respects a
continuity requirement, and other constraints such as non-redundancy, connectivity and volume size of the
vertex set. Recurrent patterns allow to capture the frequent evolutions of trends for nodes in a dynamic
attributed graph. However, an important drawback of this work is that the frequency is used as main
measure to select patterns. As a result, recurring patterns may be graphs that represent weakly correlated.180

For example, a recurring pattern containing a sequence of two subgraphs may be output because the second
subgraph appears very frequently rather than because of a strong correlation with the first subgraph. Hence,
a significance measure is needed to find interesting sequences having a strong correlation. Such measure will
be proposed in this paper.

2.2. Mining emerging patterns185

Another related work is the discovery of emerging patterns in databases[40, 41, 42]. An emerging pattern
or contrast pattern is a pattern that is drastically different in two datasets with respect to some interestingness
measure [35]. A popular measure for discovering emerging patterns is the growth rate [43]. It is defined
as the ratio of the frequency of a pattern in a database to its frequency in another database. The growth-
rate was used by Kaytoue et al. to discover patterns in a dynamic attributed graph [23], called triggering190

patterns. A triggering pattern is a sequence of attribute variations, followed by a single topological change.
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An example of triggering pattern is {a+, b+}{c−, d−, e−} → {closeness−}, where a, b, c, d and e are node
attributes, the symbol + and − indicate trends, and closeness is a topological attribute [31]. This pattern
indicates that the trends on the left side of → will trigger the topological change “closeness-” on the right
side of →. The growth rate of a pattern is measured to ensure that attribute variations triggered the195

topological change. However, a limitation of this work is that the growth-rate is only calculated for a
triggering pattern to assess the influence of the last attribute variation on the topological change. Thus,
this approach may find patterns where attribute variations are weakly correlated with each other over time.
The novel significance measure presented in this paper addresses this limitation by calculating a significance
measure for all attribute variations.200

Another limitation of the work of Kaytoue et al. is that relationships between entities (nodes) are
summarized as topological properties that are then encoded as attribute values of nodes. Doing this makes
it easier to mine triggering patterns. But the flip side is that some information is lost because if edges are
added or deleted between nodes, it will in some cases not change to the topological attribute values. The
type of patterns presented in this paper does not rely on such simplification and thus does not suffer from205

such information loss.

2.3. Spatio-temporal data mining

Another important related work is spatio-temporal (ST) data mining [44, 45, 46]. The relationship
between ST data mining and graph mining is that (1) graphs are often used to model spatial information [2,
29], and (2) graphs are often interpreted from a spatial perspective (e.g. the shortest path between two210

vertices can be considered as a spatial distance)[47].
In ST data mining, a database is a set of events annotated with a time, location, and event type.

A framework was proposed by Huang et al. for mining significant sequential patterns in ST event data
sets [34]. In this work, a sequential pattern is a subsequence of events that frequently appears and is
significant. Significance is assessed using a measure called sequence index, which is similar to the growth215

rate used in emerging pattern mining. The sequence index measures the significance of a sequence of events,
or in other words how correlated events of a sequential patterns are. In that study, patterns revealing useful
information were discovered such as “Low Evaporation → High Temperature → High Evaporation” [34].

Although the concept of pattern significance as defined by the sequence index is useful, it cannot be
directly applied to mine patterns in a dynamic attributed graph. The main reason is that it considers that220

two event types cannot co-occur (cannot have the same timestamp). Thus, this approach can only find
sequences of consecutive event types. But in dynamic attributed graphs, time and locations are discrete
and multiple trend types often appear simultaneoulsy for different vertices and time intervals. For instance,
in the running example of Fig. 3, the trend types {a1+, a2+} appear simultaneously. Finding patterns
containing simultaneous event types is desirable but greatly increases the size of the search space. For a225

time interval, instead of choosing an event type from M event types, 2M combinations of event types must
be considered. To address this problem, reasonable constraints and efficient pruning techniques must be
designed to avoid exploring the whole search space. Another challenge for applying the sequence index
in dynamic graph mining is that ST mining mainly considers the distance relationship between events as
spatial information. But in a dynamic graph, vertices and edges provide much richer information as the230

topology of a graph may dynamically change over time. This enables users to adopt various neighborhood
definitions suitable for specific applications.

After that, Mohan et al. [48] extended the topological structure of sequential patterns in ST data to
discover partially ordered patterns. To mine the newly defined cascading spatio-temporal patterns, they
introduced a novel significance measure, named Cascade Participation Index. Besides, to efficiently discover235

these patterns, several filtering strategies were adopted, including an upper bound filter. Although this work
partially generalizes sequential pattern mining, the main focus is still on spatio-temporal data mining and
the approach is not directly applicable to graph mining. In graph mining, additional challenges must be
considered such as the multiple attribute variations, and a different concept of distance.

2.4. Other techniques for capturing changes in dynamic graphs240
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Table 1: The three most relevant studies and the key differences with this work

Previous
work

Limitations of previous work Improvement in this paper

Cheng et al.
(2017) [29]

Subgraphs describing trends in se-
quence may be weakly correlated.

A novel significance measure is pro-
posed to make sure that trend se-
quences are strongly correlated.

Kaytoue et
al. (2014)
[23]

1. Correlation is only evaluated
for the last part of a pattern. 2.
Topological data is encoded as at-
tributes, which can result in infor-
mation loss.

1. For a pattern, significance is evalu-
ated by considering the whole sequence
of subgraphs 2. Topological properties
are not encoded as attributes, and thus
no information is lost.

Huang et al.
(2007) [34]

Does not consider co-occurrences
of multiple event types.

Allow multiple trends to co-occur.
Pruning strategies based on a novel
upper-bound are proposed to avoid ex-
ploring the whole search space.

Other approaches have also been proposed to study or capture changes in dynamic graphs. Several
visualization techniques have been designed to see how a graph changes using a directed graph, hierarchical
graph or matrix representations [49]. Various metrics have also been proposed to characterize dynamic
graphs such as flexibility, promiscuity and cohesion [50]. Graph matching approaches have also been used to
track objects at different timestamps in a dynamic graph [51]. Shah et al. [52] analyzed dynamic graphs by245

finding substructures that summarize a graph while minimizing the encoding cost. Although this approach
is efficient, it assumes that graph nodes are unlabelled. A data store has also been proposed to efficiently
store, update and query dynamic graphs [53]. Algorithms have also been proposed to compute metrics
describing a stream of graphs such as the number of triangles [54]. Clustering approaches have also been
designed to find interesting clusters in dynamic graphs [55]. Tensor decomposition approaches have also250

been applied to summarize dynamic graphs [56]. Approaches have also been designed to identify outliers in
dynamic attributed graphs [57]. In machine learning, various embedding methods have also been designed
for learning representations of dynamic graphs [58]. But the approaches described in this paragraph do not
aim to find patterns and/or are not designed to handle attributed graphs. Thus, they cannot be directly
compared with the approach proposed in this paper.255

The most relevant related work for this paper are the pattern mining based approaches of Cheng et al.
(2017) [29], Kaytoue et al. (2014) [23], and Huang et al. (2007) [34]. For the convenience of the reader,
Table 1 provides a summary of their limitations and explains how these limitations have been addressed in
this paper.

By the above literature review, it was found that pattern significance is an important concept in data260

mining but has not been fully introduced in dynamic attributed graph mining. In some related work, the
concept of significant sequential patterns was defined for spatio-temporal mining [34]. But it is not trivial
to extend these concepts for pattern mining in a dynamic attributed graph. In the next section, we define a
new problem to fill that important research gap and mine significant patterns in dynamic attributed graphs.
Then, the following sections presents efficient algorithms for this new problem, and experimental results on265

real data.
Key characteristics of the proposed approach is that it is unsupervised, and that the aim is to find patterns

representing trends that are interpretable by humans. The focus of this paper is not on performing tasks
such as classification, prediction or community detection, but to identify insightful patterns that describe
interesting significant changes in the data that can help to understand the data.270
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3. Preliminaries and problem definition

This section introduces definitions related to dynamic attributed graphs and then define the novel prob-
lem of mining significant trend sequences. Formally, the concept of graph, attributed graph and dynamic
attributed graph are defined as follows.

Definition 1 (Graph). A graph is a tuple G = (V, E) where V is a set of vertices, and E ⊆ V ×V is a set275

of edges.

Definition 2 (Attributed graph). An attributed graph is a tuple G = (V,A, E, λ) where V is a set of
vertices, A is a set of attributes, E ⊆ V×V is a set of edges, and λ : V ×A → R is a function that associates
a real value to each vertex-attribute pair.

Definition 3 (Dynamic attributed graph). Let there be a set of timestamps T = {1, 2, . . . , tmax}.280

A dynamic attributed graph is a sequence of attributed graphs G = 〈G1, G2, ..., Gtmax〉 where Gt =
(Vt,At, Et, λt), where Vt is a set of vertices, At is a set of attributes, Et ⊆ Vt × Vt is a set of edges,
and λt : Vt × At → R is a function that associates a real value to each vertex-attribute pair, for the
timestamp t.

Example 1. Fig 3 shows a dynamic attributed graph for six timestamps T = {1, 2, 3, 4, 5, 6}, where the285

attributed graphs G1, G2 . . . G6 have a set of vertices V1 = V2 = V3 = V4 = V5 = V6 = {1, 2, 3, 4, 5} and a
set of attributes A1 = A2 = A3 = A4 = A5 = A6 = {a1, a2, a3}. For timestamp 1, the attributed graph
G1 = (V1,A1, E1, λ1) is defined as E1 = {(1, 2), (1, 3), (4, 5)} and λ1 = {(1, a1)→ 3, (1, a2)→ 4, (1, a3)→
(1), ..., (5, a1)→ 0, (5, a2)→ 5, (5, a3)→ 2}.

Dynamic attributed graphs can be used to model various types of data from many domains. To discover290

interesting patterns in a dynamic attributed graph that represents trends, it is possible to apply a prepro-
cessing step that converts numerical values into trends [23]. This conversion allows to extract more general
patterns that are not influenced by the noise found in raw numerical data. Thus, in this paper, a dynamic
attributed graph is first preprocessed to obtain trends for the attributes of each vertex. This is done as
follows. If an attribute value ax for a vertex increased significantly between two consecutive timestamps ti295

and ti+1, then ax is replaced by ax+. Similarly, if an attribute value ax for a vertex decreased significantly
between two consecutive timestamps ti and ti+1, then ax is replaced by ax−. A significant increase or
decrease can be simply defined as an increase or decrease by a value that is greater than 0 [31]. However,
this definition of significant variation may not be suitable for all applications. Thus, other definitions can
be used such as using a percentage of the standard deviation. Another alternative is to define a scale with300

different types of increase/decrease such as a small increase ax+, a large increase ax++ or a very large
increase ax+++. For the sake of simplicity, in the rest of this paper we only consider increase or decrease
by values greater than zero. But different definitions can be used for specific applications.

To illustrate the preprocessing step, consider the dynamic attributed graph of Fig. 3. From timestamp
t1 to t2, the values of attributes a1, a2 and a3 of vertex 1 increases. Thus, these values are replaced by305

{a1+, a2+, a3+}. The set of graphs obtained by preprocessing the dynamic graph of Fig. 3 is shown in
Fig. 4.

Note that in the following, it will be assumed that graphs of a dynamic attributed graph have been
transformed into trend graphs by preprocessing. When explicitly refering to an original dynamic attributed
graph such as that of Fig. 3, the term timestamp will refer to a specific time point, while for a transformed310

graph with trends such as Fig. 4, a timestamp ti will refer to the i-th time interval.
To be able to refer to a vertex at a given timestamp, a concept of point is introduced. Furthermore, a

concept of neighborhood around points is defined to consider their proximity to other points. The concept
of proximity between two points is defined from a spatio-temporal perspective, that is by considering their
distance in a graph and their occurrence time.315
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Definition 4 (Point, Neighboring space of a point). A point p = (t, v) in a dynamic attributed graph
is a vertex v at a timestamp t. Let Ws be the set of all points for all timestamps in the dynamic attributed
graph. The neighboring space Ns(p) of a point p = (t, v) in a dynamic attributed graph is defined as a set
of points that are neighbors of p, that is:

Ns(p) = { p′ | neighborhood(p′, p) = true ∧ p′ ∈Ws}

where neighborhood is a boolean function indicating if two points p′ and p are neighbors.

The above definition depends on that of the neighborhood predicate, which can be parameterized for
various applications. Since there may be rich relationships between entities in graphs, a variety of case-
specific neighborhood relationships can be used. A simple setting is to consider neighborhood(p′, p) = true
for two points p and p′ if only if p′ appears at the timestamp following p, and the vertex of p′ is connected320

to that of p at that timestamp. This is the definition that will be used in the rest of this paper.

Example 2. Consider the dynamic attributed graph of Fig. 4 and the above neighborhood definition. The
set of points at timestamp t1 are (t1, 1), (t1, 2), (t1, 3), (t1, 4), and (t1, 5). Consider the point (t1, 1). This
point is connected by edges to points (t1, 2) and (t1, 3) at t1. These two points then appear as (t2, 2) and
(t2, 3) at the following timestamp. Thus, the neighboring space of (t1, 1) is {(t2, 2), (t2, 3)}. Consider the325

point (t2, 4). This point is connected by an edge to point (t2, 1) at t2. This point then appears as (t3, 1) at
the following timestamp. Thus, the neighboring space of (t2, 4) is {(t3, 1)}. Similarly, it can be found that
the neighborhood space of point (t4, 1) is Ns ((t4, 1)) = {(t5, 2), (t5, 4)}. The above example is illustrated in
Fig. 5. The points (t1, 1), (t2, 4) and (t4, 1) are represented as circles with a thick blue line, while points in
their neighboring spaces are illustrated as dark gray filled circles. Dark edges indicates direct connections330

from (t1, 1), (t2, 4) and (t4, 1) to directly connected nodes, while dashed edges indicate a relationship from
these latter nodes to the same nodes at the following timestamp.

The concept of neighboring space is also defined for a set of points.

Definition 5 (Neighboring space of a set of points). The neighboring space of a set of points ps is
defined as the union of the neighboring spaces of each point in ps.

Ns(ps) = { p′| ∃p ∈ ps, neighborhood(p′, p) = true ∧ p′ ∈Ws}

=
⋃
p∈ps

Ns(p)

Example 3. Consider the points (t1, 1), (t2, 4) and (t4, 1). The neighboring space of these points is
Ns({(t1, 1), (t2, 4), (t4, 1)}) = {(t2, 2), (t2, 3)}∪{(t3, 1)}∪{(t5, 2), (t5, 4)} = {(t2, 2), (t2, 3), (t3, 1), (t5, 2), (t5, 4)}.335

To study attribute variations in a dynamic attributed graph, the concept of trend set is defined.

Definition 6 (Trend set). An attribute variation during a time interval (e.g. an increase or decrease) is
called a trend. A set of trends is called a trend set. Let tsp(p) denotes the trend set of a point p.

Example 4. Consider the timestamp t1 of the dynamic attributed graph of Fig. 4. The trend set of point340

(t1, 1) is tsp((t1, 1)) = {a1+, a2+, a3+}.

Definition 7 (Supporting points of a trend set). The supporting points of a trend set ts are the points
that have a trend set that is a superset of ts. Formally, it is the set SP (ts) = {p|ts ⊆ tsp(p)}.

Example 5. The set {a1+, a3+} is a trend set, supported by the vertices 1, 3 and 4 at timestamp t1,
that is SP ({a1+, a3+}) = {(t1, 1), (t1, 3), (t1, 4)}. The trend set {a1+, a2+} is supported by the points345

SP ({a1+, a2+}) = {(t1, 1), (t2, 4), (t4, 1)}, which are represented using circles with thick blue lines in Fig. 5.
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Figure 5: The supporting points of the trend set {a1+, a2+} (represented as nodes with thick blue lines) and the corresponding
neighboring space (dark gray filled nodes). The tail supporting points of the sequence 〈{a1+, a2+}, {a3−}〉 are the vertices
that contain {a3−} and are in the neighboring space of 〈{a1+, a2+} (the dark gray filled nodes).

Analyzing the points that support a given trend set in a time interval can be interesting, especially
if it is supported by many points. However, looking at each time interval individually does not allow to
analyze more complex relationships between these trends over several time intervals. To find more interesting
patterns, this paper does not only look at a single time interval but also at how trend sets are related to350

each other over succesive time intervals. The goal of this paper is to discover sequences of trend sets showing
the evolution of vertice attributes over succesive time intervals. To capture this information, a novel type
of patterns is defined, called significant k-trend sequence. The following paragraphs define the concept of
k-trend sequence.

Definition 8 (k-trend-sequence TsS). A k-trend-sequence tss is an ordered list of k trend sets that have355

appeared at consecutive time intervals in a dynamic attributed graph. Let the notation tss[i] denotes the
i-th trend set of tss. Moreover, let tss[i : j] denotes the subsequence consisting of the i-th trendset to the
(j − 1)-th trendset.

Example 6. The sequence 〈{a1+, a2+}〉 is a 1-trend-sequence containing a single trend set. The sequence
tss = 〈{a1+, a2+}, {a3−}, {a2+, a3+}〉 is a 3-trend-sequence. The second trend set of that sequence is360

tss[2] = {a3−}. Moreover, tss[2 : 4] = 〈{a3−}, {a2+, a3+}〉.

The next paragraph explains how a k-trend sequence appears in a dynamic attributed graph. Briefly, a
k-trend-sequence containing k trend sets is said to appear in a dynamic attributed graph if tss[1] has some
supporting points, and the supporting points of tss[i] are in the neighboring space of the supporting points
of tss[i − 1] for all 1 < i ≤ k. Thus, a k-trend sequence appears in a dynamic attribute graph, if its trend365

sets appear in points of consecutive time intervals that are spatio-temporally related. A formal definition is
given based on a concept of tail supporting points:

Definition 9 (Tail supporting points of a k-trend-sequence). Let there be a k-trend sequence tss. If
k = 1, the tail supporting points (TSP) of tss are the supporting point of tss[1]. If k > 1, the tail supporting
points of tss are the points that support tss[k] in the neighboring space of the tail supporting points of the
sequence tss[1 : k − 1].

TSP (tss) =

{
SP (tss[1]) k = 1

{p | p ∈ Ns(TSP (tss[1 : k − 1])) and tss[k] ⊆ ts(p)} k > 2
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If a k-trend sequence tss has a non empty set of tail supporting points (TSP (tss) 6= ∅) in a dynamic
attributed graph, then tss is said to appear in that dynamic attributed graph.

Example 7. Consider the 2-trend-sequence tss = 〈{a1+, a2+}, {a3−}〉. Then, TSP (tss[1 : 2]) = SP (tss[1])370

= {(t1, 1), (t2, 4), (t4, 1)} andNs(TSP (tss[1 : 2])) = Ns((t1, 1))∪Ns((t2, 4))∪Ns((t4, 1)) = {(t2, 2), (t2, 3)}∪
{(t3, 1)} ∪ {(t5, 2), (t5, 4)}. Then, by intersecting SP ({a3−}) with Ns(TSP (tss[1 : 2])), it is found that
TSP (tss) = {(t2, 2), (t3, 1), (t5, 2)}. Furthermore, Ns(TSP (tss)) = Ns((t2, 2)) ∪Ns((t3, 1)) ∪Ns((t5, 2)) =
{}∪ {(t4, 2), (t4, 4), (t4, 5)} ∪ {}.

The above definition have explained how trend sequences appear in a dynamic attributed graph. Some375

important observations can be made. A trend set can be regarded as a 1-trend sequence, where the sup-
porting points of the trend set are also its tail supporting points. Then, based on these supporting points
and the neighborhood definition, a neighboring space can be calculated for that 1-trend sequence. In that
neighboring space, a trend set can be found to extend the 1-trend sequence. This allows to define a 2-trend
sequence, where the tail supporting points of that 2-trend sequences are the set of points that have the sec-380

ond trend set as subset in the neighboring space of the 1-trend sequence. Then, based on the tail supporting
points of the 2-trend sequence, another neighboring space can be calculated and 3-trend sequences can be
found, and so on for larger trend sequences.

In a dynamic attributed graph, many trend sequences may appear. Some trend sequences may be more
relevant than others to the user. To find useful trend sequences, it is thus necessary to apply constraints to385

select interesting trend sequences and filter spurious ones. The next paragraphs introduces these concepts.
In particular, they present a spatial correlation measure to find significant trend sequences.

Based on the concept of neighboring space, the novel Virtual Growth Rate significance measure is intro-
duced. It assesses the significance of a trend set by dividing its number of occurrences (supporting points) in
a neighboring space by its number of occurrence in the whole space (the whole dynamic attributed graph).390

The assumption is that if this ratio is small, it is highly significant because the trend set appears much more
often locally than globally.

Definition 10 (Virtual Growth Rate (VGR)). The support of a trend set ts in a neighboring space
Ns is defined as:

supp(ts,Ns) =
|{p |p ∈ Ns and ts ⊆ ts(p)}|

|Ns|
The virtual growth rate of ts in Ns is defined as:

V GR(ts,Ns) =
supp(ts,Ns)

supp(ts,Ws)

where Ws is the whole space, i.e. all points in G. In the following, supp(ts,Ws) is denoted as supp(ts).

Example 8. Let tss = 〈{a1+, a2+}, {a3−}〉, ts = {a3−}, and Ns = Ns(TSP (tss[1 : 2])). Then,

supp(ts) = |{(t2,2),(t3,1),(t4,3),(t5,1),(t5,4)}|
5×5 = 1

5 , supp(ts,Ns) = {(t2,2),(t3,1),(t4,3),(t5,1),(t5,4)}∩Ns
|Ns|395

= |(t2,2),(t3,1),(t5,4)|
|Ns| = 3

5 and V GR(ts,Ns) =
3
5
1
5

= 3. Thus, the trend set {a3−} is three times more likely to

occur in the neighboring space of {a1+, a2+} than in the whole space.

The above measure can be viewed as an adaptation of the growth-rate measure used in traditional
emerging pattern mining. A key difference is that instead of comparing two datasets, the proposed VGR
measure compares the density in a local space with that of the whole space. Moreover, the VGR measure400

calculates density by considering the spatial and temporal relationships between points. However, the VGR
is only defined to evaluate the significance of a trend set. The next paragraph adapts the VGR measure to
obtain a more general significance measure that can be applied for a k-trend sequence.
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Definition 11 (Sequence Virtual Growth Rate (SVGR)). The Sequence Virtual Growth Rate of a
k-trend-sequence (k ≥ 2) tss is defined as:

SV GR(tss) = min
i∈[2,k]

V GR(tss[i], Ns(TSP (tss[1 : i]))) k ≥ 2

An equivalent definition is:

SV GR(tss) =

{
min {SV GR(tss[1 : k]), V GR(tss[k], Ns(TSP (tss[1 : k])))}, if k ≥ 3

V GR (tss[2], Ns(SP (tss[1]))) , if k = 2

In the field of pattern mining, anti-monotone measures are often used to reduce the search space and
design efficient algorithms [59]. The following property shows that the SVGR is partially monotone.405

Property 1 (Partial Anti-monotone). For any k-trend-sequence tss such that k ≥ 2, it follows that
SV GR(tss[1 : i]) ≥ SV GR(tss) for i ∈ [3, k + 1].

Proof 1. a) For k = 2, it is trivial.
b) For k ≥ 3, SV GR(tss[1 : k + 1]) = min{SV GR(tss[1 : k]), V GR(tss[k], Ns(TSP (tss[1 : k])))} ≤
SV GR(tss[1 : k]) ≤ SV GR(tss[1 : k − 1]) ≤ . . . ≤ SV GR(tss[1 : i]).410

It is important to note that the anti-monotonicity property of the SVGR does not hold for the general
case where SV GR(tss[i : j]) ≥ SV GR(tss) ∀ [i, j] ⊂ [1 : k + 1] and i 6= j. This can be seen in the following
example.

Example 9. Let tss = 〈{a1+, a2+}, {a3−}, {a2+, a3+}〉 and Ns = Ns(TSP (tss[1 : 3])) = {(t4, 2), (t4, 4),
(t4, 5)} as in previous examples. Then, SV GR(tss[1 : 3]) = 3. Furthermore, SP ({a2+, a3+}) = {(t1, 1),415

(t2, 1), (t2, 4), (t4, 1), (t4, 5)}, supp({a2+, a3+},Ws) = |SP ({a2+,a3+})|
|Ws| = 5

25 = 1
5 , supp({a2+, a3+}, Ns) =

|SP ({a2+,a3})∩Ns|
|Ns| = |{t4,5}|

3 = 1
3 and V GR({a2+, a3+}, Ns) = supp({a2+,a3+},Ns(tss1:3))

supp({a2+,a3+},Ws) =
1
3
1
5

= 5
3 . Then,

SV GR(tss) = min{3, 53} = 5
3 . Consider sequence tss′ = tss[2 : 4] = 〈{a3−}, {a2+, a3+}〉 and Ns′ =

Ns(SP ({a3−})) = {(t4, 2), (t4, 4), (t4, 5), (t5, 4), (t5, 5)}. Then, supp({a2+, a3+}, Ns′) = SP ({a2+,a3+})∩Ns′

|Ns′|

= |(t4,5)|
5 = 1

5 , GV GR(tss′) =
1
5
5
25

= 1. Here, SV GR(tss[1 : 3]) > SV GR(ts[1 : 4]) while SV PR(tss[2 : 4]) <420

SV GR(tss[1 : 4]).

To select interesting trend sequences for a user, it is also necessary to filter noise. For this purpose,
frequency constraints are applied. They are used to eliminate patterns that have very low occurrence fre-
quencies, and thus may appear by chance. The first frequency constraint is used by the proposed algorithms
to generate all trend sets to be considered in the whole space. The second constraint is designed to avoid425

considering trend sets that are infrequent in neighboring spaces. Such constraints are simple but play an
important role to eliminate spurious patterns and reduce the search space.

Definition 12 (Frequent k-trend-sequence). A k-trend-sequence tss such that k ≥ 2 is said to be
frequent if and only if

|SP (tss[1])| ≥ minInitSup

and
|TSP (tss[1 : i])| ≥ minTailSup, ∀i ∈ [3, k + 1]

where minInitSup and minTailSup are user specified thresholds.

Property 2. A subsequence tss[1 : i](i ∈ [3, k + 1]) of a frequent k-trend-sequence tss (k ≥ 2) is also
frequent.430
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Proof 2. The sequence tss[1 : i] has the same initial support as tss. If tss[1] has an initial support that is
larger than minInitSup, then it will be the same for tss[1 : i]. For tss[1 : i] (3 ≤ i ≤ k), if its tail support
is less than minTailSup, tss cannot be frequent.

Example 10. Consider tss = 〈{a1+, a2+}, {a3−}, {a2+, a3+}〉, tss′ = 〈{a3−}, {a2+, a3+}〉, minInitSup
= 3 and minTailSup = 1. Since |SP (tss[1])| = 5 ≥ 3, |TSP (tss[1 : 3])| = 3 ≥ 1, |TSP (tss[1 : 4]) ≥ 1, it is435

found that tss is frequent. Because |SP (tss′[1])| = 5 ≥ 3, |TSP (tss′[1 : 3])| = 1 ≥ 1, tss′ is also frequent.

By combining the frequency and significance constraints defined by the support and SVGR measures,
this paper aims to identity trend sequences that are spatio-temporally correlated and do not appear by
chance. The k-trend sequences meeting these constraints are called significant k-trend-sequences.

Definition 13 (Significant k-trend-sequence). A k-trend-sequence is said to be significant if and only440

if tss is frequent and SV GR(tss) ≥ minSig, where minSig is a parameter specified by the user.

Example 11. Consider tss = 〈{a1+, a2+}, {a3−}, {a2+, a3+}〉, tss′ = 〈{a3−}, {a2+, a3+}〉 andminSig =
3. While tss and tss′ are frequent (see Example 10), SV GR(tss) = 5

3 < 3 and SV GR(tss′) = 1 < 3 (see
Example 10), and thus both are not significant. However, according to Property 2 and SV GR(tss[1 : 3]) = 3
(see Example 10), tss[1 : 3] is a significant trend sequence.445

Definition 14 (Problem of discovering all significant k-trend-sequences). Let there be a dynamic
attributed graph, a significance thresholdminSig, and two support thresholdsminInitSup andminTailSup.
The problem of discovering all significant k-trend sequences is to find each significant trend sequence
SigTSeq such that SV GR(SigTSeq) ≥ minSig, |SP (SigTSeq[1])| ≥ minSup and |TSP (SigTSeq[1 :
i])| ≥ minTailSup for ∀i ∈ [3, k + 1] (where k is the length of SigTSeq).450

Example 12. Consider the dynamic attributed graph shown in Fig. 4, minSig = 3, minInitSup = 3
and minTailSup = 1. The set of all significant k-trend sequences is shown in Table 2. The pattern
〈{a1+, a2+}, {a3−}〉 is a significant k-trend sequence. Detailed calculations for that pattern have been shown
in Examples 3, 5, 7, 8, 9, 10 and 11. Moreover, occurrences of that pattern have been highlighted in Fig. 4.
Consider another pattern 〈{a1−}, {a3+}〉. It is found that |SP ({a1−})| = |{(t1, 2), (t2, 1), (t2, 2), (t3, 2),455

(t4, 3)}| = 5 > minInitSup. Moreover, Ns({a1−}) = {(t2, 1), (t3, 3), (t3, 4), (t4, 1), (t5, 4), (t5, 5)} and
|TSP ({a1−, a3+})| = |{(t2, 1), (t3, 3), (t3, 4), (t4, 3)}| = 4 > minTailSup. |SP ({a3+})| = 19. Thus,
|TSP ({a1−,a3+}
|SP ({a1−})|
|SP ({a3+})|
|Ws|

=
4
6
19
25

< minSig, and this pattern is not significant.

As it will be shown in the experiments, this proposed type of patterns is useful to find sequences of
attribute changes (trends) that frequently appear in a dynamic attributed graph and provides insights460

about how a dynamic graph evolves. Differently from previous work that have focused on finding frequent
patterns [30], this paper applies a significance measure to eliminate patterns that are not strongly correlated.
Unlike the work of Kaytoue et al. [31], the proposed significance measure is applied to evaluate the correlation
between all consecutive elements of a pattern rather than only the last ones. This ensure that all elements
of each pattern are correlated.465

From the perspective of pattern structure, the type of patterns proposed in this paper has some important
difference with that of recurrent patterns [30]. A recurrent pattern, as shown in Fig. 2 b), is a sequence of
trend changes that are associated to some vertices. Each occurrence of a recurrent pattern must always be
associated to the same vertices. In this paper, that constraint is removed. The supporting points of each
trend do not need to always be associated to the same vertices, for each occurrence of the pattern. The470

advantage of removing that constraint is that patterns applicable to many different vertices can be discovered.
This is illustrated with an example. Consider an academic social graph where nodes are researchers, edges
indicate collaborations, and attributes are the number of papers in various top conferences. Each recurrent
pattern in such graph would always be associated to the same researchers (nodes), and thus may not be
representative of the behavior of other researchers. On the other hand, this paper considers that a pattern475

may be associated to multiple sets of researchers, and thus provide information about trends followed by
many researchers. The following section presents the proposed algorithms to efficiently extract k-trend
sequences.
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Table 2: Extracted patterns in Fig. 4, with minSig = 3, minInitSup = 3, minTailSup = 1

pattern initial support ts tail support significance
〈{a1+, a2+}, {a3−}〉 3 {3} 3

〈{a1+, a2+, a3+}, {a3−}〉 3 {3} 3

4. Two Efficient Algorithms

This section presents the proposed algorithms for efficiently mining significant k-trend sequences in480

a dynamic attributed graph. Subsection 4.1 first give an overview of how the search space is explored.
Subsection 4.2 presents effective search space pruning strategies. Subsection 4.3 describes data structures
used for exploring the search space efficiently. Finally, subsection 4.4 and 4.5 describe the two proposed
algorithms, named TSeqMinerdfs−dfs and TSeqMinerdfs−bfs, respectively.

4.1. The Search Space485

A k-trend sequence is a sequence of trend sets. To find all significant k-trend sequences in a dynamic
attributed graph, it is necessary to consider different trend sets and how they can be combined one after the
other to form trend sequences. Then, it is necessary to evaluate these trend sequences to find the significant
ones. But a key challenge is that the number of trend sets can be very large. Generally, if there are n
different trends, 2n−1 trend sets can be created (excluding the empty set). To avoid considering all possible490

trend sets, the proposed algorithms first use the minInitSup threshold to find all frequent trend sets. Then,
only these frequent trend sets are combined to form k-trend sequences. By ignoring all infrequent trend sets
from further processing, the number of trend sequences that are considered to find the significant k-trend
sequences can be greatly reduced.

Initially, the proposed algorithms scan the dynamic attributed graph to build a vertical database for495

each trend set of size 1 (containing a single trend). For the running example, the result is the size 1 trend
sets shown in the top part of Table 3. The vertical database stores the supporting points SP (ts) of each
trend set ts. Then, a vertical frequent itemset mining algorithm is applied to identify all the frequent trend
sets containing more than one trend. For the running example, the result is the trend sets of size two and
three, which are also depicted in Table 3. In the proposed algorithm’s implementation, frequent trend sets500

are mined using the Eclat algorithm as it is simple and efficient [60].
After all frequent trend sets have been found, the search space of k-trend sequences is explored by

combining trend sets to form trend sequences. A part of this search space is illustrated in Fig. 6. The
search space can be viewed as containing two parts called inner-levels and outer-levels. The i-th outer-
level contains all i-trend sequences, where some of them share a same (i-1)-trend sequences as prefix. The505

inner-level contains all frequent trend sets (organized in a certain way, which will be explained in Section
4.3).

For example, the first outer level is depicted in the top of Fig. 6, for the running example. It consists
of a single inner-level, represented by the topmost dashed box. This box contains all frequent trend sets
(1-trend sequences), represented as a tree. The second outer-level consists of all 2-trend sequences. In510

the illustration, part of this level is represented by the three bottommost boxes. Each box represents an
inner-level of the second outer-level. For example, the leftmost box of Fig. 6 shows trend sets that can be
appended to the prefix 1-trend sequence 〈{a1+}〉 to form 2-trend sequences. Similarly the bottommost box
of Fig. 6 shows trend sets that can be appended to the prefix 1-trend sequence 〈{a1+, a2+, a3+}〉 to form
2-trend sequences. In the illustration, each dashed arrows represent extension(s) of a k-sequence to form515

(k + 1)-trend sequence(s) having a same prefix.
To extract all desired significant trend sequences, the algorithms explore this search space. The output

of the algorithms is a tree similar to Fig. 6, storing all significant trend sequences.
It can be observed that if the longest trend sequences appearing in a dynamic attributed graph contain

k trend sets, the algorithms may explore up to k outer-levels. The maximal number of outer-levels in the520

search space depends on the number of time intervals in the dynamic attributed graph and on how trend
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Table 3: All frequent trend sets with their supporting points and support values

size trend set ts SP (ts) supp

1

{a1+} (t1,1) (t1,3) (t1,4) (t2,4) (t3,4) (t3,5) (t4,1) (t4,2) (t4,4) (t5,3) (t5,4) 0.44
{a1-} (t1,2) (t2,1) (t2,2) (t3,2) (t4,3) 0.2
{a2+} (t1,1) (t2,1) (t2,4) (t3,1) (t4,1) (t4,5) (t5,1) (t5,5) 0.32
{a2-} (t1,4) (t1,5) (t2,3) (t3,3) (t4,4) (t5,2) 0.24

{a3+} (t1,1) (t1,2) (t1,3) (t1,4) (t1,5) (t2,1) (t2,3) (t2,4) (t2,5) (t3,2) (t3,3) 0.76
(t3,4) (t3,5) (t4,1) (t4,2) (t4,4) (t4,5) (t5,2) (t5,3)

{a3-} (t2,2) (t3,1) (t4,3) (t5,1) (t5,4) 0.2

2

{a1+,a2+} (t1,1) (t2,4) (t4,1) 0.12
{a2+,a3+} (t1,1) (t2,1) (t2,4) (t4,1) (t4,5) 0.2
{a1+,a3+} (t1,1) (t1,3) (t1,4) (t2,4) (t3,4) (t3,5) (t4,1) (t4,2) (t4,4) (t5,3) 0.4
{a1-,a3+} (t1,2) (t2,1) (t3,2) (t4,3) 0.16
{a2-,a3+} (t1,4) (t1,5) (t2,3) (t3,3) (t4,4) (t5,2) 0.24

3 {a1+,a2+,a3+} (t1,1) (t2,4) (t4,1) 0.12

Table 4: Lower bound values on the support obtained using different strategies

level trend set ts support
lbs for DFS lbs for BFS

large-grain medium-grain level-wise pair-wise

1

{a1+} 0.44 0.12 0.12 0.12
{a2+} 0.32 0.12 0.2 0.12
{a3+} 0.76 0.12 0.16 0.16
{a1-} 0.2 0.16 0.2 0.16
{a2-} 0.24 0.24 0.24 0.24
{a3-} 0.2 0.2 0.2 0.2

2

{a1+,a2+} 0.12 0.12 0.12 0.12
{a1+,a3+} 0.4 0.12 0.4 0.12
{a2+,a3+} 0.2 0.12 0.2 0.12
{a3+,a1-} 0.16 0.16 0.16 0.16
{a3+,a2-} 0.24 0.24 0.24 0.24

3 {a1+,a2+,a3+} 0.12 0.12 0.12 0.12

sets are associated to nodes. Suppose that there are M frequent trend sets and Tmax timestamps in the
original dynamic attributed graph. Then, at most D = Tmax − 1 outer-levels will be explored. At the k-th
outer-level, at most Mk trend sets have to be tested.

4.2. Pruning strategies525

The whole search space can be regarded as containing roughly MD patterns in the worst case. To
efficiently mine significant trend sequences, it is thus important to apply pruning strategies to avoid con-
sidering all possible trend sequences, while guaranteeing that all the desired trend sequences will be found.
The designed algorithms take as input three thresholds, that are minInitSup, minTailSup, and minSig.
The proposed algorithms first use the minInitSup threshold to find the frequent trend sets, which are then530

combined to form trend sequences. Because infrequent sequences are then ignored from further processing,
the number of trend sequences to be considered is reduced. Thereafter, the number of frequent trend sets M
determines the size of the whole search space. The proposed algorithms then explore this search space while
using the minTailSup and minSig thresholds to further reduce the search space when exploring inner and
outer-levels, as it will be explained. The proposed pruning strategies are either applied at an outer level or535

inner level.

16



{}

{a1+} {a2+} {a3+} {a1-} {a2-} {a3-}{a1+,a2+}
{a2+,a3+}

{a1+,a3+}
{a3+,a1-} {a3+,a2-}{a1+,a2+,a3+}

outer-level 1

{}

{a1+} {a2+} {a3+} {a1-} {a2-} {a3-}{a1+,a2+}
{a2+,a3+}

{a1+,a3+}
{a3+,a1-} {a3+,a2-}{a1+,a2+,a3+}

{}

{a1+} {a2+} {a3+} {a1-} {a2-} {a3-}{a1+,a2+}
{a2+,a3+}

{a1+,a3+}
{a3+,a1-} {a3+,a2-}{a1+,a2+,a3+}

{}

{a1+} {a2+} {a3+} {a1-} {a2-} {a3-}{a1+,a2+}
{a2+,a3+}

{a1+,a3+}
{a3+,a1-} {a3+,a2-}{a1+,a2+,a3+}

outer-level 2

Figure 6: Search space when considering the frequent trend sets of Table 3 (only the outer-level 1 and a part of outer-level 2
are shown).
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4.2.1. Outer level pruning

To prune trend sequences at the outer level, Property 1 (anti-monotonicity of SV GR) can be used,
which states that if a k-trend-sequence is insignificant, all the (k+1)-trend-sequences that extend that
trend-sequence are also insignificant. Moreover, Property 2 can also be applied, which states that if a k-540

trend-sequence is infrequent, all its extensions are also infrequent. As it will be shown in the experiments,
applying these two properties can greatly reduce the search space.

4.2.2. Inner level pruning

To reduce the search space of trend sequences at an inner level, relationships between frequent trend
sets can be checked. The anti-monotonicity property of the support measure can also be used to reduce545

the search space when considering minTailSup. Because this kind of pruning is simple and widely used
in pattern mining, details will not be presented. However, no relationship between trend sets based on the
VGR measure (Definition 6) can be directly used to prune the search space. This is shown as follows.

Consider a trend sequence tss and two trend sets R and T such that T ⊆ R. Now, consider the two
trend sequences obtained by appending the trend sets T and R to tss, respectively. Those trend sequence
are denoted as tss→ T and tss→ R, respectively. Let V GR(tss→ T ) = V GR(T,Ns(TSP (tss))). Then,

V GR(tss→ T ) =
supp(T,Ns(TSP (tss)))

supp(T,Ws)

V GR(tss→ R) =
supp(R,Ns(TSP (tss)))

supp(R,Ws)

Because supp(R,Ns(TSP (tss))) ≤ supp(T,Ns(TSP (tss))) and supp(R,Ws) ≤ supp(T,Ws) always
hold, V GR(tss→ T ) can be larger than, equal to, or smaller than V GR(tss→ R). Thus, the VGR measure550

cannot be directly use to reduce the search space.
To be able to reduce the search space indirectly using the VGR measure, the next paragraphs introduce a

property that allows to avoid testing V GR(tss→ R) < minSig for the case where V GR(tss→ T ) < minSig
holds. It is based on a novel upper bound on VGR called UVGR (Property 5). But before presenting the
UVGR upper bound and this property, it is necessary to first define a novel lower bound on the support555

measure named lbs, which is used to define the UVGR upper bound.

Definition 15 (The lbs lower bound on the support). Let there be a set Is of trend sets for which the
support has been already measured. For any trend set T ∈ Is, a lower bound on the support of T , named
lbs is defined as:

lbs(T ) =

{
min

T⊂R∈Is
lbs(R) if ∃R ∈ Is such that T ⊂ R

supp(T ) else

The lbs lower bound has two important properties.

Property 3. The lbs measure is monotonous. In other words, for two trend sets T1, T2 ∈ Is such that
T1 ⊆ T2, the relationship lbs(T1) ≤ lbs(T2) holds.560

Proof 3. There are two cases: a) if T1 = T2, then by definition lbs(T1) = lbs(T2). b) if T1 ⊂ T2, then
lbs(T1) = min

T1⊂R∈Is
lbs(R) = min{lbs(T2), min

T1⊂R∈Is,R 6=T2

lbs(R)} ≤ lbs(T2). Thus, the property holds.

Property 4. The lbs measure is a lower bound on the support measure. In other words, for any trend set
T ∈ Is, lbs(T ) ≤ supp(T ).

Proof 4. There are two cases: a) if @R ∈ Is such that R ⊃ T , then lbs(T ) = supp(T ) according to565

Definition 15. b) otherwise, there exists a set R ∈ Is such that R ⊃ T and @Q ∈ Is, Q ⊃ R. According to
Property 3, lbs(T ) ≤ lbs(R). Moreover, because R has no proper superset in Is, lbs(R) = supp(R) according
to Definition 15. Thus, lbs(T ) ≤ lbs(R) = supp(R) ≤ supp(T ). Hence, the property holds.

18



In other words, the lbs of a trend set T is defined as the smallest value among the support values of the
supsersets of T in Is. Because T ’s superset cannot have a larger support than that of T , the lbs measure is570

a lower bound on the support of T . Besides, for two trend sets T1 ⊂ T2, the set of supsersets of T2 must be
a subset of that of T1. Hence, lbs(T2) cannot be larger than lbs(T1).

Example 13. Consider Is to be the set of all frequent trend sets of Table 4, listed with their support values.
Using this information, the lbs lower bound can be calculated for each frequent trend set. Because the trend
set {a1+, a2+, a3+} has no proper superset in Is, lbs({a1+, a2+, a3+}) = supp({a1+, a2+, a3+}) = 0.12.575

Similarly, lbs({a3+, a1−}) = supp({a3+, a1−}) = 0.16. For {a3+}, lbs({a3+}) = min{supp({a3+, a1−}),
supp({a3+, a2−}), supp({a1+, a2+, a3+})} = min{0.12, 0.16, 0.24} = 0.12. For {a2+}, lbs({a2+}) =
min{supp({a1+, a2+, a3+})} = 0.12. This example shows that many trend sets may have a same small
value for the lbs lower bound.

Based on the lbs lower bound, the UVGR upper bound on the VGR measure is defined for reducing the580

search space at an inner level.

Definition 16 (Upper bound on VGR (UVGR)). Let there be a trend set ts, a neighboring space Ns
and a set of trend sets Is. An upper bound on the V GR of ts, named UVGR, is defined as:

UV GR(tss,Ns) =
supp(ts,Ns)

lbs(ts,Ws)

Property 5. The UVGR upper bound is anti-monotonous and is an upper bound on the VGR. In other
words, for two trend sets T and R ∈ Is such that T ⊆ R, UV GR(T ) ≥ V GR(T ), UV GR(R) ≥ V GR(R),
and UV GR(T ) ≥ UV GR(R).

Proof 5. The supportmeasure is anti-monotonous, and the lbsmeasure is monotonous (Property 3). Hence,585

the UV GR upper bound is anti-monotonous. Because lbs is the denominator of the V GR, and lbs is a lower
bound on the support measure (Property 4), it follows that UV GR is an upper bound on the V GR.

The proposed algorithm apply this property to reduce the search space. When they consider an extension
tss → T , the proposed algorithms first compute V GR(tss → T ) to decide if it is significant. If tss → T is
significant, it is output. Then, the algorithms compute UV GR(tss→ T ) to determine if trend sequences of590

the form tss → R for T ⊂ R may also be significant. If it is found that SV GR(tss → T ) < minSig, then
the algorithms do not need to consider these extensions to reduce the search space. Calculating the UVGR
upper bound is not costly because the lbs lower bound of each frequent trend set is precalculated once.

Example 14. Let tss = 〈{a3−}〉. Consider the extension tss → {a2+}. Based on Table 4, it is found

that Ns(TSP (tss)) = {(t4, 2), (t4, 4), (t4, 5), (t5, 4), (t5, 5)}. V GR({a2+}, Ns(TSP (tss))) =
1
5

0.32 = 0.625 <595

minSig = 3. Furthermore, knowing that lbs({a2+}) = 0.12 (example 13), a simple calculation is performed,

UV GR({a2+}, Ns(TSP (tss))) =
1
5

0.12 = 1.67 < minSig = 3. Therefore, besides 〈{a3−}〉 → {a2+},
〈{a3−}〉 → {a1+, a2+}, 〈{a3−}〉 → {a2+, a3+}, 〈{a3−}〉 → {a1+, a2+, a3+} all other extensions can be
directly removed from the search tree.

4.2.3. Discussion of the pruning effects of the three thresholds600

The previous subsections have presented the proposed search space pruning properties, which are applied
either at an outer or inner level. This subsection further discusses the pruning effects of the three thresholds
(minSig, minTailSup and minInitSup).

First, consider inner-level pruning. As explained in the previous subsection, inner level pruning can only
be used when three conditions are satisfied: V GR(tss → T ) < minSig, V GR(tss → R) < minSig and605

UV GR(tss→ T ) < minSig. Therefore, as the minSig threshold is set higher, there is more opportunities
for applying the pruning strategy, and the conditions are more likely to be satisfied. In theory, a large
enough minSig value can always be chosen to make pruning effective. However, in practice, a user may not
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want to set the threshold to a very large value to avoid missing interesting patterns. Thus, to prune a large
part of the search space, it is important to have other ways of reducing the search space such as a tight610

upper bound on the VGR measure. Since the proposed UGV R upper bound is obtained by substituting the
support by the lbs lower bound in the denominator of the VGR measure, if the difference between these two
values is small, the UVGR upper bound will be tighter.

It is evident that the significance threshold is important for pruning, especially when outer-level pruning
is considered. For a sequence tss, the M extensions of tss in the next outer-level are considered only if tss615

is significant, which is determined by the minTailSup and minSig thresholds. If the tail support and/or
significance values are smaller than their respective thresholds, extensions of tss of the next level are not
considered. Thus, large minTailSup and minSig values allow to greatly prune the search space.

To summarize this discussion, minInitSup influences the size of the search space, minTailSup influences
outer level pruning, and minSig influences both inner and outer level pruning. In terms of pruning effect,620

outer level pruning is more effective than inner level pruning, as it will be shown in the experiments. But
since outer-level pruning is easier than inner-level pruning, this paper focuses on how to improve the pruning
effect of inner level pruning. A pruning strategy was proposed in Section 4.2.2. In the following, the two
proposed algorithms will be presented, which adopt different approaches to make pruning more effective. As
it will be discussed in the experimental evaluation section, each algorithm performs best in some situations.625

4.3. Structures for Search Space Exploration

The previous subsections have described the search space of trend sequences, and proposed pruning
properties that can be applied to reduce the search space. This section presents data structures that are
used by the proposed algorithms to efficiently explore the search space using a Breadth-First Search (BFS)
or Depth-First Search (DFS).630

4.3.1. Structure for a Breadth-First Search

After finding all frequent trend sets, a breadth-first search algorithm needs to be able to quickly find all
supersets of each trend set to compute the lbs lower bound and determine the next trend sets to be explored.
Note that although the lbs lower bound is recursively defined, it is calculated iteratively (by Procedure 1).
Storing a mapping of each trend set to all of its supersets may seem a good idea to quickly compute the lbs635

lower bound. However, if the search space of an inner level contains many large trend sets (containing more
than two trends), storing a mapping of each trend set to its supersets can consume a lot of memory. For
this reason, the solution adopted in this paper is to only map a trend set to its direct supsersets (supersets
containing one more trend). This mapping for the running example is illustrated in Fig. 7(a).

4.3.2. Structure for a Depth-First Search640

If a DFS is performed instead of a BFS, a different mapping between trend sets must be established to
support search space exploration. This mapping is illustrated in Fig. 7(b) for the running example. To
obtain this mapping, this paper defines a total order on trend sets and a dominance relationship between
trend sets.

Definition 17 (Total order ≺ of trend sets). Without loss of generality, assume that elements of any645

trend set ts are sorted according to the lexicographical order. Let ts[i] denotes the i-th element of ts. For
two trend sets ts1 and ts2, let minL = min{|ts1|, |ts2|}. The trend set ts1 is said to precede ts2, denoted
as ts1 ≺ ts2, if and only if one of the following constraints is satisfied.
1) ∃i ∈ [1,minL] such that ts1[j] = ts2[j] for j < i and ts1[i] < ts2[i]
2) ∀j ∈ [1,minL], ts1[j] = ts2[j] and |ts1| < |ts2|650

Definition 18 (Dominated superset). A trend set ts2 is said to be a dominated superset of a trend set
ts1 (and ts1 is said to be a dominating subset of ts2) if ts1 ⊂ ts2, |ts1|+ 1 = |ts2| and ts1 ≺ ts2.

Example 15. For the running example, assume that the lexicographical order is a1+ < a2+ < a3+ <
a1− < a2− < a3−. Then, {a1+, a2+} ≺ {a1+, a3+} and {a1+, a2+} ≺ {a1+, a2+, a3+}. Moreover,
{a1+, a2+, a3+} is a dominated superset of {a1+, a2+} but {a1+, a3+} is not.655
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inner level

1 {a1+} {a2+} {a3+} {a1-} {a2-} {a3-}

2 {a1+,a2+} {a2+,a3+}{a1+,a3+} {a3+,a1-} {a3+,a2-}

3 {a1+,a2+,a3+} (a)

inner level

1 {a1+} {a2+} {a3+} {a1-} {a2-} {a3-}

2 {a1+,a2+} {a2+,a3+}{a1+,a3+} {a3+,a1-} {a3+,a2-}

3 {a1+,a2+,a3+} (b)

Figure 7: (a) Mapping of trend sets to their direct supersets to calculate the lbs lower bound and perform a BFS. (b) Mapping
from trend sets to dominated supersets to perform a DFS.

Procedure 1: Calculate the mapping and lbs lower bound of trend sets for a BFS

input : levelMapTrendset: mapping from a level number to its trend sets
trendsetMapSuperset: mapping from a trend set to its direct supersets
trendsetMapSup: mapping from a trend set to its support

output: trendsetMapLBS: mapping from a trend set to its lbs

1 maxL← levelMapTrendset.size;
2 foreach l← maxL to 1 do
3 set of trend sets sts← levelMapTrendset.get(l);
4 foreach trend set ts ∈ sts do
5 lbs← trendsetMapSup.get(ts);
6 foreach superset st ∈ trendsetMapSuperSup.get(ts) do
7 superSup← trendsetMapSup.get(st);
8 if superSup < lbs then lbs← superSup;

9 end
10 add (ts, lbs) to trendsetMapLBS;

11 end

12 end
13 return trendsetMapLBS;
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As it can be observed in Fig. 7(b), an important property of the proposed mapping is that using that
mapping each trend set can only be accessed from a single dominating subset. Moreover, more generally,
there exist a single path from the root of the search space (the empty set {}) to each trend set, as shown in
Fig. 7(b). Thus, if a depth-first search is performed, instead of mapping a trend set to all direct supersets,
a trend set can be mapped to only its dominating supersets, thus reducing memory usage. But the most660

important is that using this search structure, no redundant pruning test is conducted because each trend set
can only be accessed through a single path. If the algorithm considers a trend set during the DFS and it is
found that a pruning property can be applied, the subtree rooted at this trend set is pruned. Thus, all trend
sets of that subtree can be ignored, thus reducing the search space. Procedure 2 provides the pseudocode
for generating this mapping and calculating the lbs lower bound on the support.665

Procedure 2: Calculate the mapping and lower bound of trend sets for a DFS

input : levelMapTrendset: mapping from a level number to its trend sets
trendsetMapSup:mapping from a trend set to its support
trendsetMapSuperset: mapping from a trend set to its direct supersets

output: trendsetMapDom: mapping from a trend set to its dominating supersets
trendsetMapLBS: mapping from a trend set to its lbs

1 maxL← levelMapTrendset.size;
2 foreach l← maxL to 1 do
3 set of trend sets sts← levelMapTrendset.get(l);
4 foreach trend set ts ∈ sts do
5 lbs← trendsetMapSup.get(ts);
6 doms← {};
7 foreach superset st ∈ trendsetMapSuperset.get(ts) do
8 if ts ≺ st then
9 add st to doms;

10 superSup← trendsetMapSup.get(st);
11 if superSup < lbs then lbs← superSup;

12 end

13 end
14 add (ts, doms) to trendsetMapDom;
15 add (ts, lbs) to trendsetMapLBS;

16 end

17 end
18 return trendsetMapDom,trendsetMapLBS;

4.4. The TSeqMinerdfs−dfs algorithm

As previously pointed out, the search space for patterns can be viewed as consisting of two levels (inner
levels and outer levels). Based on the previous discussion, it is clear that using a BFS for outer levels does
not bring any benefits and requires more memory than performing a DFS. For this reason, both algorithms
proposed in this paper apply a DFS for outer levels. The key difference between the two proposed algorithms670

is that the first one (named TSeqMinerdfs−dfs) applies a DFS to explore inner levels, while the second
one (named TSeqMinerdfs−bfs) applies a BFS for inner levels. In other words, both algorithm have the
same input and output but they search inner levels using different approaches. In this subsection, the
TSeqMinerdfs−dfs algorithm is presented. Then, the next subsection will present the TSeqMinerdfs−bfs
algorithm. In the following, the notation “A.x” will be used to refer to “Algorithm x”.675

TSeqMinerdfs−dfs takes as input a set of trend graphs (obtained by preprocessing the original dynamic
attributed graph), several thresholds (minSig, minInitSup, minTailSup), and a neighborhood definition
NH. The algorithm outputs all significant trend sequences. TSeqMinerdfs−dfs first applies a frequent
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itemset mining algorithm to find all frequent trend sets with their corresponding supporting points (line
1 A.3). In the TSeqMinerdfs−dfs implementation, a modified version of Eclat [60] is used, which takes680

as input the vertical database and the minInitSup threshold and output all trendsets having a support
no less than minInitSup with supporting points. Then, the frequent trend sets are used to generate the
mappings required by the algorithm (line 2 A.3). levelMapTrendset maps each level to its trend sets,
trendsetMapSup maps each trend set to its support, and trendsetMapSuperset maps each trendset to its
direct supersets. Thereafter, Procedure 2 is applied to obtain a mapping from each trend set to the lbs lower685

bound, which will be used for search space pruning, and a mapping trendsetMapDom from each trend set
to its dominating superset, which will be used to perform the depth-first search (line 3 A.3).

At the outer level, the TSeqMinerdfs−dfs algorithm explores patterns by appending trend sets to a
prefix (a trend sequence) to consider longer trend sequences. The outer level search is implemented by
the outerDFS() recursive procedure (Algorithm 4). Its initial parameters are prepared in line 4-8 A.3.690

The outerDFS() procedure has three parameters. prefix is a sequence of trend sets such that prefix[1 :
i] ∀i ≤ prefix.size is a significant trend sequence. newTrendsetList is a list of trend sets that can be
appended to prefix to generate larger patterns that may form a significant trend sequence. Each trend
set ts ∈ newTrendsetList has a set of supporting points in addedSPList. Based on this information, for
each k-trend-sequence tss, if its size is larger than one, it is output (A.4 line 2-3). Then, the method695

acquireNeighbors constructs the neighboring space based on the tail supporting points of tss (A.4 line
4-5). The method receives the neighborhood definition, which can be customized by the user to find various
types of patterns. In this paper, we use a simple neighborhood definition, presented in Section 3. For the
neighboring subspace, an inner depth-first search innerDFS() is performed to find all new trend sets that are
significant in that subspace and their corresponding sets of supporting points (line 6-7 A.4). Finally, all the700

newly found significant trend sequences are output and the search process continues by calling outerDFS()
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again (line 8-9 A.4). The last operation is for reusing memory.

Algorithm 3: The TSeqMinerdfs−dfs algorithm

input : trendsetMapSP : a set of trend graphs(tGs), minSig, minInitSup, minTailSup, NH: a
neighborhood definition

output: all significant trend sequences

1 trendsetMapSP ← Eclat(tGs,minInitSup);
2 levelMapTrendset, trendsetMapSup, trensetMapSuperset←

generateMappings(trensetMapSP );
3 trendsetMapDom, trendsetMapLBS ← Procedure 2;
4 addedTrendsetList, addedSPList← {};
5 foreach (ts, SP ) ∈ trendsetMapSP do
6 addedTrendsetList.add(ts);
7 addedSPList.add(SP );

8 end
9 outerDFS({}, addedTrendsetList, addedSPList);

Algorithm 4: outerDFS()

input: prefix: a sequence of trend sets that form a k-trend sequence;
newTrendsetList: a list of trend sets to be appended to prefix;
tailSPList: a list of sets of supporting points corresponding to trend sets in

newTrendsetList;
output: all significant trend sequences that extend prefix

1 foreach ts ∈ newTrendsetList do
2 tss← prefix+ ts;
3 if tss.size > 1 then outputPattern(tss) ;
4 SP ← corresponding set of supporting points in tailSPList;
5 neighborSP ← acquireNeighbors(SP,NH);
6 addedTsList, addedSPList← {};
7 innerDFS(neighborSP, addedTsList, addedSPList);
8 prefix← tss;
9 outerDFS(prefix, addedTsList, addedSPList);

10 remove last trend set of prefix;

11 end

At the inner level, a DFS is applied. For a subspace, the innerDFS() function (Algorithm5) finds all705

significant trend sets and the corresponding sets of supporting points. innerDFSHelper() is a recursive
auxiliary function, initially called by innerDFS() (line 2 A.5). Its main purpose is to process a trend set ts
of a given subspace neighborSP . First, innerDFSHelper() obtains the support of ts in the whole space,
which has been calculated in advance (line 1 A.6). Then, the local support and set of supporting points of
ts in the subspace is calculated (line 2 A.6) by calling the computeLocalSup() procedure. It performs the710

intersection of a subspace and supporting points of ts in the whole space. Thereafter, V GR(ts, neighborSP )
is calculated (line 3 A.6). If the significance and number of supporting points are larger than minSig and
minTailSup, respectively, the trend set and its supporting points are added to the corresponding lists (5-6).
Otherwise, the algorithm checks if the pruning strategy can be applied. For this, the upper bound on V GR
is calculated by simply substituting lbs by supp in the denominator of the equation of line 3. The resulting715

equation is shown in line 9. If the upper bound is less than the threshold, all dominated supersets can be
ignored. For the DFS, it means that it is not necessary to explore all descendant nodes of the current node
(line 10 A.6). Thus, many supersets can be pruned. Otherwise, each dominated superset ts′ of ts will be
processed (line 12,17 A.6). If medium-grained pruning is activated (line 13 A.6), then lbs of ts is the lbs
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of ts′ (line 14 A.6). It means that the trend sets of the subtree rooted at ts′, together with ts, are used to720

calculate lbs. In that case, if UV GR of ts is smaller than minSig, the subtree rooted at ts′ can be pruned
(line 15-16 A.6).

Algorithm 5: inner-DFS() function

input: neighborSP : a neighboring space consisting of points;
addedTsList: a list of trend sets that are significant in the neighboring space;
addedSPList: a list of set of supporting points corresponding to trend sets in addedTsList;

output: neighborSP , addedTsList, addedSPList

1 foreach trend set ts ∈ levelMapTrendset.get(1) do
2 innerDFSHelper(ts, neighborSP , addedTsList, addedSPList)
3 end

4 innerDFSHelper(ts, neighborSP , addedTsList, addedSPList):

Algorithm 6: innerDFSHelper() function

input: ts: current processed trend set;
neighborSP , addedTsLst, addedSPList: same as in Algorithm 5

output: neighborSP , addedTsList, addedSPList
1 supp← trendsetMapSup.get(ts);
2 localSup, SP ← computeLocalSup(neighborSP, ts);

3 vGR← localSup
supp ;

4 if vGR ≥ minSig and |SP | ≥ minTailSup then
5 addedTsList.add(ts);
6 addedSPList.add(SP );

7 else
8 lbs← trendsetMapLBS.get(ts);

9 uV GR← localSup
lbs ;

10 if uV GR < minSig then return;

11 end
12 foreach ts′ ∈ trendsetMapDom.get(ts) do
13 if mGP then
14 lbs← trendsetMapLBS.get(ts′);

15 uV GR← localSup
lbs ;

16 if uV GR ≥ minSig then innerDFSHelper(ts′, neighborSP, addedTsList, addedSPList) ;

17 else innerDFSHelper(ts′, neighborSP, addedTsList, addedSPList);

18 end

4.4.1. A detailed example

This section provides a detailed example illustrating how the TSeqMinerdfs−dfs algorithm is applied.725

Consider the database of Fig. 4, minInitSup = 3, minTailSup = 1 and minSig = 3. The algorithm first
identifies frequent trend sets by applying a modified frequent itemset mining algorithm. The frequent trend
sets {{a1+}, {a2+}, {a3+}, ...}, their supporting points {SP1, SP2, SP3, ...} and supp values are shown in
Table 3. For example, the supporting points of {a1+} are SP1 = {(t11, 1), (t1, 3), (t2, 4), (t3, 4), (t4, 1), (t4,
2), (t4, 4), (t4, 5), (t5, 3), (t5, 4)}. Besides, the structure for supporting the DFS is built (illustrated in Fig.730

7(b)), and the lbs values of frequent trend sets are calculated for the DFS (shown in Table 4 for medium
grain and large grain pruning).

Then, the search for patterns starts from prefix = {}. At the outer level, TSeqMinerdfs−dfs performs a
depth-first search. The trend sequence ts = {a1+} is first considered. The neighboring space of {a1+} is
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caculated using its supporting points Ns(SP1). The result is {(t2, 1), (t2, 2), (t2, 3), (t2, 5), (t3, 1), (t4, 1), (t5,735

1), (t5, 2), (t5, 3), (t5, 4)}. Then, the algorithm explores the subspace of ts by performing an inner depth-first
search to find significant trend sets with their sets of supporting points. Based on the search space mapping
of Fig. 7(b), {a1+} is first considered. The local supporting points of {a1+} are LSP1 = Ns(SP1)∩SP1 =

{(t4, 1), (t5, 3), (t5, 4)}. Thus, the significance of {a1+} is V GR({a1+}, Ns(SP1)) =
|LSP1|
|Ns(SP1)|

supp({a1+},Ws) =
3
10

0.44 =

0.681 < minSig = 3. Hence, {a1+} is not added to the list of significant trend sequences. Then, the UV GR740

upper bound of {a1+} is calculated as UV GR({a1+}, Ns(SP1)) =
3
10

lbs({a1+},Ws) = 0.3
0.12 = 2.5 < minSig.

The lbs({a1+},Ws)) value used in this calculation is obtained from the column “DFS/large-grain” of Table
4. According to Property 5, the significance of supersets of {a1+} is smaller than minSig. Therefore,
it is unecesary to pursue the DFS from the current node {a1+}. According to Fig. 7(b), {a1+, a2+},
{a1+, a3+}, {a1+, a2+, a3+} are pruned. Thereafter, the algorithm considers the next trend set {a2+}.745

It is found that V GR({a2+}, Ns(SP1)) =
4
10

0.32 = 1.25 < minSig, and thus {a2+} is not a significant

trend sequence. But because UV GR({a2+}, Ns(SP1)) =
4
10

0.12 = 3.33 > minSig, the pruning condition is
not met and the DFS must be pursued by extending {a2+}. The algorithm first considers {a2+, a3+} at

the next level. It is found that V GR({a2+, a3+}, Ns(SP1)) =
2
10

0.2 = 1, and thus that this pattern is not
significant. Similarly, {a3+}, {a3+, a1−} and {a3+, a2−} are insignificant and the two latter satisfy the750

search space pruning property. The same happens for {a1−}, {a2−} and {a3−}. Therefore, innerDFS()
returns an empty list of significant trend sequences, indicating that no extensions of {a1+} are significant,
and it is not necessary to extend the current node {a1+} further at the outer level. Next the node {a2+}
is processed, and this process continues for other patterns in the same way. After the DFS terminates at
the outer level, the algorithm stops and returns all significant trend sequences. The result are patterns755

〈{a1+, a2+, a3+}, {a3−}〉 and 〈{a1+, a2+}, {a3−}〉.

4.4.2. An optimization: medium-grained pruning

The above version of the TSeqMinerdfs−dfs algorithm is said to use large-grained pruning. In the example,
when pruning is attempted for the node {a1+} in Fig. 7(b), the considered set is Is = {{a1+}, {a1+, a2+},
{a1+, a2+, a3+}, {a1+, a3+}}. In this case, if the significance upper bound UV GR is smaller than minSig,760

neither of the two subtrees rooted at the current node can be pruned. However, there still exists a possibility
that one of these sub-trees can be pruned when we consider Is = {{a1+}, {a1+, a2+}, {a1+, a2+, a3+}}
and {{a1+}, {a1+, a3+}} separately. Based on this consideration, a strategy called medium-grained pruning
consists of not storing a unique lbs value for {a1+}, but to set lbs({a1+},Ws) = lbs({a1+, a2+},Ws) when
considering pruning the subtree rooted at {a1+, a2+}. A similar process is performed for the other subtree.765

Considering each sub-tree separately allows to obtain a tighter upper bound on the significance. Thus,
medium-grained pruning can generally improve the algorithm’s efficiency. This optimization is activated by
setting mGP to true in line 13 of Algorithm 6.

4.4.3. Complexity

The complexity of the TSeqMinerdfs−dfs algorithm is analyzed as follows. The algorithm first discovers770

frequent trend sets using frequent itemset mining. Frequent itemset mining algorithms generally have a time
complexity that is linear to the number of possible patterns (trend sets). If there are w possible trend values
in the original database, in the worst case 2w − 1 possible trend sets are considered, although in real-life
that number is generally much smaller than 2w − 1 because not all trends co-occur.

After the set M of frequent trend sets has been identified, the three mappings levelMapTrendset,775

trendsetMapSuperset, trendsetMapSup are generated, which require O(M), O(M2), O(M) time, respec-
tively. Then, O(M2) operations are performed to generate trendsetMapDom and trendsetMapLBS. Sup-
pose that the average depth of the tree is D. For each node in the tree up to M extensions are attempted.
The main cost to evaluate an extension is the intersection of its neighboring space and supporting points
of a trend set, whose average cost is assumed to be I. Therefore, the cost for considering all extensions is780

(M +M2 + ...+MD) ·M · I. The total time cost is O(MD+1 · I). In the worst case, D = Tmax − 1.
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In terms of space complexity, in the worst case, the maximal depth of the search tree is Dmax, and each
node on a path from the root to the current node has M extensions. Furthermore, the average number of tail
supporting points of each extension is SPmax = O(|Ws|). Therefore, the total space cost is O(Dmax·M ·|Ws|)
if each node in a path maintains information about all extensions. But this is unecessary. Since a depth-first785

search is adopted on both dimensions, a complete depth-first traversal can be used to address this issue.
This can reduce M to 1. The complete depth first search can be implemented without much difficulty, and
thus details are omitted.

4.5. The TSeqMinerdfs−bfs algorithm

The second proposed algorithm is TSeqMinerdfs−bfs (Algorithm 7). For outer levels, it performs a790

depth-first search, while it performs a BFS for inner levels. Searching at the outer level is performed using
Algorithm 3 and Algorithm 4 except that two differences are introduced. First, a modified Procedure 1 is
applied to generate the mapping from trend sets to the lbs lower bound. This replaces line 3 of Algorithm
3. Since the algorithm performs a BFS, trend sets are processed level by level. A trend set of level k is only
pruned if all its subsets of level k − 1 have been pruned. Thus, pruning a trend set is unlikely to happen795

if it has many subsets. To improve pruning effectiveness, this paper considers direct supersets (supersets
containing only one more additional item) to tighten the lbs lower bound on the support of each pattern.
Thus, line 2 of Procedure 1 is replaced by “foreach ← 1 to maxL do”. For this reason, TSeqMinerdfs−bfs
is regarded as using a level-wise pruning strategy. The second difference is that line 7 of Algorithm 4 is
replaced by a call to innerBFS() to apply a BFS at the inner level.800

The innerBFS() procedure processes trend sets iteratively in a level-wise manner (Algorithm 7). At the
beginning of an iteration, the set of current trend sets curLTss is initialized as the trend sets found in the
previous iteration (line 4,5 A.7). At the first iteration, this set is frequent trend sets containing a single
trend. Then, for each unpruned trend set ts of the current level, the algorithm first calculates the support in
the whole space and in the neighboring space, to then calculate the significance of ts in the subspace as the805

ratio of these two values (line 7-9 A.7). For a trend set, if the requirements of significance and supporting
points are met, the trend set and its supporting points are added to the corresponding lists (line 10-13 A.7).
Otherwise, the algorithm checks if the pruning strategy can be applied (line 14-31 A.7). First, level-wise
pruning is applied (line 15-21). By considering the direct supersets of ts and the precalculated lower bound
on the support, the uV GR upper bound on the significance is obtained (15-16 A.7). If this upper bound is810

less than the threshold, all trend sets are removed from nextTss for the current iteration (line 17-20 A.7). In
the next iteration, nextTss will become curLTss. Otherwise, if pair-wise pruning is activated, an additional
pruning attempt is performed (line 22-30 A.7). This optimization will be explained in the next subsection.

4.5.1. An optimization: pair-wise pruning

An important way of improving the performance of the proposed algorithms is to tighten the upper-815

bound on the significance to eliminate more patterns. That upper bound is based on the lbs lower bound on
the support, which further depends on the considered trend sets. Let Is′(ts) denote the supersets considered
for calculating the lower bound on the support of a trend set ts, that is Is′(ts) = Is(ts)− {ts}.

For the less optimized TSeqMinerdfs−dfs algorithm, Is′(ts) is a minimal set satisfying the following
properties: 1) all dominated supersets of ts are contained in Is(ts);(2) ∀ts′ ∈ Is(ts), all dominated supersets820

of ts′ are contained in Is′(ts). If the upper bound on the significance of ts is smaller than the minSig
threshold, all trend sets in Is′(ts) are pruned. The benefits of large-grained pruning comes with the risk
that the lbs lower bound on the support may be loose. The optimized version of TSeqMinerdfs−dfs provides
more stable pruning ability by partitioning Is(ts) into several sets, making it less likely that all trend sets
in Is′(ts) share a very loose lower bound on the support.825

For the TSeqMinerdfs−bfs algorithm, a similar optimization technique is designed to be used with the
BFS. For that algorithm, Is′(ts) consists of all direct supersets of ts. A similar partitioning results in pair-
wise pruning (line 22-30 A.7). Knowing that ts is insignificant, the pruning condition for ts′ ∈ Is′(ts) is
checked. For each direct superset in ts′, if it has not been pruned, it will be considered for calculating the
lower bound on the support of ts′. Then, if the pruning condition is satisfied, the considered trend sets are830
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pruned. This pair-wise pruning is useful when level-wise pruning fails. This optimization is mainly based
on the observation that calculating UVGR is much less costly than calculating VGR.

4.5.2. A detailed example

A detailed example is given to illustrate the inner BFS process of TSeqMinerdfs−bfs, as well as the
effect of the pair-wise pruning optimization. Since TSeqMinerdfs−bfs shares a similar outer level search835

process as TSeqMinerdfs−dfs, this example continues the one of section 4.4. Having a neighboring space
Ns(SP1) = {(t2, 1), (t2, 2), (t2, 3), (t2, 5), (t3, 1), (t4, 1), (t5, 1), (t5, 2), (t5, 3), (t5, 4)}, the algorithm will try
to find all significant trend sets in this subspace. Initially, curLTss = {a1+, a2+, a3+, a1−, a2−, a3−},
nextLTss = {{a1+, a2+}, {a1+, a3+}, {a2+, a3+}, {a3+, a1−}, {a3+, a2−}}, and V GR({a1+}, Ns(SP1))

=
3
10

0.44 = 0.681 < 3. By level-wise pruning, Is′({a1+}) = {{a1+, a2+}, {a1+, a3+}}. Hence lbs({a1+},840

Ws) = min{0.12, 0.4}, UV GR({a1+}, Ns(SP1)) =
3
10

0.12 = 2.5 < 3. The pruning condition is satist-
fied. Then, nextLTss = {{a2+, a3+}, {a3+, a1−}, {a3+, a2−}}. Next, consider {a2+}. If is found that

V GR({a2+}, Ns(SP1)) =
4
10

0.32 = 1.25 < 3, UV GR({a2+}, Ns(SP1)) =
4
10

min{0.12,0.2} = 3.33 > 3, and thus

level-wise pruning fails. Thus, pair-wise pruning is checked. Only {a2+, a3+} is contained in nextLTss
and hence Is′({a2+}) = {{a2+, a3+}}. The corresponding lower bound on the support is 0.2. By con-845

sidering this scope, UV GR({a2+}, Ns(SP1)) =
4
10

0.2 = 2 < 3. Therefore, pair-wise pruning is successful,
and {a2+, a3+} is removed from nextLTss. Similar calculations show that {a3+} is insignificant and
{a3+, a1−}, {a3+, a2−} are pruned by level-wise pruning. nextLTss is then empty. Testing the remaining
trend sets {a1−}, {a2−}, {a3−} tells that they are not significant. The first loop ends with nextLTss being
empty, resulting in performing no testing in the second loop. In the third loop, {a1+, a2+, a3+} is found850
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to be insignificant. Then, innerBFS() returns two empty lists.

Algorithm 7: TSeqMinerdfs−bfs

Input, output, operations are the same as Algorithm 3 except that:
trendsetMapLBS ← Procedure 1 replaces Line 3;
innerBFS(prefix, addedTsList, addedSPList) replaces
innerDFS(prefix, addedTsList, addedSPList) of Line 7 in Algorithm 4;

innerBFS(prefix, addedTsList, addedSPList):
1 nextLTss← {levelMapTrendset.get(1)};
2 curLTss← {};
3 foreach (l, sts) ∈ levelMapTrendset do
4 curLTss← nextLTss;
5 nextLTss← levelMapTrendset.get(l + 1);
6 foreach ts ∈ sts do
7 supp← trendsetMapSup.get(ts);
8 localSup, SP ← computeLocalSup(neighborSP, ts);

9 vGR← localSup
supp ;

10 if vGR ≥ minSig and |SP | ≥ minTailSup then
11 addedTsList.add(ts);
12 addedSPList.add(SP );

13 end
14 if vGR < minSig then
15 superMin← trendsetMapLBS.get(ts);

16 uV GR← localSup
superMin ;

17 if uV GR < minSig then
18 foreach st ∈ trendsetMapSuperset.get(ts) do
19 if st ∈ nextLTss then remove st in nextLTss;
20 end

21 end
22 else if pair − wisepruning then
23 foreach st ∈ trendsetMapSuperset do
24 if st ∈ nextLTss then
25 superMin← trendsetMapSup.get(st);

26 uV GR← localSup
superMin ;

27 if uV GR < minSig then remove st in nextLTss;

28 end

29 end

30 end

31 end

32 end

33 end

4.5.3. Complexity

The difference between the TSeqMinerdfs−bfs and TSeqMinerdfs−dfs algorithms is mainly about how the
search is conducted at inner levels. Different traversal methods result in different visiting orders of trend sets855

and thus different pruning effects are obtained. In the worst case where no pruning is done, the complexity
of TSeqMinerdfs−dfs is approximately the same as TSeqMinerdfs−bfs. In practice, which algorithm performs
better depends on the data and parameters settings, since both of these factors influence pruning. This will
be discussed in more details in the experimental evaluation section.
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4.6. How to set the parameters?860

The proposed algorithms take as parameters three thresholds and a neighborhood definition. Different
neighborhood definitions can be used to find different types of patterns. In this paper, a main definition was
presented until now, which is suitable for the real data used in the experimental evaluation of this paper.
But this definition could be replaced by other definitions suitable for other applications. For example, a less
strict neighborhood definition could be used that also consider nodes that are two edges aways as neighbors.865

As for the thresholds, increasing their values can decrease the number of patterns that are output, as
the constraints set by the thresholds become more strict. And this contribute to decrease the runtime since
more patterns may be pruned by the pruning strategies. But if the thresholds are set too high, it is possible
that no patterns may be found, while if they are set too low, many patterns may be found, and it may be
time-consuming to look at all the patterns. The optimal threshold values to find enough insightful patterns870

is dataset dependent. Thus, it is suggested that the user initially set thresholds to high values, and then
decrease them until enough interesting patterns are found. This is the approach that has been used for
the analysis of patterns found in real data described in the next section. Besides, the thresholds can be
set in other ways for specific applications. For example, if the goal is to find rare but influential patterns,
minInitSup can be set to a very low value, while minTailSup and minSig can be set relatively high. The875

influence of thresholds on performance will be studied in the next section.

5. Experimental evaluation

This section reports results of experiments to evaluate the proposed algorithms. Since a new type of
patterns has been proposed, as far as we know, there exist no algorithms that can be compared with the
proposed algorithms. Therefore, the performance of the designed algorithms is evaluated by considering880

whether the proposed pruning techniques are efficient, and by comparing different version of the algorithms.
Experiments were conducted using a computer equipped with an Intel(R) Xeon(R) CPU E3-1270 3.60GHz)

and 64 GB of RAM running Ubuntu 16.04. Algorithms are implemented in Java. Two real world datasets
were used for quantitative experiments and pattern analysis.

• DBLP dataset. This dataset [28] consists of bibliographical entries of articles published between885

1990 to 2010 by 2,723 authors in 43 conferences/journals. Each author in this dataset has more than 10
publications. The dynamic attributed graph has 9 timestamps ([1990-1994][1992-1996]...[2006-2010]).
Each author is represented by a vertice, which is annotated with a value vector of size 43, indicating
the publication count of the author for each conference.

• Domestic US Flight dataset. This dataset [31] provides data about airport traffic in the US from890

01/08/2005 to 25/09/2005. Tree hurricanes have occurred during this period, namely, Irene(04/08-
18/08), Katrina(23/08-31/08) and Ophelia(06/09-17/09). Data is aggregated by weeks for a total
of 8 timestamps. Each attributed graph has 280 vertices (airport) with 8 attributes (e.g. number
of arrivals/departures, average arrival/departure delay). Edges denote flight connections between
airports.895

In preparation for the experiments, each dataset was transformed into trend graphs. Using trends instead
of numeric attribute values is desirable because it allows to find patterns that are robust to small variations.
To obtain trends, different discretization strategies were used for each dataset.

For the DBLP dataset, attribute values often vary very slightly, and all attributes are of the same type
(publication count). Thus, a simple discretization was applied:

trend1(t, v, a) =


+ if value(t, v, a) < value(t+ 1, v, a)

= if value(t, v, a) = value(t+ 1, v, a) 6= 0

− if value(t, v, a) > value(t+ 1, v, a)

∅ textotherwise
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where value(t, v, a) denotes the value of attribute a of vertex v at timestamp t.
For the US Flight dataset, different types of attributes are used. Therefore, the standard deviation was

used to perform discretization:

trend2(t, v, a) =



++ if value(t+ 1, v, a)− value(t, v, a) ∈ scale ∗ [2 ∗ std(a),∞)

+ if value(t+ 1, v, a)− value(t, v, a) ∈ scale ∗ [std(a), 2 ∗ std(a))

= if value(t+ 1, v, a)− value(t, v, a) ∈ scale ∗ [−std(a), std(a))

− if value(t+ 1, v, a)− value(t, v, a) ∈ scale ∗ [−2 ∗ std(a),−std(a))

−− if value(t+ 1, v, a)− value(t, v, a) ∈ scale ∗ [−∞,−2 ∗ std(a))

where std(a) denotes the standard deviation of attribute a where scale is a coefficient.900

To evaluate the impact of optimizations on the performance, the algorithms were compared with versions
where some optimizations had been deactivated. In the following, TSeqMinerdfs−dfs

′ and TSeqMinerdfs−bfs
′

denote unoptimized versions of TSeqMinerdfs−dfs and TSeqMinerdfs−bfs, respectively. Moreover, TSeqMiner
′′

denotes a version of these algorithms without pruning. The TSeqMiner
′′

algorithm is obtained by removing
lines 8-10 and 13-16 in Algorithm 6.905

5.1. Quantitative experiment

Experiments were first carried out to empirically evaluate performance of the algorithms in terms of
runtime, memory and scalability. Note that performance improvement of outer level pruning is not show ex-
plicitly because outer level pruning, which is influenced by minTailSup and minSig cannot be deactivated.
Otherwise, algorithms need to consider all possible extensions of trend sequences which makes them unable910

to terminate on the two datasets. But the following experiments will still offer a rough understanding of how
minTailSup and minSig influence the performance of outer level pruning. In the following figures and texts,
“NO-PRUNING” denotes the algorithm without inner pruning (TSeqMiner

′′
), “BFS” (TSeqMinerdfs−bfs

′)
and “BFS-OP” (TSeqMinerdfs−bfs) denote unoptimized and optimized version of BFS algorithms respec-
tively, “DFS” (TSeqMinerdfs−dfs

′) and “DFS-OP” (TSeqMinerdfs−dfs) denote unoptimized and optimized915

version of DFS algorithms respectively. Therefore, the improvement provided by inner level pruning can be
seen from the differences between “NO-PRUNING” and “BFS”, “BFS-OP”, “DFS”, “DFS-OP”.

5.1.1. Influence of minInitSup on runtime and number of patterns

The first experiment assesses the influence of minInitSup. Recall that this parameter is used to filter
infrequent trend sets. More specifically, this parameter determines the number of frequent trend sets M ,920

which directly influences the size of the inner search space. For this reason, in the following, the number
M is directly measured instead of minInitSup to assess the influence of M on algorithms’ runtimes and on
the number of patterns found.

Fig. 8(a) shows results for the DBLP dataset when minTailSup = 0.0023(50) and minSig = 8. The
first observation is that as M is increased, both the runtimes and number of patterns of the compared925

algorithms quickly grow. Another observation is that algorithms using inner level pruning strategies (“BFS”
and “DFS”) outperform the algorithm without inner level pruning (“NO-PRUNING”), and the optimized
algorithms (“BFS-OP” and “DFS-OP”) outperform corresponding other algorithms. Fig. 8(b) shows
results for the US Flight dataset. It can be observed that the number of patterns and runtimes increase in
a similar way as for the DBLP dataset. However, on the US Flight dataset, pruning is more effective for930

reducing runtimes. Besides, it is found that depth-first search algorithms outperforms other algorithms by
a wide margin on that dataset. It is mainly because many trends appear together in the US Flight dataset.
Thus, the support of large trend sets is close to that of small trend sets. Therefore, the lower bound on the
support is tight, which enhances the effect of large grain pruning. Generally speaking, pruning using the
DFS is done at a larger grain, which can be observed from the search structure of Fig. 7.935

In this experiment, an approximate exponential growth of runtimes is observed, which is in accordance

with the time cost analysis presented in section 4.4.3, where the total cost is O(MD+1 · I). Hence, a larger
M value indicates a larger search space. In other words, more patterns need to be considered, and more
patterns must be extended.
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Figure 8: Influence of the number of frequent trend sets on runtime and number of patterns found.

5.1.2. Influence of outer level pruning on runtime and number of patterns940

The second experiment assesses the impact of outer level pruning. Recall that while minInitSup deter-
mines the size of the search space, the effectiveness of outer level pruning is determined by both minTailSup
and minSig. Because minSig also influences inner level pruning, this experiment is done with TSeqMiner

′′

to avoid pruning the inner search space.
Fig. 9, (a) (b) show the number of patterns and runtimes for the DBLP dataset, while Fig. 9 (c) (d)945

show the same for the US Flight dataset. From these four figures, it is found that both minTailSup and
minSig greatly influence the performance with pruning. In particular, if at least one of the tresholds is
set to a large value, pruning is very effective by reducing the number of patterns and the runtime. This
is the case for example when minSig = 30 or minTailSup = 110 on the DBLP dataset, as shown in Fig.
9 (a). From a practical perspective, setting these parameters to large values may result in not finding950

some interesting patterns. Thus, the user can select appropriate threshold values to obtain a good trade-off
between performance and number of patterns found.

Next, consider the relative influence of minSig and minTailSup on pruning. For a fixed minSig value,
setting minTailSup to a large value results in finding very few patterns and small runtimes, suggesting that
the search tree was quickly pruned. Generally, setting minTailSup to a large value always results in very955

effective pruning even for values of minSig that are relatively small. As minTailSup is decreased, it has less
influence on pruning, and the minSig parameter becomes the most important for pruning. For relatively
small minTailSup values, minSig has a greater effect on pruning than minSig. In non-extreme cases, both
parameters are important for pruning. This is for example the case for minSig = 12 and minTailSup = 40,
and also for minSig = 10 and minTailSup = 50. These two parameters thus both contribute to limit the960

number of pattern extensions to be considered. The third observation is that when both parameters are set
to very small values, the number of patterns and runtime can considerably increase. For example, consider
Fig. 9 (c). When minSig ≥ 4, the number of patterns and runtime slowly increase when minTailSup is
increased. But when minSig = 3.5, the latter increases more quickly. This shows the importance of outer
level pruning on performance.965

In summary, outer level pruning is extremely important to obtain results in a reasonable time. Using
the minSig and minTailSup thresholds greatly contribute to achieving this goal. When also considering
inner level pruning, setting minSig to relatively large values also contribute to improving the performance.

5.1.3. Influence of minSig on runtime and number of patterns

In a third experiment, the influence of inner level pruning on the performance of the compared algorithms970

was assessed. The runtime and the number of patterns was measured when varying the minSig parameter,
while other parameters were fixed. For DBLP, minInitSup was fixed to generate 1441 frequent trend sets
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Figure 9: Influence of minTailSup on (a) number of patterns for DBLP, (b) runtime for DBLP, (c) number of patterns for US
Flight, and (d) runtime for US Flight.

and minTailSup was set to 70. For the US Flight dataset, minTailSup and minInitSup were set to 5 and
to generate 1983 frequent trend sets, respectively. These fixed parameter values were chosen as they can
clearly show the influence of minSig and ensure that enough trend sets are considered. Fig. 10 (a) and (b)975

show results for the DBLP and US Flight datasets, respectively. In these charts, primary and secondary
vertical axes indicate runtimes and pattern counts, respectively. It should be noted that although minSig
influences both inner and outer level pruning, it is possible to observe its influence on inner level pruning
by considering TSeqMiner

′′
as the baseline.

A first observation made from Fig. 10 is that inner level pruning is more effective when minSig is980

increased. This is because choosing larger threshold values increase the number of patterns that will meet
the pruning condition based on minSig. In fact, even patterns having loose upper bound values on their
significance may be pruned when minSig is large.

A second observation is that optimized versions of the algorithms always outperform the corresponding
unoptimized versions. This is because performing the additional pruning tests is not costly while these tests985

can prune large parts of the search space. For high minSig values, there is no significant difference between
the runtime and number of patterns of unoptimized and optimized versions. The reason is that pruning
almost always succeed at the first attempt for high minSig values.

A third observation is that there is no guarantee that depth-first search outperform breadth-first search or
conversely. On the DBLP dataset, for highminSig values such as 100, TSeqMinerdfs−dfs and TSeqMinerdfs−dfs

′
990

are faster than TSeqMinerdfs−bfs and TSeqMinerdfs−bfs
′, respectively while for small values, the latter are

faster. The reason is that depth-first search generally prunes at a large-grained level, and that this type of
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pruning is more likely to succeed for high threshold values and is more sensitive to that threshold. Optimized
versions decrease sensitivity to that threshold because smaller-grained pruning is also performed. Thus, gen-
erally TSeqMinerdfs−dfs may have better pruning effect at high threshold values, while the performance of995

TSeqMinerdfs−bfs is generally more stable when minSig is varied on DBLP. However, this behavior is not
observed on the US Flight dataset. In this case, depth-first search algorithms always outperform others by
a large margin. The reason is that the 1,441 frequent trend sets of the DBLP dataset are composed of 125
trends, while the 1,983 frequent trend sets of the US Flight dataset are formed of only 20 trends. As a result,
the inner search space of US Flight is deeper than that of DBLP, and successfully pruning a high level node1000

can cut off a larger part of the search tree. The combination of this type of search space with a relatively
tight lower bound on the support benefits the depth-first search on US Flight. As a result TSeqMinerdfs−dfs
is up to one order of magnitude faster than TSeqMinerdfs−bfs.

In summary, TSeqMinerdfs−dfs and TSeqMinerdfs−bfs outperform the baseline no pruning algorithm but
whether TSeqMinerdfs−dfs is faster than TSeqMinerdfs−bfs depends on the search structure of the dataset1005

and how minSig is set. This shows that both algorithms are useful in some situations.

5.1.4. Influence of the number of timestamps, attributes and database size

In a fourth experiment, the influence of the number of timestamps, number of attributes and database
size on performance was evaluated. For this scalability experiment, the real DBLP dataset was used rather
than synthetic datasets. The reason is that synthetic databases typically do not contain patterns that are1010

significant and meaningful.
In the experiment, the TSeqMinerdfs−bfs and TSeqMinerdfs−dfs algorithms were ran on different versions

of DBLP with minInitSup = 0.0022, minTailSup = 0.0032 and minSig = 8. Fig. 11 (a) compares
runtimes and number of patterns for various number of timestamps. It is observed that the runtimes of
both algorithms exponentially increase with the number of timestamps. This is reasonable because adding1015

timestamps increases the number of extensions that must be considered for sequences ending at the last
timestamp.

Fig. 11 (b) shows runtimes and number of patterns for various number of attributes. It is observed that
the runtime increases in an approximately linear way when the number of attributes is increased. Moreover,
TSeqMinerdfs−bfs outperforms TSeqMinerdfs−dfs, which is consistent with previous results. In fact, the1020

number of attributes influences the shape of the inner search space. Thus, it influences the effects of pruning
strategies. But the influence on the overall performance is relatively small.

The influence of database size on runtime was also assessed. The algorithms were ran while increasing the
size of the DBLP and US flight datasets by repeating each dataset k times, where k is called the number of
repeats. Note that increasing the size of a dataset in this way does not increase the number of timestamps1025

but increases the number of nodes and edges. Fig. 12 (a) and (b) shows respectively the runtime for
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Figure 11: Influence of number of (a) timestamps and (b) attributes on the runtime and number of patterns.

Figure 12: Influence of database size (number of repeats) on runtimes for (a) the DBLP (b) and US Flight datasets.

Figure 13: Memory usage with respect to (a) number of frequent trend sets and (b) minSig.

the DBLP and US Flight datasets for different number of repeats. Increasing the number of vertices and
average number of edges increase the support of each trend set in the whole space and each neighboring
space, respectively. As a result, the intersection operation becomes more costly. Therefore, it was decided to
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investigate how the number of supporting points influence the final time cost. By repeating each dataset k1030

times, the number of supporting point is multiplied by k. The first observation on the DBLP dataset is that
runtime linearly increases as the number of supporting points is increased. The second observation is that
the ratio of the runtime of TSeqMinerdfs−dfs or TSeqMinerdfs−bfs over the baseline remains stable. This is
because the number of intersection operations and cases where pruning succeed remains approximately the
same wen datasets are repeated. Result for the US Flight dataset are similar.1035

5.1.5. Influence of minInitSup and minSig on memory consumption

In a sixth experiment, the influence of minInitSup and minSig on memory consumption was assessed.
Fig. 13 (a) and (b) indicate the memory usage when the number of frequent trend sets (determined by
minInitSup) and minSig are varied, respectively. Because memory usage is not much influenced by the
type of search space traversal, results are only shown for TSeqMinerdfs−dfs. It is observed In Fig. 13(a)1040

that increasing the number of frequent trend sets M does not always increase memory usage but can have a
considerable influence on memory consumption. Moreover, this increase does not exactly follow the increase
of the number of patterns found. Besides, it is observed in Fig. 13(b) that memory usage quickly increases
in some cases for small variations of minSig, and that this increase also does not follows the number of
patterns found.1045

5.2. Pattern analysis

An analysis of patterns found was also performed on the DBLP and US Flight dataset to assess whether
interesting patterns are found by the proposed algorithms. As mentioned, the neighborhood definition of
the proposed algorithms can be parameterized for the needs of various applications. In the following, the
previously discussed neighborhood definition is called NH1. Besides, another definition called NH2 is1050

considered, where each vertex is its neighboor at the following timestamp.

5.2.1. DBLP

Patterns were first extracted from the DBLP dataset. The NH1 function was used, and the parameters
were set to minInitSup = 35, minTailSup = 100 and minSig = 10 to obtain a set of interesting patterns.
For these values, TSeqMinerdfs−bfs generates 1,610 frequent trend sets and returns 3 patterns in 45 s. These1055

patterns are show in Table 5. The first pattern is of size 2. It indicates that if the number of publications
of an author in ICDE, PV LDB and ACMTransDBSys is increasing, it is more likely that publications
of a co-author will increase in PV LDB while decreasing in V LDB for the next timestamp. In this pattern,
the first trend set is supported by 45 authors in the whole space and the second trend set is supported
by 107 authors in the neighboring space of the first trend set. In this case, the significance is 11.5, which1060

indicate a strong correlation. The second pattern is similar to the first one. The third pattern indicates that
no significant changes between the number of publications in JMLR between two timestamps (JMLR =),
is correlated with a decrease in the number of publications in JMLR for a co-author at the following
timestamp.

Patterns # of supporting points significance
{(ICDE+, PV LDB+, ACMTransDBSys+), (PV LDB+, V LDB−)} {45, 107} {11.5}

{(PV LDB+, V LDB+), (PV LDB+, V LDB−)} {57, 120} {11.5}
{(JMLR =), (JMLR−)} {283, 147} {10.3}

Table 5: Three significant trend sequences with their support and significance, mined from the DBLP dataset using the NH1
neighborhood definition.

An analysis of patterns found was also done using the NH2 neighborhood definition. Using this def-1065

inition, mined patterns indicate how an author’s publication influence his/her future publications. The
parameter minTailSup was set to 200 to obtain interesting patterns. After filtering some trivial patterns
such as {(a+), (a=)}, {(a=), (a−)}, interesting patterns have been identified, listed in Table 6. The pattern
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{(V LDB+), (ICDE+, V LDB =)} indicates that an author publishing an increasing number of papers in
V LDB is likely to publish more ICDE papers while having a stable number of publications in V LDB at1070

the next timestamp. This pattern is reasonable since ICDE and VLDB are both top conferences in the field
of database. If it is found that an author has an increasing number of publications in VLDB, it means that
the author has a good knowledge of databases and can write excellent papers. It is thus reasonable that
he/she will be more likely to have more publications in another top conference such as ICDE. The number
of supporting points is also quite large (> 200) meaning that this pattern that is relevant to a large group1075

of researchers, while the high significance indicates that there is a strong correlation and this pattern do not
likely appears by chance.

Patterns # of supporting points significance
{(V LDB+), (ICDE+, V LDB =)} {1364, 247} {10.5}
{(KDD+), (KDD =), (KDD−)} {1334, 590, 208} {10.9, 12.4}

{(BioInfo+), (BioInfo+, BMCBio+)} {1255, 241} {10.1}

Table 6: Partial significant trend sequences with their support and significance, mined from the DBLP dataset using the NH2
neighborhood definition.

Furthermore, note that if NH2 is used and topological attributes are considered such as closeness and
numCliques to filter patterns, the proposed algorithms will find all triggering patterns suggesting how
variations of attribute values of a vertex can influence its topological properties [31]. More complicated1080

definitions of neighborhood can also be used for other needs.

5.2.2. US Flight
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Figure 14: Hurricane dates and corresponding timestamps of the US Flight dataset.

Patterns from the US Flight dataset were also extracted and analyzed. This dataset is about the impact
of hurricanes on flight traffic in the United States. To facilitate the discussion, Fig. 14 illustrates the dates
of the Irene, Katrina and Ophelia hurricanes, and the corresponding timestamps of the US Flight dataset.1085

The NH2 neighborhood definition was first considered, which focuses on the evolution of each single
vertex. Parameters were set to minInitSup = 8, minTailSup = 10 and minSig = 70 to find an in-
teresting set of patterns. The TSeqMinerdfs−dfs algorithm returned 512 patterns in 2 s. One of them is
{(NbCancel + +, NbDivert+ +, DelayDepart−), (NbDepart−, NbArriv−, NbCancel −−, NbDivert−−)},
which has a significance of 72.6. The first trend set indicates that a large increase in the number of canceled1090

flights (NbCancel+ +) and diverted flights (NbDivert++) was observed, as well as a moderate decrease in
the number of delayed departures (DelayDepart−) due to an hurricane. The appearance of DelayDepart
is explained by the fact that the number of flights is reduced, and thus remaining flights are less likely to be
delayed. The second trend set indicates a large decrease in the number of canceled flights (NbCancel−−)
and diverted flights (NbDivert−−), with a moderate decrease in the number of arrivals (NbArriv−) and1095

departures (NbDepart−). This second trend set indicates that an airport’s activity has returned to normal
after recovery from hurricane damage. The presence of NbArriv− and NbDepart− may appear contra-
dictory to this conclusion, but it can be explained by the fact that during the recovery from the previous
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Figure 15: The paths of the Irene (top left), Katrina (top center) and Ophe-
lia (top right) hurricanes. The partial supporting points (bottom) of the pattern
{(NbCancel−−, NbDivert−−, DelayDepart−), (NbDepart−, NbCancel−, NbDivert−, DelayDepart−, DelayArriv+)},
mined using NH1.

hurricane, part of the flights are influenced by another hurricane. That becomes clearer when we have a
look at supporting points of the trend sets.1100
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Timestamp location

0
”WRG-Wrangell AK”
”KTN-Ketchikan AK”

1 ”OME-Nome AK”

3

”JAN-Jackson/Vicksburg MS”
”PSG-Petersburg AK”

”BHM-Birmingham AL”
”MSY-New Orleans LA”

”JNU-Juneau AK”
4 ”GTF-Great Falls MT”
5 ”MYR-Myrtle Beach SC”

6

”MYR-Myrtle Beach SC”
”DAY-Dayton OH”

”STL-St. Louis MO”
”EYW-Key West FL”

”GJT-Grand Junction CO”
”GRR-Grand Rapids MI”

”IND-Indianapolis IN”
”SNA-Santa Ana CA”

Table 7: Supporting points of the first trend set of significant trend sequence
{(NbCancel + +, NbDivert + +, DelayDepart−), (NbDepart−, NbArriv−, NbCancel −−, NbDivert−−)} .

The supporting points of the first trend set are shown in Table 7. In that table, it is observed that
abnormal events of timestamps 3 and 4 are caused by the Katrina hurricane, while those of timestamp 5 and
6 are due to hurricane Ophelia. Dates of these two hurricanes are close. Therefore, some airports recovering
from Katrina start to be affected by Ophelia. Moreover, affected airports are mostly located on the East
coast of the United States, which is consistent with these hurricanes’ paths depicted in the top pictures of1105

Fig. 15.
The NH1 neighborhood definition was also considered. The parameters were set to minInitSup = 8,

minTailSup = 7 and minSig = 6 to find interesting patterns. The TSeqMinerdfs−dfs algorithm returned
768 patterns in 9 s. An interesting pattern is {(NbCancel−−, NbDivert−−, DelayDepart−), (NbDepart−,
NbCancel−, NbDivert−, DelayDepart−, DelayArriv+)}, whose supporting points are partially illustrated1110

in Fig. 15. In Fig. 15, red rectangles denote supporting points of the first trend set and orange triangles
denote supporting points of the second trend set. The first trend set contains NbCancel−− and NbDivert−
−, which indicate a significant decrease of the number of canceled flights and diverted flights, following
recovery from an hurricane. Most supporting points are located on the East coast which indicates that it
represents aiports that were directly affected by the hurricane. The second trend sets contains NbCancel−1115

and NbDivert−, which indicate a moderate recovery from damage. The supporting points of the second
trend set are all at timestamp 5 and mostly not located on the East coast. Thus, these points represent
airports that were indirectly influenced by the hurricane or have experienced moderate damage. The airports
that were directly influenced by the hurricane recovered earlier at time 4, and then were followed by the
moderate recovery of related airports at timestamp 5. The DelayArriv+ trend indicates an increase of the1120

average delay time of arriving flights, which indicates that flight schedules may still not have completely
returned to normal.

On overall, analysis of patterns have shown that interesting patterns can be discovered in two real-life
dynamic attributed graphs using the proposed model of significant trend sequences. It was also shown that
using different neighborhood definition can provide different insights about the data.1125

Generally, dynamic graphs are found in many domains. Thus, the proposed algorithms could be applied
in many other fields. For example, dynamic graphs can be used to model changes in ontologies [20], processes
in complex systems [21], computer networks [22], spatio-temporal changes observed in satellite images [23]
and movements of vehicles [24]. Thus, the proposed algorithms could be also applied on such data to find
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patterns. Studying patterns found for other applications besides the two presented in this paper will be1130

considered in future work.

6. Conclusion

To allows discovering strongly correlated patterns in dynamic attributed graphs, this paper proposed a
novel significance measure named Sequence Virtual Growth Rate. It allows evaluating if a pattern represents
entities that are correlated in terms of their proximity in a graph over time. Based on this measure a novel1135

type of graph patterns called Significant Trend Sequence was proposed. To efficiently mine these patterns,
two algorithms named TSeqMinerdfs−bfs and TSeqMinerdfs−dfs were proposed. They rely on a novel upper
bound and pruning strategy to reduce the search space. An externsive experimental evaluation has show
that the algorithms are efficient and can identify interesting patterns in real-world social network and flight
data.1140

There are many possibilities for future work. First, we have introduced a significance measure to find
strongly correlated trend sequence. But this measure could also be adapted to find more general types
of patterns such as significant subgraph sequences. Second, alternative constraints could be designed to
select meaningful patterns and to provide properties for pruning. Third, the proposed algorithms may still
generate many similar patterns. Finding a good way to group them can save user much time and increase the1145

applicability of the proposed algorithms. Fourth, the concept of high utility patterns [61, 62, 63, 64, 65, 66]
may be considered for dynamic attributed graph mining.
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