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the supports of several itemsets together. As the number of itemsets that are traced by a
node of a CP-tree is increased, the size of a CP-tree becomes smaller. However, the result
of a CP-tree becomes less accurate since the estimated supports of those itemsets that
Frequent itemset are traced together by a node of a CP-tree may contain possible false positive or negative
Frequent itemset compression errors. Based on this characteristic, the size of a CP-tree can be controlled by merging or
Data stream splitting the nodes of a CP-tree, which allows the utilization of a confined memory space
Stream data mining as much as possible. Therefore, the accuracy of a CP-tree is maximized at all times for a
confined memory space. Furthermore, a CP-tree can trace a concise set of representative
frequent itemsets that can collectively represent the set of original frequent itemsets.
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1. Introduction

In a data set of transactions, an itemset is frequent if the ratio of the count of transactions that contain the itemset over
the total number of transactions is greater than or equal to a predefined support threshold called a minimum support Syin. A
typical data mining task on finding frequent itemsets [1,2,4,12,17] for a finite data set often produces a huge number of sim-
ilar frequent itemsets especially when either the items of a data set are heavily correlated or the value of a minimum support
is quite low. In order to represent the entire set of frequent itemsets by a compact notation, closed or maximal frequent item-
sets are introduced. An itemset is a closed itemset if no proper superset of the itemset has the same support as the support of
the itemset. Therefore, a closed frequent itemset (CFI) can represent a number of frequent itemsets whose supports are the
same. There are several algorithms [24,26,30] for finding the set of CFIs in a finite data set. Since the exact support of every
frequent itemset can be recovered by CFls, representing the set of frequent itemsets by its corresponding set of CFIs is loss-
less compression. However, the ratio of compression is quite restricted since the supports of most itemsets are different [25].
On the other hand, a frequent itemset is called a maximal frequent itemset (MFI) if it is not a subset of any other frequent
itemset [3]. Several algorithms [5,14,20,28] have been proposed for finding MFIs. Given a data set, the set of MFIs is much
smaller than the set of frequent itemsets, so that the compression ratio of MFIs may be quiet good but the supports of its
subsets may be quite different one another. Consequently, unlike a CFI, an MFI cannot be used to represent a number of
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frequent itemsets whose supports are similar. Accordingly, a method of extracting a compressed set of frequent itemsets is
proposed for a finite data [25]. It provides a flexible way to represent a number of similar frequent itemsets by a single
representative frequent itemset.

The term data stream is used to denote the common characteristics of such a dataset. It is a massive, unbounded sequence
of data elements continuously generated at a rapid rate. As such, it is impossible to maintain all the data elements of a data
stream. Consequently, on-line data stream processing should satisfy the following requirements [13]. First, each data ele-
ment is examined mostly once to analyze a data stream. Second, memory usage for data stream analysis should be restricted
finitely although new data elements are continuously generated in a data stream. Third, a newly generated data element
should be processed in less than a fixed duration to produce the up-to-date analysis result of a data stream, so that it can
be instantly utilized upon request. To satisfy these requirements, data stream processing sacrifices the accuracy by allowing
some errors. Data mining over an online data stream should support a flexible trade-off between processing time and data
mining accuracy. In addition, the granularity of input data should not be predetermined in order to catch the sensitive
change of its result as quickly as possible. In order to evolving granular computing, [33] deals with several evolving fuzzy
systems approaches which have emerged during the last decade and highlights the most important incremental learning
methods used. These approaches are able to automatically adapt parameters, expand their structure and extend their mem-
ory on-the-fly, allowing on-line/real-time modeling. The problem of learning from data issued of time/spatial-based complex
non-stationary processes is described in [32]. It presents efficient techniques, methods and tools able to manage, to exploit
and to interpret correctly the increasing amount of data in environments that are continuously changing.

Network monitoring systems, sensor data systems, and fraud detection systems are usually designed to support the auto-
matic analysis of continuously generated data elements and expect their analyzed results to be produced quickly. In a ubiq-
uitous computing environment, identifying the current context of a user quickly is very important to provide the user with
customized services proactively. For this purpose, the frequent contexts of a user can be recognized by tracing frequent item-
sets over sensor data streams. Recently, various algorithms [7,8,11,15,23,27,29,31] are actively proposed to extract different
types of patterns embedded in a data stream. Among these algorithms, Sticky sampling [21], FTP-DS [23], Lossy Counting [21],
estDec [6], and FDPM-1[9] focus on finding frequent itemsets over a data stream. Moment [8] and CFI-stream [19] find the set
of CFls in those transactions that are within the current range of a sliding window over a data stream. In [31], the fundamen-
tals of data stream mining and describe important applications, such as TCP/IP traffic, GPS data, sensor networks, and
customer click streams.

In [6], we have proposed the estDec method for finding recently frequent itemsets over an online data stream. Among all
itemsets in the transactions of a data stream, only those itemsets that can possibly be frequent itemsets in the near future are
regarded as significant itemsets which are maintained in main memory by a lexicographic tree structure called a prefix tree
[1,4]. An itemset is significant if its current support is greater than or equal to a user-defined threshold Sgjg (<Smin). Patterns
embedded in a data stream are more likely to be changed over time, so that the number of currently significant itemsets
monitored by a prefix tree can be continuously varied. As the number of significant itemsets is increased, the size of a prefix
tree that represents these itemsets becomes larger. Since a prefix tree is located in main memaory, its size should not be larger
than the size of a confined memory space at all times. However, the size of a prefix tree totally depends on the number of
those itemsets that are currently significant. Therefore, once the size of a prefix tree becomes larger than that of the confined
memory space, it is impossible to monitor any new significant itemset additionally. Because of this, the accuracy of the
estDec method can be degraded without any upper bound in this situation.

In this paper, two itemsets are defined to be similar if one of them is a proper subset of the other and their support dif-
ference is less than or equal to a predefined threshold called a merging gap threshold 6 € (0,1). This similarity measure em-
ployed in this paper is a straight-forward generalization of a closed itemset. In other words, when § = 0, the longest itemset
among two or more similar itemsets is a closed itemset. This paper proposes a CP-tree (Compressible-Prefix tree). Unlike a
prefix tree where a significant itemset is represented by only a single node, two or more nodes of a prefix tree can be merged
into a single node of a CP-tree as long as the support difference of their corresponding itemsets is within 6. Consequently, the
supports of several similar itemsets can be monitored together by a single node of a CP-tree. Among the similar itemsets,
only the counts of the two representative itemsets are maintained while those of non-representative itemsets are estimated
based on the counts of the two representative itemsets. By adaptively controlling the value of §, the number of nodes in a
CP-tree can be changed flexibly. As the value is increased, more significant itemsets can be represented by a single node
of a CP-tree. Consequently, the size of the CP-tree is reduced while less accurate information is maintained in the CP-tree.

A CP-tree can be employed for two distinct purposes. One is to fully utilize a confined memory space. By adaptively
adjusting the value of § for the confined memory space, the precision of a CP-tree can be maximized at all times. The other
is to compress the set of frequent itemsets instantly over an online data stream. All the similar itemsets of a node can be
represented by the longer one of the two representative itemsets. The compression ratio of a CP-tree can also be flexibly con-
trolled by changing the value of é. Furthermore, by imposing another support threshold called a merging threshold Sperge
(=Smin), it is possible to separate a CP-tree into two disjoint parts. One is the upper part where a node can monitor the sup-
ports of multiple significant itemsets together. The other is the lower part where a node can only monitor the support of a
single significant itemset. Consequently, a CP-tree can trace those significant itemsets that are represented by the nodes of
its lower part as accurately as a prefix tree does.

The rest of this paper is organized as follows: Related work is presented in Section 2. Section 3 reviews the estDec method.
Section 4 proposes the structure of a CP-tree in detail. Section 5 introduces the extended version of the estDec method,
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namely the estDec+ method which employs a CP-tree to find frequent itemsets over an online data stream. In Section 6, the
performance of the estDec+ method is comparatively evaluated using a series of experiments. Finally, conclusions are drawn
in Section 7.

2. Related work

Frequency counting algorithms over a data stream [7,10,21] allow some errors in their results in terms of either the set of
frequent itemsets or the support of an individual frequent itemset. The sticky sampling [21] method uses a statistical sam-
pling technique to estimate the count of itemsets while the FTP-DS [23] algorithm takes a regression-based approach to find
frequent temporal patterns over data streams. Therefore, these two algorithms do not guarantee the upper bound of an error
count in the estimated support of each itemset. In order to impose the upper bound of a false positive error, the Lossy Count-
ing [21] algorithm finds the set of frequent itemsets over a data stream with respect to an error parameter . In the Lossy
Counting algorithm, to reduce the memory usage of a mining process, the counts of frequent itemsets are kept in a secondary
storage and only a buffer for temporarily holding transactions is kept in main memory. When the size of a buffer is enlarged,
more transactions can be batch-processed together. As a result, the algorithm is more efficiently executed. Similarly, the
estDec method also employs a significant support S for this purpose. Consequently, the maximum possible false positive er-
ror of a frequent itemset found by these two algorithms is always less than ¢ or Sy respectively. For both algorithms, the
maximum possible error in the count of a frequent itemset is bounded by a user-defined parameter. While all of the above
algorithms guarantee no false negative error in their results, the FDPM-1 algorithm [22] explores the possibility of allowing
false negative errors in finding the set of frequent items over a data stream. Therefore, it may miss some of frequent items in
its result but the amount of information needed to be held is greatly reduced.

Moment [8] finds the set of CFIs within the period of a sliding window over a data stream. It uses an in-memory data
structure, called a closed enumeration tree (CET), which monitors not only the set of CFIs but also those itemsets that are
in the boundary between the CFIs and the remaining itemsets. There are two different categories of an itemset. One is
whether an itemset is either frequent or not. The other is whether an itemset is either closed or not. When a CFI and its sub-
set appear in the same set of transactions, they have the same support. Consequently, all of currently CFIs are stored in a hash
table whose key is constructed by (support,tid_sum) in order to identify the above two conditions quickly. The term support
denotes the support of an itemset and the term tid_sum denotes the sum of the identifiers of those transactions that contain
the itemset. The Moment algorithm defines specific actions to be taken when the category of a particular itemset is changed.
Whenever a new transaction T is generated or a transaction T becomes out of the range of the sliding window, the CET is
traversed according to the items of T. At the same time, the current support and the tid_sum of the itemset represented
by each visited node are updated. In addition, the entry of the itemset in the hash table is also updated and checked to find
out whether the current category of the itemset should be changed or not.

The CFI-stream algorithm [19] employs a data structure called a DIrect Update (DIU) tree that stores all closed itemsets in
lexicographical order for a data stream. It performs two operations: an addition operation for a newly generated transaction
and a deletion operation for the transaction that is deleted from the range of the sliding window. As in the Moment algorithm,
the algorithm proposes a number of actions to be taken to the DIU tree for more precisely categorized cases. Since CFI-Stream
stores all closed itemsets in the DIU tree regardless of their supports, its processing time and memory usage remain almost
the same even if the value of a minimum support is changed.

In [25], two greedy methods: namely RPglobal and RPlocal are proposed to compress the set of frequent itemsets in a finite
data set. The similarity between two itemsets is represented by a distance measure which denotes the ratio of the number of
transactions that contain the two itemsets together over the number of transactions that contain at least one of the two
itemsets. An itemset p is 5-covered by another itemset p’ if the items of p is a subset of p’ and the similarity between them
is less than or equal to § (0 < 6 < 1). A set of similar itemsets P is called as a -cluster. A single representative itemset p, € P
replaces all the itemsets of P but the support information of every non-representative frequent itemset is lost. The RPglobal
and RPlocal methods find a set of representative frequent itemsets that can replace all the frequent itemsets of a data set. The
RPglobal method preserves the quality of compression but it requires high computational complexity. The RPlocal method
sacrifices the theoretical quality bound of compression but it is far more efficient. The RPglobal method employs a greedy
set-covering approach by employing an FP-tree-like structure [16]. However, when the number of frequent itemsets is in-
creased, this method does not scale well. To cope with this problem, the RPlocal method finds locally good representative
itemsets. However, the RPlocal method provides less accurate results since it cannot utilize the complete coverage informa-
tion. The number of representative frequent itemsets can be flexibly controlled by the value of 6. These two methods cannot
be applied to a data stream since they need to scan a data set multiple times.

3. Preliminaries

For finding frequent itemsets, a data stream can be viewed as an infinite set of continuously generated transactions as
follows:

(i) Let I ={iy,iy,...,i,} be a set of items that have ever been used as a unit information of an application domain.
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(ii) Anitemset e is a set of items such that e € (2' — {¥}) where 2/ is the power set of I. For simplicity, an itemset {a, b, c} is
denoted by abc. In addition, the number of items in an itemset e is denoted by |e| and an itemset with |e| items is
denoted by an |e|-itemset.

(iii) A transaction is a non-empty subset of I and each transaction has a unique transaction identifier TID. A transaction
generated at the kth turn is denoted by T, and its transaction identifier TID is k.

(iv) When a new transaction Ty is generated, the current data stream Dy is composed of all the transactions that have ever
been generated so far, i.e., Dy = (T1,Ty,. .., T) and the total number of transactions in Dy, is denoted by |Dy|.

For finding frequent itemsets over an online data stream, we have proposed the estDec method [6] to minimize the num-
ber of itemsets to be monitored. The method keeps track of the occurrence count of an itemset in the transactions generated
so far by a monitoring tree whose structure is a prefix tree [1,4] as shown in Fig. 1. Given the current data stream D, a prefix
tree Py has the following characteristics:

(i) A prefix tree P, has a root node n,,, with a “null” value and each node except the root node has an item i€ I.
(ii) Each node of a prefix tree consists of two fields: item-name and count. The item-name field holds the item of the node
and the count field maintains the count of the itemset represented by the node.
(iii) For an itemset e =iy,iy,...,i, the items iy,i,,..., and i, are lexicographically ordered and the last node of a path
(root) » iy — ... > iy (ix€ Lk > 1) in a prefix tree represents the itemset e.

Trends embedded in a data stream are more likely to be changed as time goes by. Identifying the recently changed sig-
nificant pattern in a data stream quickly can provide valuable information for the analysis of the data stream. For this pur-
pose, the effect of obsolete information in old transactions on the current result of a data stream should be eliminated
effectively. To identify the recent change of a data stream, a decay mechanism [18] can be applied. In other words, the weight
of information in each transaction is differentiated according to the time that the transaction is generated. A decay rate is the
reducing rate of a weight for a fixed decay unit that determines the chunk of information to be decayed together. It is defined
by two parameters: a decay-base b and a decay-base-life h. A decay base b determines the amount of weight reduction per
decay unit and it is greater than or equal to 1. As the value of b becomes larger, the amount of weight reduction is increased.
A decay-base-life h is defined by the number of decay units that make the current weight be 1/b when the weight of the cur-
rent information is set to 1. Based on these two parameters, a decay rate d is defined as follows:

d=b""" (b>1h>1)
Given a decay rate d, the approximate count Ci(e) of an itemset e in the current data stream D, is defined as follows:

if e appears in a new transaction Ty Ci(e) = Cx_1(e) xd +1 (1)

(a) A Prefix tree Py
node | itemset | node |itemset | node |itemset
root Y T4 g ng eg
n c ns ce Ty /g
ny e I cf nio cef
13 S 1 ef ni efg

(b) itemsets in Py,

Fig. 1. A prefix tree Py.
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if e does not appear in a new transaction Ty Cy(e) = C,_q(e) x d (2)

The current approximate support Si(e) of an itemset e is the ratio of its current approximated count Ci(e) over |D,|. For a
predefined minimum support S,,;,, an itemset e whose current support Si(e) is greater than or equal to S,,;, is a frequent
itemset in the current data stream Dj.

Whenever a new transaction T is generated, all nodes that are corresponding to the itemsets of T are visited and their
current counts are updated respectively. The estDec method examines each transaction in a data stream one-by-one without
any candidate generation. It employs two major operations: delayed-insertion and pruning operations. For each of the two
operations, it employs two different support thresholds: an insertion support Sz (<Smin) and a pruning support Sp (<Ssig)-
An itemset whose support is greater than or equal to S is regarded as a significant itemset. Monitoring the count of a new
itemset is started only in the following two cases. The first case is when a new 1-itemset appears in a newly generated trans-
action Ty. In this case, monitoring its count is instantly started by inserting it into the monitoring tree P, without any esti-
mation. The second case is when an itemset that used to be insignificant becomes significant due to its appearance of T,.
Since it becomes a significant itemset, it should be inserted into Py for further monitoring. To find such an n-itemset e
(n = 2), only when all of its (n — 1)-subsets are maintained in Py, the current support of the n-itemset e is estimated by those
of its (n — 1)-subsets.

Given a data set of transactions, two itemsets e; and e, are least exclusively distributed (LED) when they appear together
in as many transactions as possible. Inversely, they are most exclusively distributed (MED) when they appear exclusively as
much as possible. The maximum count C"*(e; U e,) of their union-itemset e; U e, is estimated by assuming that the two
itemsets e; and e, are LED

C™*(e; Uey) = min(C(ey). C(ey))

where ((x) denotes the count of an itemset x. When the two itemsets e; and e, (e; N ez # ) are MED, the minimum count
C™"(eq U ep) of their union-itemset is estimated as follows:

C™"(e; Uey) = max(0,C(e;) + C(ez) — Cley Ney))

Since the total number of the (n — 1)-subsets of the n-itemset e is n, let U,,_1(e) denote the set of the (n — 1)-subsets and
{c1,¢a,...,cq} denote the set of the current counts of the (n — 1)-subsets. An n-itemset can be viewed as the union-itemset of
its subsets. Therefore, the maximum count C"*(e) of the n-itemset e is estimated by its (n — 1)-subsets as follows:

C"*(e) = min(cy, ..., Cy)

For each distinct pair (a;, ;) of the (n — 1)-subsets i.e., o; and o; € U,_1(e) (a; # «;), when they are MED, the pair-wise min-
imum count C™"(g; U ;) can be estimated. Among the ,C; number of pair-wise minimum counts, the largest count is the
guaranteed appearance count i.e., the minimum count C™"(e) of the n-itemset e. The upper bound of this estimation error
C™%(e) — C™N(e) is proven to be ignorable when k becomes infinite. The detailed description of this estimation is presented
in [6]. Based on this estimation, the estimated current count @(e) of the n-itemset e is set to the maximum possible count
C™(e) i.e. Cr(e) = C™x(e). If Cr(e)/|D|, = Ssig, the itemset e is inserted into Py. The above procedure is a delayed-insertion
operation. A pruning operation is performed when the current support of an n-itemset (n > 2) maintained by P, becomes less
than Sg,. An itemset that used to be a significant itemset is regarded as an insignificant itemset when it cannot be a frequent
itemset in the near future. Upon identifying such an itemset, the node representing the itemset and all of its descendent
nodes are pruned together from P, based on the anti-monotone property of a frequent itemset.

4. Compressible prefix tree: CP-tree
4.1. Structure of a CP-tree

To reduce the size of a prefix tree, the information represented in a prefix tree needs to be compressed as a concise syn-
opsis. Two consecutive nodes in a prefix tree is merged into a node of a CP-tree when their corresponding itemsets are sim-
ilar to each other. Ultimately, a subtree of a prefix tree can be merged into a node of a CP-tree. All the itemsets of the subtree
are similar. Such a subtree is defined as a mergeable subtree by Definition 1 and the detailed structure of a node in a CP-tree is
defined in Definition 2.

Definition 1 (A mergeable subtree). Let Py be a prefix tree maintained by the estDec method in the current data stream D,.
Given a merging gap threshold 6, a mergeable subtree S of Py is a maximal subtree rooted at an internal node e, of P, and every
itemset e; of S should satisfy the following constraint.

Ve S, |C(er)—Cule)l/ID] <6, 1<j<IS]

where |S| denotes the number of nodes in S. A leaf node of S does not have to be a leaf node of Py.
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Definition 2 (Structure of a CP-node). Given a mergeable subtree S of a prefix tree P, for the current data stream Dy, let a CP-
tree Qi be equivalent to P. To represent the information of S in Q,, a node m of Q, maintains the following four entries
m(t, 7, cy, Cpp):

(i) item-list T: In an item-list 7, the items of nodes in each level of S are lexicographically ordered and these level-wise lists
of items are ordered according to their levels. Let |t| denote the number of items in 7 and the jth item in 7 is repre-
sented by 7[j] (1 <j <|1|, |z] = |S|). The item m.t[1] is corresponding to the itemset represented by the root node of S.
This itemset is called as the shortest itemset of the node m and denoted by m.e,. On the other hand, the last item m.z[|7|]
is corresponding to the itemset represented by the right-most leaf node in the lowest level of S. The itemset is called as
the longest itemset of the node m and denoted by m.ey;. All the similar itemsets of the subtree S are compressed into this
longest itemset. Among the items of 7, those items that are represented by the leaf nodes of S are called as leaf-level
items.

(ii) parent-index list m: A parent-index list 7 maintains an entry of a form p.q where p denotes a node identifier of Q, and q
denotes an index of the item-list 7 of the node p. Suppose a node n, with an item x € I is the parent of a node n, with an
item y € ] in the mergeable subtree S. The nodes n, and n, of Py are represented by their corresponding items x and y in
the item-list 7 of the node m. Let a and b denote the item-list indexes of the items x and y respectively, i.e., m.t[a] = x
and m.t[b] = y. The parent-child relationship of the nodes n, and n, in Py is modeled by the two lists 7 and = in the node
m since m.t[b] =y and m.n[b] = m.a imply the parent of the item y is m.t[a] = x. On the other hand, suppose the parent
of the root of S be a node n, with an item z in P and the node n, be in another mergeable subtree S. Let S be represented
by a node m of Qy and the item-list index of the node n, in m be q,, i.e., m.t[q,] = z. The entry of m.xn[1] is set to m.q,.

(iii) largest counter c;: It maintains the current count of the shortest itemset e;.
(iv) smallest counter cy: If |S| = 1, ¢; = ¢ Otherwise, it maintains the current count of the longest itemset ej;.

If every node of a CP-tree is allowed to be merged, an infrequent but significant itemset e, i.e., Ssig < Si(€) < Smin can be
merged with some frequent itemsets. This may make either the itemset e be frequent or some of frequent itemsets be infre-
quent by the merged-count estimation. In order to avoid these types of an error, if the current support of the longest itemset
of a node is less than a predefined threshold called a merging threshold Sperge (= Smin), the node is not considered as a can-
didate for a node-merge operation. As the gap between S;eree and Sy,in is enlarged, the size of a CP-tree is increased but the
overall merged-count estimation errors in all frequent itemsets are decreased.

Fig. 2 shows a CP-tree Q, which is equivalent to the prefix tree P, in Fig. 1. The subtree formed by the nodes ny, ns, ng, and
nyo of the prefix tree P, are compressed into the node m (7 = (c,e,f.f), © = (mo.1,my.1,my.1,my.2), ¢, cy) of Qx. This is because
the current support difference between the root node n; of the subtree and each of its child nodes ns, ng and nyq is less than 6.
The item-list 7 = (c,e,f.f) and parent index list 7 = (mp.1,m;.1,m;.1,m.2) in the node m; maintain the level-wise structural
information of its corresponding mergeable subtree in P,. More precisely, the root of the subtree represented by m; is
7[1] = ¢ which is corresponding to the node n; of Py. Its parent node m[1] = mo.1 is the node mg of Q. The fact that the node
n, is the parent of the node ns in P, can be inferred by m;.7[2] = e and m;.%[2] = m.1. These two facts imply that the parent of
the item e is m;.7[1], i.e., c. Similarly, the shortest and longest itemsets represented by the node m; are c and cef respectively.
Their current counts are maintained by the two counters ¢; and c;; of the node m;. Likewise, the nodes n,, n;, ng and n,; of Py
are compressed into the node m, of Q. On the other hand, since there is no mergeable subtree for ny, it is left to be uncom-
pressed in Q. Fig. 2(b) shows how the itemsets of P, are compressed by Q.. The compression ratio is about 33.3% in terms of
the number of itemsets. The detailed steps of a traverse operation are described in Fig. 3.

4.2. Merged-count estimation

Given the item-list m.t = (i, iy, .. .,i,) of a node m in a CP-tree, let e; denote the itemset represented by i; (1 <j < ). By the
two counters ¢ and ¢y of the node, it is possible to trace the current supports of at most two similar itemsets as precisely as
the estDec method does. They are the shortest and longest itemsets e; and e;,. Therefore, if more than three similar itemsets
are compressed into a single node, the current supports of the remaining itemsets e; (2 <j < v — 1) should be estimated. The
current count Cy(e;) of such an itemset e;, can be estimated by a formula C(e;;) = [m.c; — f(m, j)] where f{m,j) denotes a count

mo representative itemsets
itemsets(en ) in Py
m m; ms ny my cef ¢, ce, cf, cef
t e T el 7F 17 t el 7] o] ¢ t [ f] ¢ T 8 "o efg e, ef, eg, efg
m Lol Lot T omd T2 J 7 [l [t [ ot T2 2 [Cond ol || = s fg’ ffg éfg .
(a1 :1,en:l) ) (1 2, e 1) ) (cr 4, en2) )\ (e :2.0n:2) m:; g , };
(a) An equivalent CP-tree Oy (b) Compressed itemsets in QO

Fig. 2. A CP-tree and its equivalent a prefix tree (d = 0.5,Ssjg = 0,Smerge = 0,d = 1).
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traverse(m, my, g, T)

m,: the parent node of a node m

gq: the item-list index of the last leaf-level item matched in the node m, i.e.,
my.7[q]

1 if m.z[1] =m,.qg and m.7[1] € T;

2 m.ci <—m.c *d+ 1;

3 if (m.c1 /1Dyl) < Sgig

4 pruning m; /* eliminate m and all of its descendent nodes */
5 else

6 i—1; )

7 find the set of the i ™ level common items C';

8 while C'#+ &

9 i—i+1; _

10 find the set of the i " level common items C';

11 if mafld] e ¢V

12 m.cn «— m.cn *d + 1;

13 if (my.c1 -m.cu ) / ID <6 and m.cu /1Dyl > S,erge

14 node_merge(m,, m);

15 else if (m.ci -m.ci ) /1Dl > 6 and m.cu /1D = Syerge

16 node_split(m);

17 if 3 a child node of m and 3 a leaf-level item € C'U C*u...u C*
18 for all leaf-level items m.z[}]

19 for all child nodes m, of m

20 traverse(m,, m, j, T);

Fig. 3. Traverse operation.

estimation function that can model the count C(e;) in terms of the two counters ¢; and ¢j;. Any function meaningful in an
application domain can be employed to define the function f{m,j). For example, each of the following two functions f;(im,j)

and f>(m,j) can be a possible candidate.
fim.j) = (ma ~my) x A
1 ) Ll L |€1]|—|€1|

€. |—|€ €. |—|e
ey =leil _/ley Il

falmj) = (me—men < S 1/ 1
=1 I=1

The function f;(m,j) assumes that the count of an itemset e; (2 <j < v— 1) is linearly decreased as the number of items in
the itemset e; is increased. On the other hand, the function f,(m,j) enlarges the decrement rate of the count of the itemset e;
as the number of items in the itemset is increased.

Example. Suppose a node m; of a CP-tree has its entries (7 = (b,c,d,e), = (mg.1,my.1,m.2,my.3), c;= 100, ¢;; = 85) and its
parent node mg of m; have (7 = (a), © = (root), ¢; = 120, ¢;; = 120). Since m.e; = ab, my.ej; = abcde, the count of an itemset abc
represented by the second item c in my.t can be estimated by the count estimation functions f;(m,j) and f>(m,j) respectively
as follows:

(i) ilmy,j): Tmai.ci — fi(ma, j)] = [100 — {(100 — 85) x 23}] =95
(ii) fo(my,j): [my.ci — fo(my,j)] = | 100 — {(100 —85) x 213:"12%/2?:‘12 }}-‘ —92

The above estimation is called as merged-count estimation in order to distinguish it from the inserting-count estimation
defined in Section 3. The current count of a non-representative itemset traced by a node of a CP-tree is estimated by the
above mechanism, so that it may contain a false negative error count but the possible range of this error is totally dependent
on the value of a merging gap threshold é. As this value is set to be larger, more nodes in a CP-tree can be merged. As a result,
the size of the CP-tree can be smaller while the errors caused by the merged-count estimation can be increased. However,
there exists an upper bound for the errors.

Theorem 1. Given a merge gap threshold 3, suppose the support of an itemset e in the current data stream D, is traced by a node m
of a CP-tree Q. When the itemset e is not either the shortest or longest itemset of the node, its current support is estimated by the
merged-count estimation as S(e). For the real support Sy (e) of the itemset e, the support error [Si(e) — Si(e)| at the current data
stream Dy should be always less than §.
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Proof. Let Cie and Ci(e) denote the real and approximated counts of the itemset e in D,. Since the count of the itemset e
should be estimated, the itemset e is neither the shortest nor the longest itemset represented by the node m. Therefore,
the following should be satisfied.

m.c; < C(e) < m.cy.m.c; < Ce) < m.cy
Consequently, the error count of the itemset e is bounded by

Ci(e) — Ck(e)| < m.ci — m.cy (3)
By Definition 1, the following is always true

(m.ci —m.cu)/IDy| <0 (4)
From (3) and (4), the current support error of the itemset e is bounded as follows:

ISk(e) — Sk(e)| = |Ci(e) — Ck(e)|/|Dx| < (m.c; — m.cy)/|Dy| < 9. O

5. Finding frequent Itemsets
5.1. CP-tree traversal

Traversing a CP-tree is virtually the same as traversing a prefix tree described in [6]. When a new transaction Tj is gen-
erated in a data stream D,_, the items of T, are lexicographically ordered and matched with the CP-tree Q,_; in a depth-first
manner. Upon visiting a node m of a CP-tree, let m, denote its parent node and an item i, denote the last matched leaf-level
item in m,. Only when the item i, of the parent node m, is the first entry of the parent-index list, i.e., m.n[1] = mp.i,, check
whether the first item m.t[1] is one of the remaining items of Tj. If the above two conditions are not satisfied together, the
search in the node m is terminated and the search in the parent node m, is continued.

If the two conditions are satisfied, the largest counter c; of the node m is updated by (1) since the shortest itemset e; of the
node m appears in the new transaction T;. If the updated support of the shortest itemset m.e, becomes less than Sgg, i.e., m.c/
[Dy| < Ssig, the node m and all of its descendent nodes are pruned since all the itemsets represented by these nodes are turned
out to be insignificant. Otherwise, among the paths of the mergeable subtree compressed into the node m, those paths that
are induced by the remaining items of T are traversed in a level-wise manner. In the transaction Ty, only those items that are
lexicographically after the item m.t[1] are the candidates for further matching. An item m.t[j] (2 <j < m.t[|z|]) is one of the
first level common items if m.z[j] = m.1 and the item m.z[j] is one of the candidates. Likewise, an item m.z[j] (2 <j < m.t[|7]])
is one of the ith level common items if its parent item is one of the (i — 1)th level common items and the item m.z[j] is one of
the candidates. When there is no next level common item, this level-wise search is terminated. Only when the last item
m.t[|t]] is one of the last level common items, the smallest counter m.cy is updated by (1).

If the updated support of m.ey is greater than or equal to Speree and the support difference between m.e; and mp.ey be-
comes less than or equal to 6, i.e., m.cy/|Dx| = Smerge and (mp.c; — m.cyp)/[Di| < 9, these two nodes m and m, are merged. A
node-merge operation is only invoked in the following two cases. One is when the current support difference between the
shortest itemset of m, and the longest itemset of the node m becomes less than or equal to 4, i.e., mp.cy — m.c; < 8. This case
happens only when the difference between the two counters my.c; and m.c; remains the same and |Dy| is increased. The other
one is when a new significant itemset e is identified by the inserting-count estimation, so that a new node for the itemset
needs to be inserted as a child of the node m. If the difference between the estimated support of the new significant itemset
and the support of the shortest itemset in the node m is less than or equal to §, the newly created node is instantly merged
into the node m. The detailed steps of a node-merging operation are described in Fig. 4. On the other hand, if the updated
support of the longest itemset m.ey; is greater than or equal to Syerqe and the support difference between the itemsets m.e;
and m.e; becomes greater than 6, i.e., m.cy/|Dx| = Smerge and (m.c; — m.cy)/|Di| > 6, the node m is split. A node m of a CP-tree
is split when the current support difference between its shortest and longest itemsets becomes greater than 4, i.e,
(m.c; — m.cy)/|Dy| > 5. The difference is enlarged when only the value of m.c; is incremented. When the node m is split, every
leaf-level item of the node m is separated as an individual node of a CP-tree. The detailed steps of a node-split operation are
described in Fig. 5. This procedure is a node-split operation.

If the level-wise search in the node m is terminated by reaching at least one of its leaf-level items, all the child nodes of
the node m are visited. Otherwise, the search in the node m is terminated and the search in the parent node m, is continued.
This procedure is recursively repeated until there is no item to be matched in T,. Finally, all the paths induced by T are
traversed.

Fig. 6 illustrates how a CP-tree is traversed when a new transaction Ty is processed. Traversing Q,_; is started at the root
node mg by depth-first search. Because of m;.7[1] ¢ T\, the node m, is visited. Since m,.t[1] € T, and m,.7[1] = m,.1, the search
in m; is continued and the item e becomes the first common item between m,.t and T,. Since the shortest itemset e repre-
sented by m, is matched, the largest counter m,.c; is updated by (1) when the value of d is 1. To continue traversing the
mergeable subtree corresponding to m,, any second level common item between m,.7 and Ty is searched. Since m,.7[2] is
the same as the second item of T, and m,.m[2] = m,.1, the item f becomes the second level common item. Therefore, the
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node_merge(m,, n) /* my, is the parent node of m */

1 append m.z to m,.t;

2 my.m [my|t|+1];— m.a[1];

3 for each entry in m.z[j] (2 <j <m.t|) /* let m.a[j]=m.q */
4 vemyttg;

5 mpafmy.|t| + ] — mp.v;

6 for each child node m. of m /¥ let me.n[1] = m.r */
7 w—m,lt| +r;

8 me.[1] «— m,.w;

9  make m, be a child node of m,,

10 prune m from Qy;

Fig. 4. Node_merge operation.

node_split(m)

1 for each leaf-level item i /*letmrj]=i*/
2 create a new node m";
3 m' 1] — m.t]j];
4 m'a[1] — m.a[j];
5 m.t[j] < null;
6 ifj=]

7 mel —men. m.en —m.a

8 else

9 m".ci «— estimate the current merged count of e;;
10 mc.—m .

11 for each child node m. of m

12 if mea[1]=mj

13 mea1] —m".1;
14 make m, be a child node of m”;
15 1

16 fork=1tom.]

17 ifm.k] # null

18 m.1[l] «— m.[k];
19 m.a[l] — m.alk];
20 [ —1+1

21 m.ci «—estimate the current merged count of the new
longest itemset of m;

Fig. 5. Node_split operation.

itemset ef represented by m,.z7[2] is the longest itemset of m,, so that m,.c; is also updated by (1). Since a leaf-level item is
matched, the child node ms is visited subsequently but immediately returned to m, since ms.t[1] ¢ Ty. However, the counter
me.c; of the node mg is updated by (1) similarly since mg.7t[1] = m».2 and mg.7[1] € T}. Furthermore, the counter mg.cy; is also
updated by (1) as well since the item h is also a leaf-level item in the node mg. Subsequently, the node m; is visited and the
counters ms.c; and ms.cy; are updated similarly by the same reasons. The set of representative itemsets is shown in Fig. 6(d).

5.2. estDec+ method

The estDec+ method consists of four phases: parameter updating, node restructuring, itemset insertion, and frequent itemset
selection. Given a CP-tree Q,_; for a data stream D;_;, when a new transaction Ty is generated, these phases except the last
phase are performed in sequence as illustrated in Fig. 7. The frequent itemset selection phase is performed only when the up-
to-date result set of representative frequent itemsets is requested.

Phase (1) Parameter updating: The total number of transactions in the current data stream D, is updated by (1).
Phase (2) Node restructuring: This phase is performed by traversing Q,_; according to the lexicographic order of the
items in T,. While traversing, the nodes of Q,_; are restructured.
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Fig. 6. CP-tree traversal (6 = 0.5, Ssig =0, Smerge =0, d =1).

Phase (3) Itemset insertion: The itemset insertion phase is performed to insert any new significant itemset which has
not been maintained in Qx_;. Every single item should be maintained. Consequently, when T contains any new item i
that is not in Q,_; yet, a new node m for the item i € Ty is inserted and initialized as follows:

m.t[1] = i,m.nw[1] = (root), m.cy =m.c; =1

Subsequently, any insignificant item whose current support is less than S is filtered out in the transaction Tj. Let the
filtered transaction be denoted by T,. The CP-tree is traversed for the filtered transaction T, once again to find out any
new significant itemset induced by the items of T. For each significant n-itemset e = iy, is,. . .,in (n > 1) represented by a node
m of Q,, examine whether there exists any new significant (n + 1)-itemset & = e U i,,+; € Ty. First of all, check whether all of its
n-subsets of the itemset e are currently maintained in Q,_. If this condition is satisfied, the current support of the itemset e is
estimated by C(e) as described in Section 3. If C(€) > S, a new node w corresponding to the itemset & is inserted to Qx as a
child of the node m. The entries of the new node w are initialized as follows:

W.I[1] = ipy1, Wwr[l] =m.q, w.cp=w.c;=C(e)

where g denotes the item-list index of the item i, in the node m. As mentioned in Section 5.1, the newly added node may be
instantly merged into its parent node if their support difference is less than or equal to 4.

Phase (4) Frequent itemset selection: This phase retrieves all the currently frequent representative itemsets by travers-

ing the CP-tree Q.

A force-pruning operation can be performed periodically in order to prune all the nodes whose largest counts c; are less
than |D,| x S, altogether by traversing the entire CP-tree Q.

Fig. 8 illustrates how a CP-tree is constructed as a new transaction is processed. Given a data set in Fig. 8(a) and (b) shows
the CP-tree Q, after the transactions T; is processed. If a prefix tree is used to represent T;, 8 different nodes should be cre-
ated. The transaction T, only makes the two counters c;; and ¢; of the node m5 be incremented. New significant itemsets, e.g.
and efg are identified and inserted in the itemset inserting phase for Ts. The two newly inserted nodes are instantly merged
into m, as shown in Fig. 8(d). This is because the support difference between the largest count of m, and the smallest count
of ms is less than the merging gap threshold 4, i.e., (my.c; — ms.cy;)/|D3| = (2-1)/3 < 6. Likewise, mg is also merged into m,.
After T4 is processed, the support difference between the largest count of m3 and the smallest count of m; becomes less than
6 for the total number of transactions in Dy, i.e., (ms.c; — m7.cyp)/|D4| = (4-2)/4 < 6. Therefore, as shown in Fig. 2(a), the two
nodes ms3 and my shown in Fig. 8(d) are merged. Fig. 8(e) shows how a node-split operation is performed. After Ts is pro-
cessed, only the largest count ¢; of the node ms is increased. As a result, the node ms is split into the two nodes ms and
mg since the support difference of ms becomes greater than 4, i.e., (ms.c; — ms.cyy)/|Ds| = (5-2)/5 > 4.
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Input: A data stream Dy
Output: A complete set of frequent itemsets L
1 QA‘_@,|DA|‘_ 1;

2 for each new transaction T} in Dy,

// Phase 1) Parameter updating
3 |Dk|<—|Dk.1|+ l,

/| Phase 2) Node restructuring
4 for each child node m of the root of Oy

5 traverse(m, root, 1, Tj);

/I Phase 3) Itemset insertion

6 TTA —

7  for each item ie T}

8 if ie O

9 insert a node m representing 7 into Ox;

10 mall] —i; ma[l] <« <root>; m.ci < 1; m.ci < 1;
11 else if Si(@) = Sie

12 T — T ol

13 for each itemset ee Oy

14 ifd an itemset e = eU{ i} s.t.iclandi¢ eand e ( 27k —{}) and e ¢ O

15 if all the (] e |-1)-subsets of e are in O
16 estimate C(e);
17 if (C(e)/|Di]) = Sig
18 insert a node m representing e into Qy;
/* let my,.1[q] represent the itemset e */
19 ma[l]«—i; ma[l]«—m,.q; ma <« C(e); mcn — C(e);
20 if {(mp.c1 —m.cn) /|Dy| } <0 and (m.cu/ |Di]) = Sperge
21 node_merge(m,, m);

/I Phase 4) Frequent itemset selection
22 retrieve all of frequent representative itemsets in Oy;

Fig. 7. estDect+ method.

5.3. Memory usage adaptation

Although the number of significant itemsets over a data stream is continuously varied, the size of memory space for a CP-
tree is physically confined. In order to minimize the estimation errors caused by the merged-count estimation, it is very
important to keep the value of a merging gap threshold 6 as small as possible. The size of a CP-tree is inversely proportional
to the value of . If § is set to be large, more nodes in a CP-tree can be merged, so that the memory usage of the estDec+ meth-
od can be reduced. However, the larger the value of § becomes, the less accurate the result of the estDec+ method is. Given a
confined memory space, the most accurate result of the estDec+ method can be found when the confined memory space is
utilized as much as possible at all times.

In order to adaptively control the memory utilization of the estDec+ method, the value of § should be dynamically ad-
justed in the parameter update phase of the estDec+ method. As a naive approach, after a merging gap threshold ¢ is updated
from its old value 6°“ to its new value 6™, all the nodes of a CP-tree are traversed to restructure the CP-tree for the new
value of 6"". However, when the size of a CP-tree is large, this naive approach requires long restructuring time, which
can cause a severe problem for processing a data stream. Therefore, in order to reduce the restructuring time, only those
paths of a CP-tree that are traversed by the new transaction T are restructured in Phase 2. As a result, a CP-tree is restruc-
tured incrementally by this approach.

Based on the ratio of the current memory usage over a given confined memory space, the value of § is dynamically chan-
ged in the parameter updating phase after the total number of transactions in D is incremented. For a given confined mem-
ory space My, let My and M; denote the upper bound and lower bound of desired memory usage respectively. Whenever the
current memory usage Mc of a CP-tree satisfies the following conditions, the new value ™" of a merging gap threshold is
adjusted adaptively as follows:
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Fig. 8. Construction of a CP-tree (6 = 0.5, Ssig =0, Sperge =0, d=1).

if Mc >MU
if Mc <ML

&M 4y

5Old_<x (MA>Mu>ML>0)

6new — {

where o denotes the step-wise increment of 5 for each adaptation and is defined by a user. The value of « is set to be pro-
portional to that of M4 — My. As long as the current memory usage Mcbecomes greater than the upper bound My, the value of
§ is increased. As a result, more nodes can be merged and the size of the CP-tree is reduced. On the other hand, when M
becomes less than the lower bound M, the value of ¢ is decreased to enhance the accuracy of the CP-tree, so that the size
of the CP-tree is increased. By setting the lower bound M; high enough, the memory utilization of the estDec+ method is kept
high. On the other hand, by setting the upper bound My low enough, the estDec+ method can be executed stably without
causing any memory overflow.

6. Performance evaluation

In this section, the performance of the estDec+ method is analyzed using several data sets shown in Table 1. The data sets
T10.14.D1000K, T5.14.D1400K, and T15.16.D100K are generated by the same method as described in [2]. The data set WebLog is
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a real web-page access log data. The consecutive web-pages accessed by a user are considered as a semantically atomic unit
of activities, i.e., a transaction. It can provide valuable information for finding a set of web-pages that are frequently accessed
at the same time. However, if a user does not access any web-page for a certain period of time, the corresponding transaction
is considered to be terminated. The minimum, maximum, and average lengths of a transaction in the data set WebLog are 2,
30, and 5 respectively. The condition of most experiments are Sy, =0.001, Sgg=0.1 x Sy and d=1 on the data set
T10.14.D1000K unless they are specified differently. In addition, the count estimation function f,(m,j) in Section 4.2 is used.
In all experiments, the transactions of a data set are looked up one by one in sequence to simulate the environment of an
online data stream and a force-pruning operation is performed in every 1000 transactions. All experiments are performed
on a 1.8 GHz Pentium PC machine with 512 MB main memory running on Ubuntu Linux 5.1 and all programs are imple-
mented in C.

Fig. 9 shows the performance of the estDec+ method on the data set T10./4.D1000K by varying the values of § and S;erge.
The maximum memory usage of the estDec+ method is illustrated in Fig. 9(a). To measure the relative accuracy of the estDec+
method, a term average support error ASE(R3|R;) [6] is employed. When two sets of mining results R; =
{(e1,S,(€:))|S,(e:) = Smin} and Ry = {(e;,S;(€;))|S,(€;) = Smin} are given for the same data stream Dy, the average support error
ASE(R3|R;) of R, with respect to R, is defined as follows:

Table 1
Data sets.
Data sets # Of items # Of transactions (K) Avg. # of items in a transaction
T10.14.D1000K 1000 1000 10
T5.14.D1400K 1000 1400 5
T15.16.D100K 1000 100 15
WebLog 545 500 5
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Fig. 9. Performance of the estDec+ method.
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The average support error ASE(Rz|R;) is used to compare the accuracy of a result R; with that of another result R,. The term
|R;| denotes the number of itemsets in R;. As the value of ASE(R;|R;) gets smaller, the result R, is more similar to R;. Fig. 9(a)
shows ASE(Restpec+|Rapriori) for finding frequent itemsets by varying the value of a merging threshold Sperge. The terms Resepec+
and Rapriori denote the results of the estDec+ method and the Apriori algorithm [2] respectively. These two results are found
after all the transactions of a data set are processed. The reason why the Apriori algorithm is adopted as comparison target is
that it offers the entire result set with exact supports of itemsets. For the same value of S;erge, the ASE is increased but the
memory usage is decreased as the value of § is set to be higher. Similarly, for the same value of §, the ASE is increased but the
memory usage is decreased as the value of Sy, is set to be smaller. This is because more nodes in a CP-tree are merged as
the value of ¢ is increased or the value of Serg. is decreased. Fig. 9(b) shows the performance of the estDec+ method for find-
ing maximal frequent itemsets. The ASE(Resipec+|Rapriori_mrr) is much less than the ASE of finding frequent itemsets for the
same values of 6 and Sperge. This is because most of maximal frequent itemsets are more accurately monitored without
the merge-count estimation. Fig. 9(c) shows the ASE(Restpec+|Rapriori_mri) fOr the two count estimation functions fi(m,j) and
f2(m,j) in Section 4.2 IV.B. In this experiment, the value of Syrg is set to 0.001. The accuracy of f(m,j) is better than that
of fi(m,j). Fig. 9(d) shows the effect of the period of a pruning operation on the memory usage of the estDec+ method.
The values of 4 and Sperge are set to 0.001 and 0.003 respectively. In this experiment, three pruning periods f= 1000,
f=5000, and f=10,000 are compared. The pruning period f=1000 means that a forced pruning operation is performed
whenever 1000 new transactions are processed. The memory usage of the estDec+ method is decreased as the period f is
shortened. Consequently, if memory usage is the primary constraint in a mining process, a force-pruning operation should
be performed more frequently.

Fig. 10 shows the compression capability of a CP-tree in terms of memory usage as well as the number of nodes by vary-
ing the value of a merging gap threshold 4. In this experiment, the value of S;¢g is set to 0.001. Fig. 10(a) illustrates how
much the required size of a CP-tree can be reduced for the three synthetic data sets. Fig. 10(b) illustrates how many nodes
of a CP-tree can be reduced for the same conditions in Fig. 10(a). When the value of 6 becomes larger, the size of a CP-tree as
well as the number of nodes is decreased. However, notice that there is a lower bound for the size of a CP-tree since the size
of a merged node is increased proportionally to the number of merged itemsets in the node. On the contrary, the number of
nodes in a CP-tree can be flexibly reduced as shown in this figure. This indicates that the entire set of frequent itemsets can
be flexibly compressed into a concise set of representative frequent itemsets. The effects of § on the processing time of the
proposed method are illustrated in Fig. 10(c). As expected, the processing time is proportional to the value of 4.

Fig. 11 shows the effects of a merging threshold Syerge 0N the ASE(Restpec+|Rapriori)- Fig. 11(a) shows the accuracy of those
frequent itemsets that are in the upper part of a CP-tree. In other words, the accuracy of those frequent itemsets whose sup-
ports are greater than or equal to Syerge is illustrated. As the value of Sperg is decreased, the accuracy is degraded. As shown
in Fig. 11(b), the accuracy of the frequent itemsets in the lower part is much more accurate.

Fig. 12 shows how to confine the use of memory space adaptively by the estDec+ method. In this experiment, the data set
WebLog is used. The values of Sy, and Sperge are set to 0.003. Furthermore, the values of My, M;, and M, are set to 95 MB,
85 MB, and 100 MB respectively. The initial value of ¢ is set to 0 and two different values of a user-defined increment «
are used. The estDec method fails to be executed after the 1 x 10 transactions. This is because the size of its prefix tree be-
comes greater than that of the confined memory space. On the other hand, the estDec+ method can successfully execute the
data set by adjusting the value of § adaptively for the same situation. Fig. 12(a) illustrates the trace of the value of § in this
experiment. As shown in Fig. 12(b), the memory usage of the estDec+ method is kept between the upper bound My and the
lower bound M; at all times. As expected, the value of ¢ is more widely fluctuated for the larger value of «. Fig. 12(c) shows
the ASEs of the estDec+ method in finding frequent itemsets. One more interesting fact is that the ASE is also affected by the
value of o. When the value of o is set to be large, the ASE is increased.

In Fig. 13, the performance of the estDec+ method is closely compared with that of the estDec method. For the same value
of S, the memory usage of the estDec+ method is always less than that of the estDec method as shown in Fig. 13(a).
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Fig. 10. Performance of the estDec+ method varying o.
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Fig. 13(b) shows the memory requirement of the estDec+ method. The requirement is represented by the ratio of the memory
space required by the estDec+ method over the memory space required by the estDec method in order to execute the same
dataset. By varying the value of S, Fig. 13(c) and (d) shows the ASEs of the two methods. As either the value of Sperge iS
increased or the value of § is decreased, the ASE of the estDect+ method becomes closer to that of the estDec method since
fewer nodes are merged. The average processing time per transaction shown in Fig. 13(e) is inversely proportional to the
memory usage. This is because the processing time to interpret the information of itemsets represented by a node of a
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CP-tree becomes longer as either the value of ¢ is increased or the value of S;r is decreased. In Table 2, the performance of
the estDec+ method is compared with that of the estDec method on all the data sets. As the average number of items per
transaction becomes larger, the two methods need more memory space since more itemsets should be maintained. For
the same data set, the estDec+ method requires much less memory space.

In Fig. 14, the performance of the estDec+ method is shown by varying the values of § and Syerge. The values of a decay-
base b and a decay-base-life h are set to 2 and 10,000 respectively. In Fig. 14(a), the memory usages of both the decayed and
undecayed estDec+ methods are compared. For the same values of § and Spere., the memory usage of the decayed estDec+
method is always less than that of the undecayed method since fewer significant itemsets are maintained by the CP-tree
of the decayed estDec+ method. Fig. 14(b) shows the ASEs of the two methods by varying the value of S;eree. The accuracy
of the decayed method is measured relatively to the result Ryapriori Of the Apriori algorithm with the same decay mechanism.
In other words, ASE(Restpec+_decay|Raapriori) is used. The result of the decayed estDec+ method is similar to that of the undecayed
method for the same values of § and Sperge.

As shown in Fig. 14(c), for the same value of S, the memory usage of the decayed estDec+ method is always less than that
of the undecayed estDec method. Fig. 14(d) shows the maximum memory requirement of each method. By varying the value
of Ssig, Fig. 14(e) shows the ASEs of the two methods. Regardless of the value of Sy, the ASE of the decayed estDec+ method is
also similar to that of the undecayed estDec+ method for the same values of § and Sperge. In Fig. 14(f), the average processing
time per transaction is compared. For the same values of Sy, J, and Syerge, the processing time of the decayed estDec+ method
is always less than that of the undecayed estDec method. This is because more itemsets are maintained in the CP-tree of the
undecayed estDec method.

In Fig. 15, the memory usages of estDec+ and CFI-Stream [19] are compared for the datasets T5.14.D1000K and
T10.14.D1000K. In this experiment, the values of 6 and Syerge are set to 0 and 0.003 respectively. As the value of a decay base
b is decreased, the estDec+ method requires more memory space. This is because the old count of a significant itemset is de-
cayed slowly, so that more itemsets are monitored by its prefix tree. Moreover, the memory usage of the estDec+ method

Table 2
Performance comparison with various data sets.
estDec estDec+
0=0.001, Syperge = 0.003 0 =10.001, Siperge = 0.001 0 =10.01, Sperge = 0.001
Memory ASE Memory ASE Memory ASE Memory ASE
T10.14.D1000K 158.52 0.257 104.98 0.326 94.98 0.619 74.96 1.865
T5.14.D1400K 128.54 0.294 89.43 0.415 80.73 0.692 68.74 2.201
T15.16.D100K 237.81 0.237 156.29 0.382 121.95 0.589 99.37 1.805
WebLog 127.04 0.251 91.60 0.319 82.31 0.628 70.48 1.927

Memory (MB), ASE (107°).
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Fig. 14. Effects of information differentiation.
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Fig. 16. Performance of the estDec+ method for BMS-WebView-2.

decreases as the value of S,;;, is increased since the number of itemsets monitored by its prefix tree is decreased. On the other
hand, the memory usage of CFI-Stream remains the same regardless of S,,;,. This is because CFI-Stream stores not only fre-
quent closed itemsets but also infrequent closed itemsets in its DIU tree. The number of closed itemsets in a DIU tree tends
to be increased as the size of a sliding window is enlarged, so that its memory usage is increased as well.

In order to illustrate the performance of the proposed method on a real data set, the BMS-WebView-2 data set in the KDD-
CUP 2000 competition is experimented in Fig. 16. The data set contains several months of clickstream data in two e-com-
merce web sites. Each transaction is a web session viewing various product-related pages. The total number of transactions,
the maximum length and average length of a transaction are 77,512, 161 and 5 respectively. Fig. 16 shows the performance
of the proposed method by varying the value of the merging gap threshold 6. The values of S, and S are set to 0.001% and
30% respectively. As either the value of ¢ is increased or the value of Syerg. is decreased, the number of merged nodes in a CP-
tree is increased. Consequently the memory usage is decreased and the processing time per transaction is slightly increased.
This is because the processing of a merged node consumes much more time.

7. Concluding remarks

The up-to-date analysis result of an online data stream should be traced in real-time and available at any moment. For
this purpose, the current counts of all significant itemsets are kept in main memory by the estDec method. However, for a
given value of S,,;;;,, the total number of significant itemsets can be continuously varied over time without any upper bound.
Due to this reason, it is impossible to guarantee that all of them are maintained in a confined memory space at all times. In
order to solve this problem, this paper introduces a CP-tree that can restructure itself adaptively. Whenever the size of a
CP-tree becomes too large, it is dynamically adjusted to fit into the confined memory space by sacrificing its accuracy. Based
on this characteristic of a CP-tree, the proposed estDec+ method can provide a way sustaining the process for tracing frequent
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itemsets in case a confined memory space is overflowed. Furthermore, given an online data stream, a CP-tree can instantly
compress the entire set of frequent itemsets into a concise set of representative frequent itemsets. Unlike CFI's and MFI’s, the
compression ratio can be controlled flexibly by the value of a merging gap threshold é. Furthermore, the support of every
non-representative itemset can be estimated as well.
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