Finding Sporadic Rules Using Apriori-Inverse

Yun Sing Koh and Nathan Rountree

Department of Computer Science, University of Otago, New Zealand
{ykoh, rountree}@cs.otago.ac.nz

Abstract. We define sporadic rules as those with low support but high
confidence: for example, a rare association of two symptoms indicating a
rare disease. To find such rules using the well-known Apriori algorithm,
minimum support has to be set very low, producing a large number of
trivial frequent itemsets. We propose “Apriori-Inverse”, a method of dis-
covering sporadic rules by ignoring all candidate itemsets above a maxi-
mum support threshold. We define two classes of sporadic rule: perfectly
sporadic rules (those that consist only of items falling below maximum
support) and imperfectly sporadic rules (those that may contain items
over the maximum support threshold). We show that Apriori-Inverse
finds all perfectly sporadic rules much more quickly than Apriori. We
also propose extensions to Apriori-Inverse to allow us to find some (but
not necessarily all) imperfectly sporadic rules.

1 Introduction

Association rule mining has become one of the most popular data exploration
techniques, allowing users to generate unexpected rules from “market basket”
data. Proposed by Agrawal et al. [1, 2], association rule mining discovers all rules
in the data that satisfy a user-specified minimum support (minsup) and mini-
mum confidence (minconf). Minsup represents the minimum amount of evidence
(that is, number of transactions) we require to consider a rule valid, and minconf
specifies how strong the implication of a rule must be to be considered valuable.

The following is a formal statement of association rule mining for transac-
tional databases. Let I = {i1,42,...,im} be a set of items and D be a set of
transactions, where each transaction 7" is a set of items such that 7' C I. An
association rule is an implication of the form X — Y, where X C I, Y C I,
and X NY = (. X is referred to as the antecedent of the rule, and Y as the
consequent. The rule X — Y holds in the transaction set D with confidence c¢%
if ¢% of transactions in D that contain X also contain Y. The rule X — Y
has support of s% in the transaction set D, if s% of transactions in D contain
X UY [2]. One measure of the predictive strength of a rule X — Y is its lift
value, calculated as confidence(X — Y') / support(Y'). Lift indicates the degree
to which Y is more likely to be present when X is present; if lift is less than 1.0,
Y is less likely to be present with X than Y’s baseline frequency in D. The task
of generating association rules is that of generating all rules that meet minimum

T.B. Ho, D. Cheung, and H. Liu. (Eds.): PAKDD 2005, LNAI 3518, pp. 97-1L06] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

98 Y.S. Koh and N. Rountree

support and minimum confidence, and perhaps meet further requirements such
as having lift greater than 1.0.

The Apriori algorithm and its variations are used widely as association rule
mining methods. However, several authors have pointed out that the Apriori
algorithm, by definition, hinders us from finding rules with low support and
high confidence [3,4, 5]. Apriori generates frequent itemsets (i.e. those that will
produce rules with support higher than minsup) by joining the frequent itemsets
of the previous pass and pruning those subsets that have a support lower than
minsup [2]. Hence, to generate rules that have low support, minsup must be
set very low, drastically increasing the running time of the algorithm. This is
known as the rare item problem. It means that, using the Apriori algorithm, we
are unlikely to generate rules that may indicate events of potentially dramatic
consequence. For example, we might miss out rules that indicate the symptoms of
arare but fatal disease due to the frequency of incidences not reaching the minsup
threshold. Some previous solutions to this problem are reviewed in Section 2.

The aim of our research is to develop a technique to mine low support but
high confidence rules effectively. We call such rules “sporadic” because they
represent rare cases that are scattered sporadically through the database but
with high confidence of occurring together. In order to find sporadic rules with
Apriori, we have to set a very low minsup threshold, drastically increasing the
algorithm’s running time. In this paper, we adopt an Apriori-Inverse approach:
we propose an algorithm to capture rules using a mazimum support threshold.
First, we define the notion of a perfectly sporadic rule, where the itemset forming
the rule consists only of items that are all below the maximum support threshold.
To enable us to find imperfectly sporadic rules, we allow maximum support to
be increased slightly to include itemsets with items above maximum support.
Finally, we demonstrate that Apriori-Inverse lets us find sporadic rules more
quickly than using the Apriori algorithm.

2 Related Work

The most well-known method for generating association rules is the Apriori
algorithm [2]. It consists of two phases: the first finds itemsets that satisfy a user-
specified minimum support threshold, and the second generates association rules
that satisfy a user-specified minimum confidence threshold from these “frequent”
itemsets. The algorithm generates all rules that satisfy the two thresholds and
avoids generating itemsets that do not meet minimum support, even though
there may be rules with low support that have high confidence. Thus, unless
minimum support is set very low, sporadic rules will never be generated. There
are several proposals for solving this problem. We shall discuss the MSApriori
(Multiple Supports Apriori), RSAA (Relative Support Apriori Algorithm) and
Min-Hashing approaches.

Liu et al. [4] note that some individual items can have such low support that
they cannot contribute to rules generated by Apriori, even though they may
participate in rules that have very high confidence. They overcome this problem

Finding Sporadic Rules Using Apriori-Inverse 99

with a technique whereby each item in the database can have a minimum item
support (MIS) given by the user. By providing a different MIS for different
items, a higher minimum support is tolerated for rules that involve frequent
items and lower minimum support for rules that involve less frequent items. The
MIS for each data item i is generated by first specifying LS (the lowest allowable
minimum support), and a value 3,0 < 8 < 1.0. MIS() is then set according to
the following formula:

M(i)=pxf (O<pB<1)
MIS = M(4),if(M (i) > LS)
= LS, otherwise

The advantage of the MSApriori algorithm is that it has the capability of
finding some rare-itemset rules. However, the actual criterion of discovery is
determined by the user’s value of § rather than the frequency of each data item.
Thus Yun et al. [5] proposed the RSAA algorithm to generate rules in which
significant rare itemsets take part, without any “magic numbers” specified by
the user. This technique uses relative support: for any dataset, and with the
support of item i represented as sup(i), relative support (RSup) is defined as:

RSup{iy,ia,...,ix} = max(sup(ii,ia,...,ix)/sup(ii),
sup(iy,io, - .., i) /sup(iz),

sup(iv, in, ..., i) /sup(in))

Thus, this algorithm increases the support threshold for items that have low
frequency and decreases the support threshold for items that have high frequency.
Like Apriori and MSApriori, RSAA is exhaustive in its generation of rules, so
it spends time looking for rules which are not sporadic (i.e. rules with high
support and high confidence). If the minimum-allowable relative support value
is set close to zero, RSAA takes a similar amount of time to that taken by Apriori
to generate low-support rules in amongst the high-support rules.

Variations on Min-Hashing techniques were introduced by Cohen [3] to mine
significant rules without any constraint on support. Transactions are stored as
a 0/1 matrix with as many columns as there are unique items. Rather than
searching for pairs of columns that would have high support or high confidence,
Cohen et al. search for columns that have high similarity, where similarity is
defined as the fraction of rows that have a 1 in both columns when they have a
1 in either column. Although this is easy to do by brute-force when the matrix
fits into main memory, it is time-consuming when the matrix is disk-resident.
Their solution is to compute a hashing signature for each column of the matrix
in such a way that the probability that two columns have the same signature is
proportional to their similarity. After signatures are calculated, candidate pairs
are generated, and then finally checked against the original matrix to ensure
that they do indeed have strong similarity.

It should be noted that, like MSApriori and RSAA above, the hashing solu-
tion will produce many rules that have high support and high confidence, since

100 Y.S. Koh and N. Rountree

only a minimum acceptable similarity is specified. It is not clear that the method
will extend to rules that contain more than two or three items, since " C,. checks
for similarity must be done where m is the number of unique items in the set of
transactions, and r is the number of items that might appear in any one rule.
Removing the support requirement entirely is an elegant solution, but it comes
at a high cost of space: for n transactions containing an average of r items over
m possible items, the matrix will require n x m bits, whereas the primary data
structure for Apriori-based algorithms will require n x logy, m x r bits. For a
typical application of n = 10, m = 10° and r = 102, this is 10'® bits versus
approximately 2 x 102 bits.

For our application, we are interested in generating only sporadic rules, with-
out having to wade through a lot of rules that have high support (and are there-
fore not sporadic), without having to generate any data structure that would
not normally be generated in an algorithm like Apriori, and without generating
a large number of trivial rules (e.g. those rules of the form A — B where the
support of B is very high and the support of A rather low). In the next section,
we propose a framework for finding certain types of sporadic rules.

3 Proposal of Apriori-Inverse

In the previous section, the techniques discussed generate all rules that have high
confidence and support. Using them to find sporadic rules would require setting
a low minsup. As a result, the number of rules generated can be enormous,
with only a small number being significant sporadic rules. In addition, not all
rules generated with these constraints are interesting. Some of the rules may
correspond to prior knowledge or expectation, refer to uninteresting attributes,
or present redundant information [6].

3.1 Types of Sporadic Rule

We refer to all rules that fall below a user-defined mazimum support level (max-
sup) but above a user-defined minimum confidence level (minconf) as sporadic
rules. We further split sporadic rules into those that are perfectly sporadic (have
no subsets above maxsup) and those that are imperfectly sporadic. We then
demonstrate an algorithm, which we call Apriori-Inverse, that finds all perfectly
sporadic rules.

Definition:

A — B is perfectly sporadic for maxsup s and minconf c¢ iff

confidence(A — B) > ¢, and
Vo :x € (AUB), support(z) < s

That is, support must be under maxsup and confidence at least minconf,
and no member of the set of AU B may have support above maxsup. Perfectly
sporadic rules thus consist of antecedents and consequents that occur rarely (that

Finding Sporadic Rules Using Apriori-Inverse 101

is, less often than maxsup) but, when they do occur, tend to occur together (with
at least minconf confidence).

While this is a useful definition of a particularly interesting type of rule, it
certainly does not cover all cases of rules that have support lower than max-
sup. For instance, suppose we had an itemset A U B with support(A) = 12%,
support(B) = 16%, and support(A U B) = 12%, with maxsup = 12% and min-
conf = 75%. Both A — B (confidence = 100%) and B — A (confidence = 75%)
are sporadic in that they have low support and high confidence, but neither are
perfectly sporadic, due to B’s support being too high. Thus, we define imperfectly
sporadic rules as the following:

Definition:

A — B is imperfectly sporadic for maxsup s and minconf ¢ iff

confidence(A — B) > ¢, and
support(AU B) <'s, and
dx:x € (AUB), support(z) > s

That is, a rule is imperfectly sporadic if it meets the requirements of maxsup
and minconf but has a subset of its constituent itemsets that has support above
maxsup. Clearly, some imperfectly sporadic rules could be completely trivial
or uninteresting: for instance, when the antecedent is rare but the consequent
has support of 100%. What we should like is a technique that finds all perfectly
sporadic rules and some of the imperfectly sporadic rules that are nearly perfect.

3.2 The Apriori-Inverse Algorithm

In this section, we introduce the Apriori-Inverse algorithm. Like Apriori, this
algorithm is based on a level-wise search. On the first pass through the database,
an inverted index is built using the unique items as keys and the transaction IDs
as data. At this point, the support of each unique item (the 1-itemsets) in the
database is available as the length of each data chain. To generate k-itemsets
under maxsup, the (k—1)-itemsets are extended in precisely the same manner as
Apriori to generate candidate k-itemsets. That is, a (k — 1)-itemset iy is turned
into a k-itemset by finding another (k — 1)-itemset i that has a matching prefix
of size (k — 2), and attaching the last item of i to i;. For example, the 3-
itemsets {1, 3,4} and {1, 3,6} can be extended to form the 4-itemset {1, 3,4, 6},
but {1, 3,4} and {1,2,5} will not produce a 4-itemset due to their prefixes not
matching right up until the last item.

These candidates are then checked against the inverted index to ensure they
at least meet a minimum absolute support requirement (say, at least 5 instances)
and are pruned if they do not (the length of the intersection of a data chain
in the inverted index provides support for a k-itemset with k larger than 1).
The process continues until no candidate itemsets can be generated, and then
association rules are formed in the usual way.

It should be clear that Apriori-Inverse finds all perfectly sporadic rules, since
we have simply inverted the downward-closure principle of the Apriori algorithm;

102 Y.S. Koh and N. Rountree

rather than all subsets of rules being over minsup, all subsets are under max-
sup. Since making a candidate itemset longer cannot increase its support, all
extensions are viable except those that fall under our minimum absolute sup-
port requirement. Those exceptions are pruned out, and are not used to extend
itemsets in the next round.

Algorithm Apriori-Inverse
Input: Transaction Database D), maxsup value
Output: Sporadic Itemsets

(1) Generate inverted index I of (item, [TID-list]) from D.
(2) Generate sporadic itemsets of size 1:
S =10
for each item ¢ € I do begin
if count(l,#)/|D| < maximum support and
count(/,7) > minimum absolute support
then S; =51 U14
end
(3) Find Sk, the set of sporadic k-itemsets where k > 2:
for (k=2; Spg_1 #0; k++) do begin
S =10
for each i € {itemsets that are extns of S;_1} do begin
if all subsets of i of size k—1¢€ S,
and count(/,7) > minimum absolute support
then S, = S, U1
end
end
return (J, Sk

Apriori-Inverse does not find any imperfectly sporadic rules, because it never
considers itemsets that have support above maxsup; therefore, no subset of any
itemset that it generates can have support above maxsup. However, it can be
extended easily to find imperfectly sporadic rules that are nearly perfect: for
instance, by setting maxsup; to maxsup/minconf where maxsup; is maximum
support for imperfectly sporadic rules and maxsup is maximum support for
reported sporadic rules.

3.3 The “Less Rare Itemset” Problem

It is, of course, true that rare itemsets may be formed by the combination of less
rare itemsets. For instance, itemset A may have support 11%, itemset B support
11%, but itemset A U B only 9%, making A U B sporadic for a maxsup of 10%
and A — B a valid imperfectly sporadic rule for minconf of 80%. However,
Apriori-Inverse will not generate this rule if maxsup is set to 10%, for A — B is
an imperfectly sporadic rule rather than a perfectly sporadic one.

It would be nice to be able to generate imperfectly sporadic rules as well. We
note, however, that not all imperfectly sporadic rules are necessarily interesting:

Finding Sporadic Rules Using Apriori-Inverse 103

in fact, many are not. One definition of rules that are trivial is proposed by
Webb and Zhang [7], and a similar definition for those that are redundant given
by Liu, Shu, and Ma [8]. Consider an association rule A — C with support
10% and confidence 90%. It is possible that we may also generate AU B — C,
with support 9% and confidence 91%: however, adding B to the left hand side
has not bought us very much, and the shorter rule would be preferred. Another
situation in which trivial rules may be produced is where a very common item is
added to the consequent; it is possible that A — C' has high confidence because
the support of C is close to 100% (although in this case, it would be noticeable
due to having a lift value close to 1.0). Therefore, we do not necessarily wish to
generate all imperfectly sporadic rules.

We propose three different modifications of Apriori-Inverse, all of which pro-
duce rules that are not-too-far from being perfect. We refer to the modifications
as “Fixed Threshold”, “Adaptive Threshold”, and “Hill Climbing”. In general,
we adjust the maxsup threshold to enable us to find at least some imperfectly
sporadic rules: specifically, those that contain subsets that have support just a
little higher than maxsup.

Fixed Threshold: In this modification, we propose adjusting the maximum
support threshold before running Apriori-Inverse to enable us to find more rare
itemsets. The maximum support threshold is adjusted by taking the proportion
of the maximum support threshold and the minconf threshold. For example,
given a minsup threshold of 0.20 and a minconf of 0.80, the new minsup thresh-
old would be set to 0.2/0.8 = 0.25. However, during the generation of rules,
we only consider itemsets that satisfy the original maximum support threshold.
Rules that have supports which are higher than the original maxsup are not
generated.

Adaptive Threshold: In this modification, we propose changing the maximum
support by a small increment 7 (typically 0.001) at each value of k during the
generation of sporadic k-itemsets. The threshold is increased until the number
of itemsets in the current generation does not change when compared to the
previous generation. In general, we search for a plateau where the number of
itemsets found does not change.

Hill Climbing: Hill Climbing is an extension of Adaptive Threshold; it adjusts
the maximum support threshold by adding an increment that is the product of a
rate-variable n (like the learning constant for a gradient descent algorithm; but
typically 0.01) and the gradient of the graph of the number of itemsets generated
so far. Like the previous method we modify the threshold until the number of
itemsets reaches a plateau. Using this method in a large dataset the plateau is
likely to be found sooner, since the increment used becomes greater when the
gradient is steep and smaller when the gradient becomes less steep.

104 Y.S. Koh and N. Rountree

4 Results and Discussion

In this section, we compare the performance of the standard Apriori algorithm
program with the proposed Apriori-Inverse. We also discuss the results of three
the different variation of Apriori-Inverse. Testing of the algorithms was carried
out on six different datasets from the UCI Machine Learning Repository [9].
Table 1 displays results from implementations Apriori-Inverse and the Apriori
algorithms. Each row of the table represents an attempt to find perfectly spo-
radic rules—with maxsup 0.25, minconf 0.75, and lift greater than 1.0—from the
database named in the left-most column. For Apriori-Inverse, this just involves
setting maxsup and minconf values. For the Apriori algorithm, this involves set-
ting minsup to zero (conceptually; in reality, the algorithm has been adjusted
to use a minimum absolute support of 5), generating all rules, then pruning out
those that fall above maxsup. In each case, this final pruning step is not counted
in the total time taken. In the first three cases, Apriori was able to generate all
frequent itemsets with maxsup greater than 0.0, but for the final three it was not
clear that it would finish in reasonable time. To give an indication of the amount
of work Apriori is doing to find low-support rules, we lowered its minsup thresh-
old until it began to take longer than 10,000 seconds to process each data set.

Table 1. Comparison of results of Apriori-Inverse and Apriori

Dataset Apriori-Inverse Apriori
(maxsup=0.25,minconf=0.75) (minconf=0.75)
Rules |Passes| Average | Time | Min | Rules with Rules |Passes| Average | Time
Sporadic| (sec) | Sup | Min Sup Frequent| (sec)
Itemsets < 0.25 Itemsets
TeachingEval. 11 3 12| 0.01 0 281 294 4 68 0.32
Bridges 9 3 8| 0.01 0 24086 24436 9 405 6.44
Zoo 79 4 11| 0.03 0| 40776255| 42535557 17| 34504| 8380.64
Flag 2456 7 128| 1.32| 0.11| 16427058| 16944174 14| 57765|11560.77
Mushroom 1142015 13 3279|225.20| 0.15| 28709481| 31894347 16| 21654(11489.32
Soybean-Large | 37859 10 307| 6.51| 0.43 0/101264259 17| 46310|11550.22

Using Apriori, we were able to find all rules below a support of 0.25 for
the Teaching Assistant Evaluation dataset, Bridges dataset, and Zoo dataset.
However, using Apriori on the Flag dataset and Mushroom dataset, we could only
push the minimum support down to 0.11 and 0.15 respectively, before hitting the
time constraint of 10 thousand seconds. Compare this to Apriori-Inverse, finding
all perfectly sporadic rules in just a few minutes for the Mushroom database. For
the Soybean-Large dataset, no rules below a support of 43% could be produced
in under 10 thousand seconds.

We conclude that, while Apriori is fine for discovering sporadic rules in small
databases such as the first three in Table 1, a method such as Apriori-Inverse
is required if sporadic rules under a certain maximum support are to be found

Finding Sporadic Rules Using Apriori-Inverse 105

in larger or higher-dimensional datasets. We also note that Apriori is finding
a much larger number of rules under maxsup than Apriori-Inverse; this is, of
course, due to Apriori finding all of the imperfectly sporadic rules as well as the
perfectly sporadic rules. To take the Teaching Evaluation Dataset as an example,
Apriori finds

{course=11} — {instructor=7}
{course=11, nativeenglish=2} — {instructor=7}

{course=11} — {instructor=7,nativeenglish=2}

whereas, from this particular grouping, Apriori-Inverse only finds
{course=11} — {instructor=7}

However, since the second and third rules found by Apriori have the same
support, lift, and confidence values as the first, they both count as trivial ac-
cording to the definitions given in [8] and [7]. Apriori-Inverse has ignored them
(indeed, has never spent any time trying to generate them) because they are
imperfect.

Table 2 shows a comparison of the methods used to allow Apriori-Inverse
to find some imperfectly sporadic rules. The Fixed Threshold method finds the
largest number of sporadic rules, because it is “overshooting” the maxsup thresh-
olds determined by the two adaptive techniques, and therefore letting more item-
sets into the candidate group each time. As a result, it requires fewer passes of
the inverted index, but each pass takes a bit longer, resulting in longer running
times. However, the times for the Fixed Threshold version seem so reasonable
that we are not inclined to say that the adaptive techniques give any signifi-
cant advantage. Determining a principled way to generate imperfectly sporadic
rules—and determining a good place to stop generating then—remains an open
research question. Nevertheless, we note that the time taken to generate all of
the imperfectly sporadic rules by all three methods remains very much smaller
than the time taken to find them by techniques that require a minimum support
constraint.

Table 2. Comparison of results of extensions to Apriori-Inverse

Dataset Fixed Threshold Adaptive Threshold (n = 0.001) | Hill Climbing (n = 0.01)

Rules |Passes| Avg | Time | Rules |Passes| Avg Time Rules |Passes| Avg | Time
Spdc| (sec) Spdc| (sec) Spdc| (sec)

Sets Sets Sets
TeachingEval. 46 4 22| 0.01 11 6 12 0.03 11 6 12(0.04
Bridges 104 5| 14| 0.03 30 11 8 0.04 30 11 8| 0.04
Zoo 203 5/ 15| 0.03 203 19| 13 0.14 203 19| 13| 0.12
Flag 12979 9| 268| 4.86 5722 31| 165 9.49| 13021 42| 228| 19.81
Mushroom 1368821 13| 7156|791.82|1142015 26| 3279 445.95/1142015 26| 3279(474.88
Soybean-Large {1341135 11| 801| 31.47| 95375 52| 425 63.09| 56286 30| 352| 27.38

106 Y.S. Koh and N. Rountree

5 Conclusion and Future Work

Existing association mining algorithms produce all rules with support greater
than a given threshold. But, to discover rare itemsets and sporadic rules, we
should be more concerned with infrequent items. This paper proposed a more
efficient algorithm, Apriori-Inverse, which enables us to find perfectly sporadic
rules without generating all the unnecessarily frequent items. We also defined the
notion of imperfectly sporadic rules, and proposed three methods of finding them
using Apriori-Inverse: Fixed Threshold, Adaptive Threshold, and Hill Climbing.

With respect to finding imperfectly sporadic rules, our proposed extensions to
Apriori-Inverse are—at best—heuristic. More importantly, there are some types
of imperfectly sporadic rule that our methods will not find at all. Our future
work will involve ways of discovering rules such as A U B — C where neither
A nor B is rare, but their association is, and C' appears with A U B with high
confidence. This is the case of a rare association of common events (A and B)
giving rise to a rare event (C). It is a particularly interesting form of imperfectly
sporadic rule, especially in the fields of medicine (rare diseases) and of process
control (disaster identification and avoidance).

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In Buneman, P., Jajodia, S., eds.: Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data. (1993) 207-216

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,
J.B., Jarke, M., Zaniolo, C., eds.: Proceedings of the 20th International Conference
on Very Large Data Bases, VLDB’94. (1994) 487-499

3. Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman,
J.D., Yang, C.: Finding interesting association rules without support pruning. IEEE
Transactions on Knowledge and Data Engineering 13 (2001) 64-78

4. Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum supports.
In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge
Disconvery and Data Mining. (1999) 337-341

5. Yun, H., Ha, D., Hwang, B., Ryu, K.H.: Mining association rules on significant
rare data using relative support. The Journal of Systems and Software 67 (2003)
181-191

6. Toivonen, H., Klemettinen, M., Ronkainen, P., Hatonen, K., Mannila, H.: Pruning
and grouping of discovered association rules. In: ECML-95 Workshop on Statistics,
Machine Learning, and Knowledge Discovery in Databases. (1995) 47-52

7. Webb, G.I., Zhang, S.: Removing trivial associations in association rule discovery. In:
Abstracts Published in the Proceedings of the First International NAISO Congress
on Autonomous Intelligent Systems (ICAIS 2002). (2002)

8. Liu, B., Hsu, W.,; Ma, Y.: Pruning and summarizing the discovered associations.
In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. (1999) 125-134

9. Blake, C., Merz, C.: UCI repository of machine learning databases. http:
//www.ics.uci.edu/~mlearn/MLRepository.html, University of California, Irvine,
Department of Information and Computer Sciences (1998)

	Introduction
	Conclusion and Future Work
	Related Work
	Proposal of Apriori-Inverse
	Types of Sporadic Rule
	The Apriori-Inverse Algorithm
	The “Less Rare Itemset” Problem

	Results and Discussion
	References

