Expert Systems with Applications 42 (2015) 5754-5778

Contents lists available at ScienceDirect :pe"
Systems
Expert Systems with Applications et

journal homepage: www.elsevier.com/locate/eswa

An efficient approach for mining association rules from high utility

itemsets

@ CrossMark

Jayakrushna Sahoo?, Ashok Kumar Das”, A. Goswami **

2 Department of Mathematics, Indian Institute of Technology, Kharagpur 721 302, India
b Center for Security, Theory and Algorithmic Research, International Institute of Information Technology, Hyderabad 500 032, India

ARTICLE INFO

Article history:
Available online 11 March 2015

Keywords:

Data mining

High utility itemset mining
Association rule mining
Condensed representations
Non-redundant association rules

ABSTRACT

Traditional association rule mining based on the support-confidence framework provides the objective
measure of the rules that are of interest to users. However, it does not reflect the semantic measure
among the items. The semantic measure of an itemset is characterized with utility values that are typi-
cally associated with transaction items, where a user will be interested to an itemset only if it satisfies a
given utility constraint. In this paper, we first define the problem of finding association rules using utility-
confidence framework, which is a generalization of the amount-confidence measure. Using this semantic
concept of rules, we then propose a compressed representation for association rules having minimal
antecedent and maximal consequent. This representation is generated with the help of high utility closed
itemsets (HUCI) and their generators. We propose the algorithms to generate the utility based non-re-
dundant association rules and methods for reconstructing all association rules. Furthermore, we describe
the algorithms which generate high utility itemsets (HUI) and high utility closed itemsets with their
generators. These proposed algorithms are implemented using both synthetic and real datasets. The
results demonstrate better efficiency and effectiveness of the proposed HUCI-Miner algorithm compared
to other well-known existing algorithms. In addition, the experimental results show better quality in the

compressed representation of the entire rule set under the considered framework.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An expert system is a computer system, which emulates, or acts
in all respects, with the decision-making capabilities of a human
expert (Mishra, Das, & Mukhopadhyay, 2014). In general, there
are three components associated with an expert system, which
are (1) knowledge base, (2) inference engine, and (3) user interface
(Huynh-Thi-Le, Le, Vo, & Le, 2015). The central of expert systems is
the knowledge base as it has the problem solving knowledge of the
particular application (Sadik, 2008). Alonso, Martinez, Perez, and
Valente (2012) pointed out the cooperation between expert knowl-
edge and data mining discovered knowledge. They also found that
the expert knowledge and discovered knowledge are two powerful
tools that can be combined together. Data mining techniques are
useful in order to discover efficiently the hidden interesting and
useful information from large databases, where the implication
of interesting and useful information depends on the problem
formulation and the application domain. An important data mining

* Corresponding author. Tel.: +91 3222 283650; fax: +91 3222 255303.
E-mail addresses: jayakrushnas@gmail.com (J. Sahoo), iitkgp.akdas@gmail.com,
ashok.das@iiit.ac.in (A.K. Das), goswami@maths.iitkgp.ernet.in (A. Goswami).

http://dx.doi.org/10.1016/j.eswa.2015.02.051
0957-4174/© 2015 Elsevier Ltd. All rights reserved.

task that has received considerable research attention in recent
years is the discovery of association rules from the transactional
databases (Agrawal & Srikant, 1994; Han, Pei, & Yin, 2000; Park,
Chen, & Yu, 1995; Webb, 2006). The traditional association rules
mining (ARM) techniques depend on support confidence frame-
work in which all items are given same importance by considering
the presence of an item within a transaction, but not the profit of
item in that transaction. The goal of such techniques is to extract
all the frequent itemsets, where the itemsets having the given
minimum support such that the support is the percentage of trans-
actions containing the itemset, which generate all the valid
association rules A — B from frequent itemset A UB whose confi-
dence has at least the user defined confidence such that the confi-
dence is the percentage of transactions containing itemset B among
the set of transactions containing A. In other words, given a subset
of the items in an itemset, we need to predict the probability of the
purchase of the remaining items in a transactional database. In
general, from confidence of a rule generated from an itemset, we
can know the percentage of number transactions of the items,
which is sold together with remaining items of that itemset.
However, we may not know the percentage of its profit obtained.
Therefore, if we can know the percentage of the items’ profit, we

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5755

are in a position to find out a rule, which is more valuable than
support and confidence, and as a result, it can allow us to permit
with more accurate financial analysis and decisions.
Nevertheless, this support-confidence framework does not provide
the semantic measure of the rule but only it provides the statistical
measure as the relative importance of items is not considered.
However, such measure is not an adequate measure to the decision
maker as the itemset cannot be measured in terms of stock, cost or
profit, called utility. Consider a sales manager who aims to pro-
mote itemsets to increase the item selling. The following example
is evident that a support-confidence based framework for associa-
tion rule mining may mislead the manager in the decision making
for determining the financial implications of an itemset.

Example 1. Consider the transaction database D shown in Table 1
that includes nine transactions t; through tg and eight items A
through H. The numbers in the transaction database, which are
bracketed, indicate the sales quantity for each item. Table 2
provides the unit profit for each item. The support and utility of the
itemset DEF can be calculated using Tables 1 and 2 as 4 and 36,
respectively, as the transactions containing DEF are t, t3, t4 and t;.
Since t; includes one D, four Es and five Fs, t3 includes one D, five Es
and one F, t4 contains one D, two Es and six Fs, and t; contains one
D, one E and four Fs, a total of four Ds, 12 Es and 16 Fs appear in
transactions containing the itemset DEF. Using Table 2, the profit of
items D, E and F are respectively 2,1 and 1. Thus, the profit of the
itemset DEF is 36. Using the standard confidence (Agrawal &
Srikant, 1994), the confidence of the rule D — EF is 4/5 = 80% as
only 5 transactions containing in the item D, which are t,, t5, t4,t7
and tg. Again, the confidence of the rule F — DE is 4/6 = 67%. The
total utility of items D and F are then 22 and 20, respectively. The
contribution of items D and F towards to the total profit of itemset
DEF are 8 and 16, respectively. Therefore, if we consider the
minimum confidence as 70%, the rule F — DE is an invalid rule, but
the contribution of F from its utility is more than the contribution
of item D towards to the total profit of itemset DEF. This clearly
indicates that the selling of itemset DEF contributes a great portion
to the total utility of F to 16 out of 20, and hence, the rule, D — EF,
having confidence above the user defined threshold, may mislead
to the manager towards the value based decision making.

The support-confidence framework for association rule mining
approach explained in Example 1 does not provide any additional
knowledge to the manager except the measures that reflects the
statistical correlation among items. In addition, it does not reflect
their semantic implication towards the mining knowledge. In other
words, the support-confidence model may not measure the useful-
ness of a rule in accordance with a user’s objective (for example,
profit).

In order to address the above shortcoming of support confi-
dence framework, several researchers have focused on weighted
association rule (Cai, Fu, Cheng, & Kwong, 1998; Ramkumar,
Ramkumar, & Shalom, 1998; Tao, Murtagh, & Farid, 2003; Wang,

Table 1
An example transaction database D.
Tiq Transaction
t A(4),C(1),E(6),F(2)
t D(1),E(4),F(5)
t3 B(4),D(1),E(5).F(1)
ta D(1),E(2),F(6)
ts A(3),C(1),E(1)
te B(1),F(2),H(1)
ty D(1),E(1),F(4),G(1),H(1)
tg D(7),E(3)
to G(10)

Table 2

Utility table.
Item Utility
A 3
B 4
(@ 5
D 2
E 1
F 1
G 2
H 1

Yang, & Yu, 2000). In such framework, the weights of items (the
importance of items to the user) are considered and it also varies
differently in application domains. However, this framework has
two pitfalls. Firstly, these schemes still consider the support of
an itemset to measure their importance and secondly, these mod-
els do not employ the quantities or prices of items purchased.
Considering both quantities of items in a transaction and weights
of items Carter, Hamilton, and Cercone (1997) proposed a share-
confidence model to discover association rule among numerical
attributes which are associated with items in a transaction.
Carter et al.’s share-confidence model deals with the amount-share
that is a fraction of total weight but not the utility value, such as
the net profit, total cost (Geng & Hamilton, 2006). As a result, this
model does not accomplish to conventional utility mining (Lin,
Hong, & Lu, 2011; Liu, Liao, & Choudhary, 2005; Yao, Hamilton, &
Butz, 2004) in which the requirements of decision makers are used
to extract the itemsets with high utility, the utility of itemset is no
less than the user specified minimum utility threshold, which are
composed of weights and purchased quantities. The weight repre-
sents the importance of distinct items known as external utility, and
the purchased quantity in each transaction is known as internal
utility of the items. The product of external utility with sum total
of internal utility of an item is called utility of the item. As utility
does not satisfy downward closure property (Liu et al., 2005), most
of the methods proposed in the literature are applied to find the
candidate high utility itemsets first and then to identify actual high
utility itemsets by an additional database scan. Some researchers
proposed methods to find high utility itemsets without candidate
generations (Fournier-Viger, Wu, Zida, & Tseng, 2014b; Liu & Qu,
2012) to avoid additional database scan. However, the discovering
process of high utility itemsets takes more execution time and
remains a challenge to formulate more effective algorithms. In this
paper, we proposed an effective algorithm which is more than two
times faster than the state-of-the-art algorithm for discovering
high utility itemsets.

1.1. Motivating examples of applications for utility-confidence
framework

The share-confidence (we call it as the utility-confidence)
model can be applied in various applications, including online pur-
chases in e-commerce (Shie, Yu, & Tseng, 2013), retail sales (Barber
& Hamilton, 2003; Hilderman, Hamiliton, Carter, & Cercone, 1998),
cross-selling (Lee, Park, & Moon, 2013) and profit mining (Chen,
Zhao, & Yao, 2007; Wang, Zhou, & Han, 2002). Note that the util-
ity-confidence framework is also applicable to the market share
rule (Zhang, Padmanabhan, & Tuzhilin, 2004), where the profit is
obtained transaction-wise, but not item-wise. In this paper, we
provide the examples, which are from the retail transaction data-
sets. To increase the profit, the manager decides to reward the cus-
tomers who purchased more than some value and grant a discount
on the purchase, or the manager offering a shipping discount may
encourage buyer to buy additional items by which shipping is free

5756 J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

or discounted. For example, if a customer purchases itemset DEF,
the shipping cost of F is free or discounted. In other way, if a cus-
tomer purchases itemset DE, and if he also purchase itemset F, he
will get some discount on item F.

In e-commerce retail business, not only the frequencies but also
the profits of the products are crucial factors to analyze total prof-
its of each item, decisions on product promotion, offering discount
and shipment free decision. Consider a manager who handles a
transaction set sketched by Table 1. The manager’s main aim is
to boost the revenue obtained from an itemset from a value at least
equal to 50% to a value at least equal to 60% of the total profits of
the product. To further increase the average sales the manager con-
siders to offer some incentives so that customers find the product
attractive. Therefore, to boost the sales the manager will give some
discount on the product F while purchasing itemset DEF, so as to
boost the revenue and as well as sales.

Another better example is suggested as the web recommenda-
tion system (Yan & Li, 2006). In this system, recommending web
pages is proposed with the consideration of the importance of each
page and the number of times the user visited a particular page. In
such case, the product of importance of each page and the number
of times that page visited gives the utility of the page. So, given a
set of visited web pages, the share-confidence model can be useful
to determine the dominating web pages in a web transaction
records for web recommendation system.

The application of traditional share-confidence model is limited
by the number of rules generated that are often not interesting to
the user especially when the share threshold is very low and some
interesting rules are missed when the share threshold is very high.
In the extracted rule set, most of the rules share the same semantic
measure or statistical measure with other rules, and they are called
the redundant rules. Henceforth, it limits the usefulness of the rule
set for the user to validate and take decisions. To represent high
utility itemset compactly, Chan, Yang, and Shen (2003) introduced
the concept of utility frequent closed patterns, where the notion of
high utility itemset is different from that of the conventional utility
mining. Later, Shie, Tseng, and Yu (2010) and Shie, Yu, and Tseng
(2012) proposed the maximal high utility itemset, and Wu,
Fournier-Viger, Yu, and Tseng (2011, 2014) proposed the high util-
ity closed itemset. In these works, there is no algorithm was pro-
vided to generate rules. So, if we apply traditional association
rule mining, the rules generated from these high utility itemsets
would contain redundancy, and also of huge size as they compactly
represent high utility itemsets but not the rules.

The above drawbacks and motivating applications motivate us
to apply the amount confidence measure (Hilderman et al., 1998)
to the utility database. As this measure applies on utility mining,
we call it as utility-confidence framework as it allies to amount-
confidence framework. The utility-confidence framework is used
to mine non-redundant association rules among high utility item-
sets, which enable the user to his/her perspectives concerning the
importance of rules depending on values and provide useful infor-
mation. In this framework, at first the high utility itemset with util-
ity value larger than a predefined threshold is mined, and then the
rules are generated among the itemsets, whose utility-confidences
are larger than the user defined confidence threshold. To discover
the non-redundant association rules in support-confidence frame-
work, several approaches have been proposed in the literature
(Balcazar, 2013; Sahoo, Das, & Goswami, 2014; Xu, Li, & Shaw,
2011; Yahia, Gasmi, & Nguifo, 2009). In general, the frequent closed
itemsets (Pasquier, Bastide, Taouil, & Lakhal, 1999) and frequent
generators (Zaki, 2004) are used to discover non-redundant
association rules. However, these methods are developed for sup-
port-confidence framework. Therefore, in this paper we raise an
important question as follows. How can we compress the associa-
tion rules in utility-confidence framework? We aim to answer this

question by integrating the concept of frequent closed itemsets
and frequent generator to high utility itemset.

1.2. Our contributions
Our contributions are listed below:

e We first integrate the concept of minimal generators of sup-
port-confidence framework to the high utility mining.
e We then introduce the notion of non-redundant association rule
in utility-confidence framework to represent association rules
compactly and the corresponding algorithm to mine the non-
redundant rules. An algorithm named HUCI-Miner (high utility
closed itemset-Miner) algorithm has been proposed to mine
high utility closed itemsets and also their generators
simultaneously.
To mine all high utility itemsets, another algorithm, called FHIM
(Fast High-utility Itemset Miner), is proposed which is about
two times faster than the state-of-the-art existing HUI mining
algorithm. The proposed pruning strategies archive efficiency.
e We further propose an inference mechanism to generate all the
association rules from the discovered non-redundant rule sets
using the high utility closed itemsets.
Finally, we conduct several experiments to show the efficiency
of the proposed algorithms and compactness of the proposed
non-redundant rule set.

1.3. The organization of the paper

The rest of the paper is sketched as follows. In Section 2, we
briefly review the existing works proposed in the literature. In
Section 3, we provide some basic preliminaries and our problem
statement by introducing the concept of the utility-confidence
measure. Section 4 introduces our proposed FHIM and HUCI-
Miner algorithms. We also discuss the procedure for deriving high
utility closed itemsets and generators. In Section 5, we provide the
method for utility-based non-redundant association rule. In
Section 6, we simulate the proposed algorithms method in a real
dataset, and then evaluate the performance of our proposed algo-
rithms and compare these with existing related approaches.
Finally, the paper ends with the concluding remarks in Section 7.

2. Related work

In this section, we review the existing methods for association
rules, high utility itemset mining, and generation of non-redun-
dant association rules in support-confidence framework. In the
support-confidence framework, the non-redundant association
rules are generated from the frequent closed itemsets and their
generators. We also review existing works on generation of fre-
quent closed itemsets together with their generators as it is essen-
tial for generation of non-redundant association rules.

2.1. Association rules mining

Association rules discovery methods find the coincident occur-
rence of items and build the affinities among them in a transac-
tional database. The methods in the literature are of two types:
exhaustive search based algorithms and evolutionary based algo-
rithms. The rule discovery process based on exhaustive search is
straightforward, if the supports of the frequent itemsets are
known. Hence, the frequent itemsets mining phase of the ARM
methods plays a vital role in the rule discovery process. Several
methods have been proposed in the literature, which are the varia-
tions of the two widely used methods: Apriori (Agrawal & Srikant,

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5757

1994) and FP-Growth (Frequent Pattern Growth) (Han et al., 2000),
for discovering the frequent itemsets. The Apriori algorithm for
discovering frequent itemsets is a level-wise candidate generation
approach, which is based on the Apriori property. This property
states that if an itemset is not a frequent, no superset of that item-
set is frequent. This property reduces the search space, but it takes
more database scan in order to calculate the frequency of itemsets
and it results in increase in execution time and memory overhead.
To overcome multiple database scan, Han et al. (2000) proposed
the FP-Growth algorithm, which uses the divide-and-conquer
and prefix based depth-first search procedures. In this approach,
the database is first converted into a tree structure, named FP-tree,
which is a compressed representation of original database. The
algorithm then partitions the original database into smaller condi-
tional database for a given itemset and its extensions are mined
separately from the conditional database.

The basic evolutionary algorithms for mining association rules
are ARMGA (Association Rule Mining Genetic Algorithm) (Yan,
Zhang, & Zhang, 2005), QuantMiner (Salleb-Aouissi, Vrain, &
Nortet, 2007), GENAR (Genetic Association Rules) (Mata, Alvarez,
& Riquelme, 2001), and G3PARM (Grammar-Guided Genetic
Programming for Association Rule Mining) (Luna, Romero, &
Ventura, 2012). In ARMGA, each association rule is encoded into
a single chromosome using the indices of items contained in the
rule and another indicator indicates the separation of antecedent
from the consequent. That means a chromosome of length k repre-
sents an association rule of length k — 1. The algorithm generates a
new chromosome by using the mutation and crossover operators
of genetic algorithm. The GENAR (Mata et al., 2001) algorithm dis-
covers the quantitative association rules using the genetic algo-
rithm. Each individual in GENAR represents an association rule
and keeps the information about the minimum and maximum val-
ues of each numerical attribute. The evolutionary algorithm calcu-
lates the fitness of each individual and processes the selection,
crossover and mutation operators. QuantMiner (Salleb-Aouissi
et al., 2007) is a genetic algorithm based algorithm, which is used
to extract quantitative association rules. The algorithm learns the
good intervals for numerical attribute and dynamically optimizes
the intervals during the mining process and it depends on all the
numerical attributes present in the rule. The knowledge from the
extracted association rules using G3PARM (Luna et al., 2012) is
more expressive and flexible. The algorithm uses the context-free
grammar to represent an individual by defining the syntax con-
straints for both categorical and numerical attributes. The algo-
rithm keeps the best individuals, whose support and confidence
are larger than a certain threshold in an auxiliary population of a
fixed size. To avoid optimizing the high number of parameters in
non-deterministic search procedure, Luna, Romero, Romero, and
Ventura (2014) proposed a grammar guided by genetic program-
ming algorithm, which is free from parameters as other existing
approaches. Their method discovers the quantitative association
rules, which constitutes the small-size gaps.

2.2. High utility itemset mining

The traditional association rule mining methods (Agrawal &
Srikant, 1994) are based on support-confidence framework, where
all items are considered with the same level of importance. The
methods proposed in Agrawal and Srikant (1994), Park et al.
(1995), Han et al. (2000) and Pei et al. (2001) to extract association
rule follow this classical statistical measurement producing the
same result on a given minimum support and minimum confi-
dence. The weighted association rule mining (WARM) generalizes
the traditional framework by giving importance to items, where
importance is given as weights. Ramkumar et al. (1998) introduced

the concept of weighted support of itemsets and weighted associa-
tion rules on the basis of costs assigned to both items and transac-
tions. Later, considering only the item weights into account, Cai
et al. (1998) proposed the weighted support of association rules.
However, the weighted support of the association rules does not
satisfy the downward closure property, which results in the perfor-
mance degradation. In order to overcome such problem, by con-
sidering transaction weight, Tao et al. (2003) provided the
concept of weighted downward closure property. Considering both
support and weight of itemsets, Yun (2007) then presented a new
strategy, called the weighted interesting pattern mining (WIP).
Pears, Koh, Dobbie, and Yeap (2013) further proposed a WARM
method that automates the process of weight assignment to the
items by formulating a linear model.

In WARM framework, note that the quantities of items in trans-
actions are not considered. Considering items’ quantities in trans-
actions and their individual importance, high utility itemset
mining (HUIM) received a considerable research attention (Yao
et al,, 2004; Liu et al., 2005; Yao, Hamilton, & Geng, 2006). Yao
et al. (2004, 2006) proposed a mathematical model of utility min-
ing by generalizing the share-confidence model (Barber &
Hamilton, 2001). As utility mining does not fulfill the downward
closure property, Liu et al. (2005) proposed the two-phase algo-
rithm that uses the transaction-weighted downward closure property
to prune the candidate high utility itemsets in the first phase and
then all the complete sets of high utility itemsets are obtained in
the second phase. To reduce the number of candidate itemsets in
the first phase, Li, Yeh, and Chang (2008) also proposed an isolated
items discarding strategy (IIDS) to the level-wise utility mining
method.

Ahmed, Tanbeer, Jeong, and Lee (2009) proposed a FP-Growth
based algorithm that uses a tree structure, named IHUP-Tree, and
efficiently generates the candidate high utility itemsets for incre-
mental and the interactive mining. Yun, Ryang, and Ryu (2014)
proposed a faster algorithm than IHUP (Ahmed et al., 2009) named
MU-Growth (Maximum Utility Growth) with effective pruning
strategies in mining process using the data structure MIQ-Tree
(Maximum Item Quantity Tree). To further reduce the number of
itemsets in the first phase, Tseng, Wu, Shie, and Yu (2010) and
Tseng, Shie, Wu, and Yu (2013) proposed the tree-based methods,
named the UP-Growth and UP-Growth®, which use several strate-
gies to decrease the estimated utility value of an itemset, and as a
result, they enhance the performance. To avoid the level wise can-
didate generation and test strategy, Song, Liu, and Li (2014) pro-
posed a concurrent algorithm, called the CHUI-Mine, for mining
HUIs from transaction databases using their proposed data struc-
ture CHUI-Tree to maintain the information of HUIs. Their pro-
posed algorithm generates the potential high utility itemsets
using two concurrent processes: the first process is used for con-
struction and dynamic pruning the tree, and then placing the con-
ditional trees into a buffer, and the second one for reading the
conditional pattern list from the buffer and mining HUIs. To speed
up the execution and reduce the memory requirement in the min-
ing process, Lan, Hong, and Tseng (2014) proposed an efficient util-
ity mining approach that adopts a projection-based indexing
mechanism that directly generates the required itemsets from
the transactions database. Ahmed, Tanbeer, Jeong, and Lee (2011)
proposed a novel tree-based candidate pruning technique, called
the High Utility Candidates Prune (HUC-Prune), for avoiding more
database scans and the level-wise candidate generation.

To avoid the computational cost of candidate generation and
utility computation, Liu and Qu (2012) then proposed a data struc-
ture, named the utility-list, to store both the utility information
about an itemset and the heuristic information for pruning the
search space. Using the constructed utility-lists from a mined data-
base, they developed an efficient algorithm, called the HUI-Miner,

5758 J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

which mines high utility itemsets without candidate generation in
a depth-first search manner. Their algorithm works in a single
phase by directly identifying high utility itemsets in an efficient
way and it is also scalable. To reduce the cost of join operation in
the calculation of the utility-list of an itemset in HUI-Miner,
Fournier-Viger et al. (2014b) improved the HUI-Miner with
incorporating the items co-occurrences strategy (named as FHM)
which is about six times faster than the HUI-Miner.

2.3. Closed itemsets with their generators and non-redundant
association rule mining

To generate both frequent closed itemsets (FCI) and generators,
Pasquier et al. (1999) proposed the CLOSE algorithm that is based
on level-wise searching approach with the help of Apriori property.
Szathmary, Napoli, and Kuznetsov (2007) proposed the ZART algo-
rithm that generates FCIs with their generators in a level-wise
manner. They further proposed the Eclat-Z algorithm (Szathmary,
Valtchev, Napoli, & Godin, 2008) that mines frequent itemsets in
a depth-first way and the FCIs with their generators are identified
in level-wise manner. An effective method, named as Touch
(Szathmary, Valtchev, Napoli, & Godin, 2009), was developed by
combining the FCI method Charm (Zaki, 2004) and the frequent
generator (FG) mining algorithm, Talky-G (Szathmary et al,
2009). The FCIs are mined using Charm and FGs are mined using
Talky-G and, then Touch associates the generators to their closed
itemsets using a suitable hash function.

Wau et al. (2011) introduced the closer concept to high utility
itemsets. They called the extracted itemsets as closed” high utility
itemsets. On incorporating closure based on support of itemsets,
they proved, first mining the set of high utility itemsets and then
applying closed constraint produces the same result while mining
all the closed itemsets first and then applying the utility constraint.
They proposed an effective method named as CHUD (Closed* High
Utility itemset Discovery) for mining closed” high utility itemsets.
Further, they proposed a method called the DAHU (Derive All High
Utility itemsets), to recover all high utility itemsets from the set of
closed” high utility itemsets without further accessing the data-
base. In addition, they proposed AprioriHC and AprioriHC-D algo-
rithms (Wu et al., 2014) and mentioned that CHUD performs
better than AprioriHC and AprioriHC-D. Later, Fournier-Viger,
Wu, and Tseng (2014c) proposed two concise representations,
which are the Generator of High Utility Itemsets (GHUIs) and
High Utility Generators (HUGs), by adopting the concept of mini-
mal generators of frequent itemset mining. However, no suitable
method for high utility closed itemset with their generator was
proposed for high utility itemset mining.

To reduce the number of association rules extracted in support
confidence-framework, several methods have been developed in
the literature (Balcazar, 2013; Kryszkiewicz, 1998; Sahoo et al.,
2014; Xu et al., 2011; Yahia et al., 2009). Kryszkiewicz (1998) pro-
posed the representative association rules (RR) with the help of a
cover operator that represents a set of association rules. Zaki
(2004) proposed a method to reduce the number of association
rules and the extracted rules, called the general rules, which have
shortest antecedent and shortest consequent giving an equivalence
class of rules of same support and confidence. Pasquier, Taouil,
Bastide, Stumme, and Lakhal (2005) defined the min-max rules
having minimal antecedent and maximal consequent. Their pro-
posed method eliminates the non-redundant rules as min-max
exact and min-max approximate rules from the frequent closed
itemsets and their generators. Furthermore, to reduce more rules,
Cheng, Ke, and Ng (2008) proposed the concept of Js-tolerance,
which is a relaxation on the closure defined on the support of fre-
quent itemset. Yahia et al. (2009) proposed an informative basis to
reduce the number of association rules, which is further efficiently

compressed by Sahoo et al. (2014). Xu et al. (2011) filtered the
min-max rules by defining redundancy and provided the reliable
exact basis and reliable approximate basis of the same inference
capacity. Balcazar (2013) further obtained a small and crisp set
of association rules by the help of confidence boost of a rule, which
eliminates the rules with similar confidence.

3. Basic preliminaries and problem statement

In this section, we first discuss some basic preliminaries and
then we discuss the concept of the utility-confidence measure in
Section 3.2.

Let I = {iy,iy,13,...,in} be a finite set of items, where each item
i,,1 <¢<m, have an external utility p,,1 < ¢ < m in the utility
table. A subset X C I is called an itemset, if X contains k distinct
items {i1,iz,13,...,1ik}, where i, € I,1 < ¢ <k, called a k-itemset.
Let D be the task relevant database composed of utility table and
the transaction table T = {ty,t,,t3,...,t,}, containing a set of n
transactions, where each transaction t; CI,1 < d < n, in the data-
base be associated with a unique identifier, say t;;. In every trans-
action tg,1 <d < n, each item i,,1 < /< m has a non-negative
quantity q(i,, tq), which represents the purchased quantity known
as internal utility of the item i, in the transaction t,.

3.1. The existing support—confidence measure

Each itemset X has a statistical measure called the support of X,
which is defined by the ratio of the number of transactions con-
taining X to the total number of transactions | D |, and denoted
by supp(X). In other words, supp(X) = %, Let F be the set
of all the in D having positive support and
F ={X| X e 2%, supp(X) > 0}. An association rule is an implication
of the form R: X — Y, where X,YCZ.Y#0, and XNnY = (. The
itemsets X and Y are called antecedent and consequent of the rule
R, respectively. Association rules are associated with two statistical
measures, which are support and confidence. The support of the
rule R is supp(X U Y) and the confidence of the rule R is defined
by the ratio of the support of X U Y to the support of X, and denoted

by conf(R). Hence, it is clear that conf(R) = %20,

Support and confidence are used as interesting measures for
determining the importance of an association rule. The support
of a rule precisely provides the statistical useful information of
the corresponding itemset from which the rule is derived but it
does not indicate the relative importance of itemsets, which limits
its financial implications. The confidence measure indicates the
statistical conditional measure of the interestingness of the
association rule. However, it does not provide any value based
decision as indicated in Example 1. Note that there are other inter-
esting measures based on the probability, such as Lift, Conviction
and Leverage, which are explained in detail in Geng and
Hamilton (2006). However, these interesting measures do not con-
sider the quantity of each item in a transaction and the profit of
each item.

itemsets

3.2. The utility-confidence measure

In this section, we describe the concept of the utility confidence
measure, which is useful for our proposed algorithms later in this
paper. For this purpose, we use x; to denote the ith item of an item-
set X.

Definition 1. The utility of an item i, in a transaction t, is denoted
by u(i, ty) and defined by the product of internal utility q(i,, t;) and
external utility p, of i, that is, u(i,, t;) = p, x q(ir, tg)-

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5759

Definition 2. The utility of an itemset X contained in a transaction
ty, denoted by u(X,t;) and defined by the sum of utility of every
items of X in ¢t,. In other words, u(X,ty) = Piexax ey Ui ta).

Definition 3. The utility of an itemset X in D is denoted by u(X)
and defined by the sum of the utilities of X in all the transactions
containing X in D, that is, u(X) = Xy ne,epl(X; td) = Xxceneien
> i,exU(ic tg). The set of transactions containing an itemset X, in
database D is called the projected database of itemset X and it is
denoted by Dx.

Definition 4. An itemset X is called a high utility itemset, if the
utility of X has at least the user specified minimum utility thresh-
old, min_util. Otherwise, it is called a low utility itemset. Let H be
the complete set of high utility itemsets. Then, H =
{X|X e F,uX) = min_util}.

Example 2. Consider again the transaction database in Table 1 with
the utility table given in Table 2. From Table 2, note that the external
utility of item B is 4 and the internal utility of the item B in the trans-
action t3 is 4. Thus, the utility of item B in t3 is
u(B,t3) = pg x q(B,t3) =4 x 4 = 16. The utility of the itemset BF in
the transaction tg is u(BF,ts) = u(B,ts) + u(F,ts) =4 x1+1x2 =
6 and the utility of the itemset BF in D becomes
u(BF) = u(BF, t3) + u(BF, ts) = 23. Note that, if the minimum utility
threshold is 20, the itemset BF is a high utility itemset.

Definition 5. The local utility value of an item x; in an itemset X,
denoted by luv(x;,X) and defined by the sum of the utility values
of the items x; in all the transactions containing X, that is,

luv(xi,X) = EXQ[dAtdEDu(Xiﬂ ta).

Definition 6. The local utility value of an itemset X in another
itemset Y such that X C Y, denoted by luv(X,Y), is the sum of local
utility measure values of each item x; € X in itemset Y, which is
given by luv(X,Y) = 3=, ycyluv (x:,Y).

To calculate the local utility value of an itemset X in another
itemset Y such that X C Y, an utility unit array needs to be attached
to each high utility itemset, which is defined as follows.

Definition 7 Wu et al,, 2011. The utility unit array of an itemset
X = {iy,iy,13,...,i} is denoted by U(X) = {uy,us, us, ..., u;}, where
each u, is luv(i,X),1 << k.

Example 3. The utility unit array, U(X) of an itemset X contains the
local utility values of the constituent items of X. Consider the item-
set ACE which appears in transactions t; and ts in Table 1. The local
utility value of the item A in ACE is luv(A,ACE) = u(A t)+
u(A, ts) = 21. The utility unit array of ACE is U(ACE) = {21,10,7}.
Further, the local utility value of itemset AE in ACE is
luv(AE,ACE) = luv(A,ACE) + luv(E,ACE) = 28.

Property 1 Wu et al,, 2011. For a given itemset X with its utility unit
array U(X), the utility of X is defined as u(X) = 3=, x luv(x;, X).

We follow the definition of amount-confidence measure in
association rule mining from Hilderman et al. (1998) and define
the following utility-confidence for an association rule.

Definition 8. An association rule is an implication of the form
R:X —Y, where X,YCI X(#) is known as antecedent of the
rule, Y(# 0) is known as consequent of the rule,and X nY = (. The

utility-confidence of the rule R is denoted by uconf(R) and defined
by uconf(R) = 7'“”2)%“).

Rationale 1. The proposed utility-confidence measure becomes
the confidence measure when the internal utility and external util-
ity of the items of an itemset are set to 1. The utility-confidence
measure shows the fraction of total utility of the antecedent con-
tributed to the utility of the corresponding itemset. So, the util-
ity-confidence of the rule R : X — Y reflects the share of utility of
itemset X to the utility of X UY. That means that the fraction of
utility of X is covered by X UY. It is similar to the amount-confi-
dence measure except that it is based on utility value of itemset
such as profits in dollars rather than amount-share that is a frac-
tion of total weights.

We say an association rule in utility-confidence framework is
valid, if it satisfies the following two conditions:

(i) The antecedent and itemset formed by combination of ante-
cedent and consequent are high utility itemset.

(ii) The utility-confidence is more than or equal to the specified
minimum utility-confidence threshold, say min_uconf.

Example 4. Consider the transaction table shown in Table 1, and
the utility table in Table 2. Let the minimum utility threshold
and minimum utility-confidence threshold be 20 and 80%, respec-
tively. Then, the utility of the itemset BDE, whose utility is 23 by
Definition 3, is a high utility itemset and contained in the transac-
tion t; only. If we consider the rule B — DE, the utility-confidence

of B — DE becomes ’“”iﬁ# = “Eﬁg)@) =16 — 80%.

Generation of valid utility based association rules from high
utility itemsets is relatively straightforward. The rules of the form
R : X — Y are generated for all high utility itemsets X, and X U Y, for
all X,Y # ¢, and the rule R provides the utility-confidence of the
rule having at least min_uconf. Since X U'Y is a high utility itemset,
the generated rule is guaranteed to be high utility. To derive all
possible valid rules, we need to examine each high utility itemset
and repeat the rule generation process as in Apriori algorithm
(Agrawal & Srikant, 1994) with utility constraint. When the mini-
mum utility value is min_util = 20, Table 3 shows all the high util-
ity itemsets. Again, considering the minimum utility-confidence
min_uconf = 80%, Table 4 shows the set of all utility based associa-
tion rules with confidence above or equal to min_uconf = 80%.

It can be observed that in Table 4 some rules are redundant to
others, for example, A — C,A — E, and AC — E are redundant to
A — CE. To eliminate the non-redundant rules in share-confidence
framework, we integrate the concept of frequent closed itemsets
and frequent generator to high utility itemset mining, and the
overall process of all the non-redundant utility based association
rules generation is given in Fig. 1. We refer the utility based

Table 3

Extracted HUIs with minimum utility 20.
Itemset Utility Itemset Utility
A 21 B 20
D 22 G 22
E 22 F 20
AC 31 AE 28
BE 21 DF 24
BF 23 DE 37
FE 36 ACE 38
AFE 20 DFE 36
BDE 23 BFE 22
ACFE 25 BDFE 24

5760 J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

Table 4

Extracted high utility valid rules with minimum utility-confidence 80%.
Rules Uconf (%) Rules Uconf (%)
A—C 100 A—E 100
B—E 80 F—E 90
B—F 100 D—E 100
E—F 81 F—D 80
A— CE 100 AC—E 100
AE - C 100 B — DE 80
BE — D 100 B —FE 80
BE —F 100 F — DE 80
DF — E 100 AFE — C 100
B — DEF 80 BE — DF 100
BDE — F 100 BEF — D 100

association rules as high utility association rules (HAR) and utility
based non-redundant association rules as non-redundant high
utility association rules (NHAR). To identify the high utility closed
itemsets with their generators, we propose the HUCI-Miner algo-
rithm. Since the identification of high utility closed itemsets with
their generators takes all high utility itemsets as inputs, so
another algorithm FHIM is proposed to discover all high utility
itemsets efficiently. After identifying the high utility closed item-
sets with their generators, the set of NHAR is obtained, which is
discussed in Section 5. On demand of a user, the set of all rules is
derived from the set of NHAR and high utility closed itemsets.

4. The proposed HUCI-Miner algorithm

In this section, we first discuss some useful definitions and
theorems before describing our proposed algorithm.

The Apriori property used to prune the candidate itemset
search space cannot be applied directly to mine high utility item-
set, since the utility constraint is neither monotone nor anti-
monotone. To reduce the size of search space and enhancing
the performance of mining task, Liu et al. (2005) proposed the
concept of transaction-weighted utility, which satisfies the
downward closure property and is based on the following
definitions.

Definition 9. The utility of a transaction t, is denoted by tu(t;) and
defined by tu(ty) =u(ty, ty).

Definition 10. The transaction-weighted utility (TWU) of an item-
set X in a database D is denoted by twu(X) and defined by the sum
of the utilities of all the transactions containing X in D, where

twu(X) = 3= conxc i, tU(ta)-

. i ~_| Construct initial
Transactional — — PEC
utility-list

database

’b“z Discover theset | Identify the set of
- I
of HUIs HUCI and generators

|generate all HARs

Output
desired rules
T from the set NHARs

Property 2. The transaction-weighted utility satisfies the downward
closure property. That means for a given itemset X, if twu(X) is
less than the specified min_util, all supersets of X are not high
utility.

Table 5 shows the transaction-weighted utility of each item. For
example, the transaction utility of t; is tu(ty) = u(A,t1) + u(C,tq)
+u(E, t1) + u(F,t;) =12+ 5+ 6 + 2 = 25. Again, consider the item-
set ACE which is in transaction t; and ts having the transaction-
weighted utility of ACE, twu(ACE) = tu(t;) + tu(ts) = 25 + 15 = 40.
If the min_util is set to 45, all supersets of ACE are not high utility
itemset according to Property 2. For a given itemset, if its transac-
tion-weighted utility has at least min_util, we call the itemset as
high transaction-weighted utility itemset (HTWUI).

Definition 11. An itemset Y is called the closure of an itemset X,
denoted by y(X), if there does not exist other large superset of X
than Y, with supp(X) = supp(Y). An itemset X is then called the
closed itemset, if X = y(X).

Property 3. For a given itemset X,twu(X) = twu(y(X)). In other
words, the transaction-weighted utility of an itemset is same as its
closure.

Rationale 2. Since the transactions containing an itemset X also
contains its closure y(X), their TWU values must be same. For
example, the itemsets A and CE have support 2 and belong to the
same set of transactions {t1,ts} in database given in Table 1 and
they have the same TWU value equals to 40.

Property 4 Wu et al.,, 2011. The utility and utility unit array of an
itemset X can be calculated from the utility unit array of its closure
itemset y(X).

Property 5. IfanitemsetXis a high utility itemset, y(X) is also a high
utility itemset. However, the converse is not always true.

Table 5

TWU of each item of database given in Table 1.
Item A B c D E F G H
WU 40 31 40 72 112 87 30 17

S

Generate the set of
NHARs

Apply direct
method to

TN
No "D ds for \

all HARs ?

Generate all HARs

Fig. 1. The overall process of generation of utility based non-redundant association rules.

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5761

Rationale 3. The transactions containing an itemset X also contains
its closure y(X). Moreover, if X is not closed itemset, y(X) contains
more number of items than X as X c y(X). So, if X is a high utility
itemset, u(X) > min_util and so also u(y(X)) as it is the sum of utili-
ties of X with some non-negative quantity. For the converse, con-
sider the itemsets CE and ACE. It can be observed from Table 1 that
ACE is the closure of CE. The utility values of CE and ACE are 17 and
38, respectively. If we consider the minimum utility threshold as
20, ACE is a high utility itemset, but CE is not a high utility itemset.

4.1. Integrating the closure property with HUIM

In this subsection, we discuss how to unify the minimal generator
concept of the traditional ARM into high utility itemset mining. In
general, the itemsets in a transactional database are not completely
independent from other itemsets. A group of itemsets are common
to the same set of transactions, and hence, they have the same sup-
port. Using the closure operator the itemsets can be grouped into
equivalent classes. Two itemsets in a class are called equivalent if
they belong to the same set of transactions. A maximal element in
a class, is called the closed itemset, which is the closure of other
itemsets in that class, and the minimal elements (smallest subsets
of the maximal element of the class) are called the generators. All
other elements in a class can be derived using the closed itemsets,
and the generators and all the elements in a class have the same sup-
port. The closed itemsets with their generators lead to the
fundamental principle behind the effective construction of non-re-
dundant association rules in the support-confidence framework.

A natural question arises that how to incorporate the similar
strategy in HUIM, which means the formation of high utility closed
itemset together with their generators those are also high utility
itemsets. As suggested by Wu et al. (2011), the closure based on
utility of itemset does not achieve a high reduction on the number
of high utility itemset and they defined the closure on the supports
of itemsets. On incorporating closure based on support of itemsets,
they showed that the join order of closed constraint and utility
constraint is commutative. This means, first mine the set of high
utility itemsets and then apply closed constraint which will pro-
duce the same result while mining all the closed itemsets first
and then applying the utility constraint. Concluding that any
equivalence class constructed among high utility itemsets using
closure based on support, the maximal element can be found in
both ways. However, later we show that, this commutativeness
between utility constraint and closure based on support does not
hold for generators. As closed high utility itemsets and high utility
closed itemsets are same, so Wu et al. (2011) defined the closed”
high utility itemset (CHUI).

Definition 12. An itemset X is called high utility closed itemset, if
X =y(X) and u(X) > min_util.

4.1.1. Generators with utility constraints

Following the definition of generators of a closed itemset in tra-
ditional ARM, the problem arises how we can incorporate it to high
utility itemset mining. This can be done in two ways. First mine all
generators based on support constraint and then apply utility con-
straint. Secondly, first find all high utility itemset and then mine
all generator applying support constraint. We will analyze this join-
ing order between utility constraint and support constraint to
extract the generators and conclude that the result of both ordering
are different. In first case, we miss the minimal high utility itemsets
of an equivalence class and in the later case we do not lose the mini-
mal high utility itemsets. As a consequence, we suggest finding the
minimal generators among high utility itemsets. Thus, the utility
constraint should be considered first and then support constraint.

For first composition method, we mine generators based on
support and then prune itemsets which do not satisfy the utility
constraints. Based on composition order, we can define generator
with high utility as follows.

Definition 13 (Generator with high utility). An itemset X is a
generator with high utility, if there is no proper subset Z of X such
that supp(Z) = supp(X). Moreover, X must satisfy the utility
constraints.

Definition 13 simply states that in order to mine generator with
high utility, using support constraint, the itemsets are first verified
whether they are generators or not. Then the itemsets are tested
for high utility itemset with utility constraints. So, if an itemset
is not a generator, the itemset is not a generator with high utility,
without verifying with utility constraints. For example, the itemset
AC(2,31) (itemset(support,utility)) in the transactional database
given in Table 1 with minimum utility constraint 20, is not a
generator with high utility without testing with utility constraint
as it is not a generator because there is a subset A(2,21) whose
support is same as support of AC(2,31). Again, the itemset
AF(1,14) is a generator but not a generator with high utility as it
does not satisfy the utility constraint of minimum utility 20.

Since the above composition has no restriction on the utility of
the subset of generators, so after applying utility constraint some
generators are pruned. As all the itemsets of an equivalence class
can be generated from both closed itemsets and their generators,
if some generators are pruned, some subsets of that itemset may
not be generated. For example, assume that the minimum utility
constraint is 20 in the transactional database shown in Table 1.
Consider the equivalence class of the itemset ACFE(1,25). The
generators of this closed itemset are AF(1,14) and CF(1,7). After
applying the utility constraint, note that there is no generator of
ACFE(1,25) because both AF(1,14) and CF(1,7) are pruned as their
utility is less than 20. However, from Table 3 we observe that the
itemset AFE(1,20) is a high utility itemset belonging to the equiva-
lence class of ACFE (1,25). But in the generation process of genera-
tors, the itemset AFE(1,20) is pruned as it is the superset of
AF(1,14) with same support. In other words, before AF(1,14) is
pruned by the utility constraint, the itemset AFE(1,20) is pruned
by itemset AF(1,14) as both have same support and later one is
the subset of the former. As a result, the generator itemset of
ACFE(1,25) is empty. So, while applying traditional itemset genera-
tion procedure from generators of an equivalence class, the itemset
AFE(1,20) will not generate. This problem arises because of con-
sidering the closure property first and the utility constraint later.

The other way to join the utility constraints and the closure prop-
erty is that we need to first mine all the itemsets with utility con-
straint and then apply closure property to compute the generators.
From this ordering, we can define high utility generators as follows.

Definition 14 (High utility generators). An itemset X is a high utility
generator, if it is a high utility itemset and there exists no proper
high utility subset Z such that supp(Z) = supp(X).

In this approach after extracting all high utility itemsets, the clo-
sure property is applied to compute the generators. Again, from
these high utility closed itemsets and their generators, all other high
utility itemsets of that equivalent class can be generated using tradi-
tional method by combining the itemsets. From the analysis, the
results of the joining order between the two constraints are
different.

Rationale 4. The basic difference between Definitions 13 and 14
is based on the constraint applied to the subset Z. Even though
the generator takes the utility constraint into account in both
definitions, but these definitions differ the way utility constraint
is applied. In Definition 13, initially there is no restriction on the

5762 J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

utility constraint of Z, whereas in Definition 14 it is for high
utility itemset. On the other hand, in Definition 13, initially the
support is applied and later the utility constraint, which is
opposite to that of Definition 14.

4.1.2. Winding up the discussions

It is well-defined from the analysis, we loose some minimal
high utility itemsets, if we first find generators based on support
and then apply utility constraint. Nevertheless, in Definition 14,
we generate the actual high utility generators. As a consequence,
the second approach generates high utility minimal generators of
an equivalence class in high utility itemset mining. Throughout
this paper we apply the second approach and now onwards we
mean the generator means the high utility generator.

Assume there is a pre-determined total ordering Q among the
items I in the database D. Accordingly, if item i is occurred before
itemj in the ordering, we denote this by i < j. ForVj € Y, ifi < j, we
say i < Y, where Y is an itemset. Similarly, for itemsets X and Y if
Xx; < Y; in accordance to the order relation Q, for 1 <i<m,m=
min(| X |,| Y |),wesay X < Y.This ordering can be used to enumerate
all the itemsets without duplication. Hereinafter, we always con-
sider an itemset as an ordered set, in particular, it is a sequence of dis-
tinct and increasingly sorted items with respect to the TWU values of
items. If the TWU values of two items are equal, they are sorted
according to the lexicographic order.

Let f be a function that assign to each itemset X € H to the set of
all transactions that contain X, that is, f(X)={ta € T | X Ctq,
X € H}. Clearly, for X Cc Y,f(Y) Cf(X). Two itemsets X,Y € H are
said to be equivalent, denoted by X = Y, iff f(X) = f(Y). The set of
itemsets that are equivalent to an itemset X is denoted by [X] and
given by [X|={YeH|X=Y}.

Theorem 1. Let X € H. If luv(X,Y) = u(X), then Y € [y(X)].

Proof. Since X c Y,luv(X,Y) =u(X) and X € H. We then have
Y € H. From Definitions 3, 5 and 6, both X and Y are contained in
same transaction. Thus, f(X)=f(Y)=f(y(X)) and Y =y(X).
Hence, Y € [p(X)]. O

Corollary 1. If supp(X) = supp(Y) and X CY, then luv(X,Y) = u(X).

Corollary 2. For a given itemset X, if there does not exist any itemset
Y o X such that luv(X,Y) = u(X), then X is a closed itemset.

Definition 15. An itemset X € [X] is called a generator, if X has no
proper subset in [X]. In other words, it has no proper subset with
the same support and it is a high utility itemset.

Theorem 2. Let X be a high utility itemset and x € X. If X \ x is a high
utility itemset, X € [X \ x] iff supp(X) = supp(X \ X).

Proof. Let x € X and X \ x be a high utility itemset. Let X € [X \ x].
Then f(X) =f(X\x) means that supp(X) = supp(X \ x). The con-
verse follows trivially. O

Theorem 3. Let X be a high utility itemset. Then, X is a generator iff
supp(X) #= min{supp(X \ X) : x € X, (X \ X) € H}.

Proof. Let X be a generator. Let g be a high utility itemset of length
k—1 with minimum support and a subset of X. Then,

gCX=f(g) 2fX). If f(g) =f(X),supp(X) = supp(g) and X is not
a generator. Moreover, it is not the element with the smallest

support, whose closure is y(X). This concludes that f(g) > f(X)
and hence, supp(X) # min{supp(X \ x) : x € X, (X \ x) € H}. On the
other hand, if supp(X) # min{supp(X\x):x € X, (X \x) € H},X is
the smallest element of the closure y(X). Hence, X is a
generator. [

Corollary 3. Let X be a high utility itemset. If X is not a generator,
then supp(X) = min{supp(X \ x) : x € X, (X \ x) € H}.

Property 6. For a high utility closed itemset X, if g be a generator,
then u(g,X) <u(g',X), whereg' € X]andg Cc g'.

Rationale 5. Since g’ € [X], both g and g’ belong to the same set of
transactions. Furthermore, as g C g/, Property 6 holds as a conse-
quence of Property 5.

Theorem 4. Let X € H. The statement “If X is a generator, then
VY € H,Y C X,Y is a generator” is false in this context.

Proof. This can be proved by giving a counter example. Consider
the itemset AFE with support 1 and utility value 20. If the mini-
mum utility is set to 20, this is a generator in the context.
However, the subsets AF and AE are not generators. Note that AF
is not a high utility itemset, whereas AE becomes a high utility
itemset. O

Rationale 6. Theorem 4 states that the subsets of a high utility
generator may or may not be a generator. However, in the sup-
port-confidence framework the subsets of a generator are genera-
tors, and hence, if an itemset is not a generator, its superset is not
also a generator. This property is used to prune the itemsets space
to obtain the generators in support-confidence framework. Since
this property does not satisfy in the high utility context, this pruning
strategy cannot be employed. AF is pruned as it is not a high utility
itemset, and AE is pruned as it is not a generator. Thus, by the tradi-
tional procedure of a support-confidence framework, the itemset
AFE will not be generated. However, it is a minimal itemset in [AFE].

4.2. Mining high utility itemsets

It is observed from the analysis in Section 4.1 that in order to
extract all high utility generators, we need to discover the entire
space of high utility itemsets. It is thus necessary to provide an
effective procedure to generate all high utility itemsets. In this sec-
tion, using the concept of vertical mining of HUI (Liu & Qu, 2012),
FHM (Fournier-Viger et al.,, 2014b), and the proposed pruning
strategies, an efficient method is proposed to extract all high utility
itemsets.

4.2.1. Vertical high utility itemset mining

To avoid the computational cost of candidate generation and
multiple database scans for utility computation, a vertical mining
method named as HUI-Miner, proposed by Liu and Qu (2012).
The HUI-Miner algorithm generates the high utility itemsets in a
single phase using a vertical representation of the database. To
represent the database vertically, it uses a novel data structure,
named utility-list to each itemset. To generate all the high utility
itemsets, it performs a depth-first search in a pre-order way, from
left-to-right as shown in Fig. 2. The utility and utility-list of a k-
itemset is constructed from the utility-list of (k — 1)-itemsets. The
symbol ‘" in Fig. 2 represents that the utility-list of the items are
generated simultaneously from the mined database. Note that

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5763

=
L8]

I]
0]

[| | [|
[a8 l:ac] [an®] [sBc”] [807 [0™

3| 7 11 - Traversal order
7ACD 10 BCD i
1 AB-2- - Itemset

 Construction order of utility-list

traversal in 2014b;

(a) Pre-order
Liu and Qu, 2012)

(Fournier-Viger et al.,

|

| 1
|_C13| |_DI3

I
kass] fac'] fyan?] |y funn®] foco]

G P} 12 - Search order
7 ABD M 1 BCD i
---- Itemset

! Construction order of utility-list

(b) Reverse pre-order traversal in a sub-tree of the root in FHIM

Fig. 2. The search space traversal.

there is no tree used in the algorithms, Fig. 2 only shows the
generation of itemsets in a recursive call.

Definition 16 Liu and Qu, 2012. Let Q be a pre-determined total
ordering among the items I in a database D. Given an itemset X and a
transaction t,X C t, after sorting the transaction t and X according to
the order Q, the set of items after X in t is denoted by t/X. For a given
itemset X in D, the utility-list of X is a collection of tuples
(tid, iutil, rutil) for each transaction t;4 containing X. The utility of X
in t,;4, denoted by iutil, is the sum of the utilities of all items in t;4 /X,
thatis, rutil = 3=, xu(i, tua). We denote the utility-list of X as UL(X).

Example 5. Consider the transaction t; in Table 1. After sorting it
according to the order Q, we have t; = {A, C,F,E}. For the item Cin
t1, we have rutil = u(F, t;) + u(E, t1) = 8. The utility-list element of C
for transaction t; is (1,5, 8). In the second scan of the database D,
the procedure generates the utility-list for each promising item as
shown in Table 6. The construction of the utility-list of a k-itemset
X, where k > 2, can be obtained using the construct algorithm (Liu
& Qu, 2012).

Property 7 Liu and Qu, 2012. For a given itemset X with its utility-
list, if the sum of iutil values of the utility-list of X is less than
min_util, X is not a high-utility itemset. Otherwise, it is a high utility
itemset.

Property 8 Liu and Qu, 2012. Let X be an itemset with its utility-
list. Given an ordering €, an itemset Y is an extension of X, if
Y =X uZ, for some Z with X < Z. Given a minimum utility thresh-
old min_util, if the sum of all the iutil’s and rutil’s in utility-list is less
than min_util, there does not exist any extension Y of X, which is a
high utility itemset. We call the sum of all the iutil's and rutil’s in
utility-list of a given itemset X as the promising utility of X.

4.2.2. Co-occurrence-based pruning
To reduce the cost of joining operations in the calculation of
utility-list for an itemset Pxy, Fournier-Viger et al. (2014b) proposed

Table 6
utility-list of each promising item.

Item Utility-list

mmoN>waQ

the Estimated Utility Co-occurrence Pruning (EUCP) strategy to
directly eliminate a low-utility extension of Pxy and all its transi-
tive extensions without constructing their utility-list. They used
the TWU pruning strategy (Liu et al., 2005) to eliminate a larger
itemset of length more than three using the TWU value of all its
subset of length two. The TWU value of each 2-itemsets is stored
in a matrix, known as the Estimated Utility Co-Occurrence
Structure (EUCS), which is defined as follows.

Definition 17 (Estimated Utility = Co-occurrence Structure
(EUCS) (Fournier-Viger et al., 2014b)). EUCS is a collection of tuples
of the form (a,b,c) € I' x I' x R such that TWU(ab) = c.

The EUCS can be represented as a triangular matrix or a hash map.
To achieve the memory efficiency in implementation, the hash map
is used because EUCS is sparse in nature. Most of the entries of EUCS
are zero, which indicates that very few items co-occurs with the rest
items. The construction of EUCS is performed in a single database
scan at the time of construction of utility-list. It occupies very less

memory and is the order of O(| I'?). Table 7 shows the EUCS of the
promising items of the database D given in Table 1.

Property 9 (Estimated Utility Co-occurrence Pruning (EUCP)
(Fournier-Viger et al, 2014b)). For a given itemset
X = {X1,X2,X3,...,X;} and an item y, if there is no tuple (xi,y,c) in
EUCS such that ¢ < min_util, then Xy and no superset of Xy are high
utility itemsets.

This pruning strategy simply concludes that for the itemset
X = {X1,X2,X3,...,X}, if the value of the entry (x,y) is less than
the minimum utility, then there is no need to explore its any exten-
sion in the itemset space. Integrating EUCP strategy in HUI-Miner,
called the algorithm as FHM (Fast High-Utility Miner) (Fournier-
Vigeretal., 2014b), leads to reduce the number of joining operations
that are needed for formation of utility-list of a larger itemset. This
strategy is actually performed before the joining operations to be
performed. If the value is higher than the given min_util, the join
operation is executed; otherwise, the larger itemset need not to be
explored.

It is observed that in depth-first search strategy, the itemset
search space problem is partitioned into non-overlapping sub-

Table 7
EUCS of promising items.
Item G B A C D E
B 0
A 0 0
C 0 0 40
D 9 24 0 0
F 9 30 25 25 54
E 9 24 40 40 71 79

5764 J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

problems such that the itemset search space of each item i is not
included in the search space of the item j, with i <j (Wu et al,,
2011). In the procedure of HUI-Miner and FHM, the promising util-
ity of item j does not contain the utility value of any item i such
that i <j. The estimated utility co-occurrence value of item pair
(j, k) can be further reduced after completion of the subproblem
of item i such that i < j and i < k. This means that the utility value
contributed to the estimated utility co-occurrence values by i has
no effect after the subproblem of the item i is processed. This idea
motivate us to provide a Promising Utility Co-Occurrence Structure
(PUCS) for each promising item to further reduce the number of
candidates itemsets. We observe that this novel structure, FHM,
can be made more faster (see Section 6 for details) by further
reducing computational cost of join operation. We call this algo-
rithm as FHIM (Fast High-utility Itemset Miner). We now define
PUCS for a given item as follows.

Definition 18 (Promising Utility Co-Occurrence Structure (PUCS)). The
Promising Utility Co-Occurrence Structure (PUCS) of a given item a,
denoted by PUCS,, is a set of tuples of the form (b, c, v),a < b,a < c,
Dgp # 0 and Dyc # 0 such that v = 3.y gyre tiden,, (€-1util + e.rutil).

In Definition 18, the value »in a tuple (b, c, v) is v = TWU(bc) in
the projected database of the item a. Table 8 shows the PUCS of
items A and B. The PUCS takes less memory as it is only for a sub-
problem and then it is removed after the subproblem is solved. The
proposed model generates high utility itemset faster than FHM. It
seems that the PUCS for each item is constructed before beginning
of the depth-first search, but it is not the case. In our imple-
mentation of the proposed algorithm, the PUCS for each item is
not computed at the beginning at each time rather it is constructed
and updated from 2-itemsets. For a given itemset X = {x,y,z}, the
entry (y,z) of PUCS of x is calculated at the time of construction of
the utility-list of the itemset X from xy and xz. However, a variable
is used to accumulate the total promising utility z at the time of
computing the utility-list of the itemset X. To further optimize
the method, two construction procedures have implemented: one
for construction of 3-itemset and another for the rest. This can
significantly reduce time to compute the estimated utility for
pruning. Further, in order to optimize the memory used, once a
node is processed to generate its all extensions, it is then safe to
remove it from memory, which is performed in Step 17 of
Algorithm 1.

Our FHIM earns the novelty with the proposed pruning scheme,
called PUCP (Promising Utility Co-occurrence Pruning), which is
based on PUCS. This pruning scheme immediately eliminates all
extensions of an itemset X without further constructing their
utility-list. The proposed scheme is described as follows.

abc

Theorem 5 (PUCP Strategy). Let P = {X1,X2,X3,...,X} be a k-item-
set, where 2 <k <m, and x; < X3 < X3 < ... < Xx. Let Px and Py be
the itemsets formed by the combination of itemset P with items x and
y, respectively, where x < y. If there is a tuple (x,y, v) in PUCS of x;
such that v < min_util, Pxy and all its extensions are pruned.

Table 8
Promising Utility Co-Occurrence Structure of item A, B.
PUCSa
Item C F
F 25
E 40 25
PUCSg
Item D F
F 24
E 24 24

Proof. Let Y be an extension of Pxy. Since | Pxy |> 3,|Y |> 3. Any
extension of Pxy is an extension of x;. Then,
{x1} C x1xy C Pxy C Y. Let D,, be the projected database of x;. Let
Z be a set of items after excluding x; in Y. That means Z = Y/x;.
Clearly, Pxy/x1 CZ Ct/x;. If Tidset(x,) denotes the set of tid’s of
UL(x1), we denote Tidset(Pxy) for the set of tid’s of UL(Pxy), and
Tidset(Y) for the set of tid’s of UL(Y). Then, Tidset(Y)
C Tidset(Pxy) C Tidset(x,) = Dx,. Thus, the utility value of Y in D,
is given as

u) = > uv.= Y uGn.n+u.o)

teTidset(Y) teTidset(Y)

<D u) u(t/xt) < Y u(xg,t) +u(t/x,t)
teTidset(Y) teTidset (Pxy)

= > e.iutil + e.rutil
ecUL(xq)Ae.tideTidset(Pxy)

< Z e.iutil + e.rutil
ecUL(xq)ne.tideTidset(x; Xy)

= z e.iutil + e.rutil = v, since (x,y, v) € PUCS,
ecUL(xq)ne.tideDy,

< min_util.

Hence, the itemset Y is not a high utility itemset in D,, . Since all the
transactions containing Y are only in the projected database D;,, so
u(Y,Dx,) = u(Y, D). Hence, the theorem follows. O

Note that the pruning PUCP strategy is applicable for the genera-
tion of the larger itemsets of length at least four. For the generation
of itemsets having length 3 or less, the EUCP strategy is used (pro-
vided in Definition 17). Before constructing the utility-list of Pxy,
except the pair (x,y), the rest pairs of items in Pxy have already been
tested in previous recursions of the depth-first procedure. A genuine
point about the PUCP strategy is to test the itemset Pxy the promis-
ing utility value of the pair (x,y) should be available in the
corresponding PUCS structure. For example, before constructing
the utility-list of the itemset {a,b,c,d} from the itemset {a,b,c}
and {a, b,d}, the promising utility value of the pair (c,d) in PUCS,
should be tested with min_util. For this reason, the promising utility
value of the pair (c, d) in PUCS, needs to be computed before process-
ing the itemset {qa, b, c, d}. That means the utility-list of the itemset
{a,c,d} is computed first. In other words, all subsets of {a,b,c,d}
with prefix a will be generated before {a, b, c,d} itself. This can be
achieved by the reverse pre-order traversal on a sub-tree rooted at
the root node discussed in Section 4.2.4.

4.2.3. Progressive expected utility pruning

It is observed that in the FHM and HUI-Miner procedures, an
itemset Px is combined with another itemset Py, which lies right
to it. The pruning strategy proposed by Liu and Qu (2012) is a
straightforward strategy, which checks if the estimated utility of
Px is greater than the threshold or not. In the EUCS strategy
(Fournier-Viger et al., 2014b), before joining the utility-list of Px
and Py, it checks if xy is a promising itemset or not. If it is so, it con-
tinues; otherwise, it stops searching in that sub-tree. By the above
proposed strategy, the estimated utility of 2-itemsets is further
decreased. But as the TWU obeys anti-monotone property the
TWU(Py) is less than or equal to xy. We thus have
TWU(Pxy) < TWU(Py) < TWU(xy). This inequality also holds for
the projected database. For a given itemset Px, if TWU(Py) is no
more than the utility threshold, Py will not be combined with Px
to form the itemset Pxy. However, in the depth-first search using
the utility-list it is expensive to find TWU(Py) in the corresponding
projected database since it requires to sum up all iutil and rutil of
the elements for the common transactions. As a result, we provide
an estimated utility of Py, which says whether it can be combined

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5765

with the left itemsets or not. This, in turn, increases the perfor-
mance, which is evident from Section 6.

Definition 19. For a given itemset Px, and an item Pz with x < z,
the progressive estimated utility of the itemset Pxz is
PEUP(PXZ) = ZtideTidset(sz) (U(PX, “d) e TU(PX, “d))

Theorem 6 (PEUP Strategy). Let P be an itemset and Py an 1-exten-
sion itemset. If EU(Py) < min_util, there is no extension Y of P such
that Py C Y, which is a high utility itemset.

Proof. Let Y be an extension of P and Py C Y. Let Tidset (P) denote
the set of tids’s of UL(P), Tidset(Py) the set of tids’s of UL(Py), and
Tidset(Y) the set of tids’s of UL(Y). Then, Tidset(Y) C Tidset(Py). For
all transactions t such that Y C t, we have,

u(Y,t) =u(Py,t) + u((Y — Py),t) = u(P,t) + u(y,t) + u((Y — Py),t)
=u(P,t) + u((Y — P),t) = u(P,t) + u((Y/P),t)
=u(P,t)+ Y u(i,t) <u(P,t)+ > u(it)

icy/P ict/P

=u(P,t) +ru(P,t).

Now,

u)= > uY,t)< Y u(Pt)+ru(P,t)
teTidset(Y) teTidset(Y)
< > u(Pt)+ru(P,t) = EU(Py,t) < min_util.

teTidset(Py)

Hence, the theorem follows. [

The PEUP pruning strategy simply states that the join operation
between Px and Py will not be performed, if the estimated utility of
Py with Px is less than the minimum utility. Before performing the
join operation, the itemset Pxy and the sub-tree rooted at node Pxy
are removed from the search space. Observe that the estimated
utility of an itemset Pxy is calculated at the construction procedure
using Definition 19. A variable is also used to accumulate the esti-
mated utility of each utility list. Integrating both the strategies, the
proposed method yields a significant improvement in perfor-
mance. From the experiments, it is evident that the proposed
method takes less memory or comparable memory for different
thresholds. The reason is that we reduce the search space as the
corresponding utility-list is not generated and as a result, it con-
sumes less memory.

4.2.4. Reverse pre-order traversal

The HUI-Miner is the first HUI mining method that combines
the vertical representation of a database with the depth-first
search based on traversal of the Eclat algorithm of frequent itemset
mining. It traverses the search space from left-to-right in the set
enumeration tree. FHM adopts the searching procedure of HUI-
Miner to the exclusive generation of the HUIs. To reduce the cost
of join operation, it relies on a technique, called EUPS strategy, that
checks whether any superset of the itemset is a HUI or not by con-
sidering all its subsets of TWU values as they obey the anti-mono-
tone property. To apply our pruning strategies, it must ensure that
while before an itemset is generated, all the expected co-occur-
rence utility of each two-pair items need to be computed. This sug-
gests that all the subsets of length 3 be generated before the
generation of the itemset. The technique presented in Talky-G
(Szathmary et al., 2009), called the reverse pre-order traversal,
ensures that all the subsets of a given itemset are in right to the
node in the set enumeration tree. This traversal also ensures that
all the subsets of an itemset X are generated before the generation

of X. We adopt this traversal for the sub-tree rooted at the child of
the root node. The complete traversal is shown in Fig. 2.

4.2.5. The FHIM algorithm

In this section, we describe an efficient algorithm, called FHIM,
for mining high utility itemsets. The utility database D and the
minimum utility threshold min_util are taken as inputs in the main
algorithm, FHIM, provided Algorithm 1.

Algorithm 1 FHIM(D, min_util)

Input: D: database, min_util: minimum utility threshold.
Output: High utility itemsets.

1 Scan D to get TWU of each item.;

2 Let C be the set of items x such that TWU(x) > min_util,;

3 Sort the items in C in increasing order of TWU value.;

4 Remove the items from the database whose
TWU < min_util,;

5 Construct the utility-list UL as
UL = {UL(x) | TWU(x) > min_util} and build the EUCS
structure.;

6 for each item x € C

7 if (SUM(UL(x).iutils) > min_util)

8 Write {x}, {x}.utility, {x}.support; // High
utility 1-itemset

9 if (SUM(UL(x).iutils) + SUM(UL(x).rutils) > min_util)
10 Set tail = (.;
11 for each item y € Cx < y from left to right
12 if 3(x,y, v) € EUCS such that v > min_util
13 Compute X = {x} U {y};
14 Compute
UL(X) = Construct(0,0,UL(x), UL(y));
15 Compute tail = tail U UL(X);
16 Call Rsearch(x, tail, min_util);

17 Remove UL(X) from UL;

Procedure Construct(UL(P), UL(Px), UL(Py))

Input: a: item a for the subproblem, UL(P): Utility-list of
parent P, UL(Px): Utility-list of Px, UL(Py): Utility-list of Py.
Output: UL(Pxy): Utility-list of the itemset Pxy.

1 Set UL(Pxy) = 0;

2 Set Pxy.EU = 0; // Expected utility of Pxy for PUEP
strategy

3 Set eu = 0; /| Expected co-occurrence utility of Pxy
for PUCP strategy if | Pxy |=3

4 for each element e, € UL(Px)

5 if Jey € UL(Py) and ey.tid == ey.tid

6 if UL(P) # 0
7 Find e € UL(P) such that e.tid == e,.tid;
8 Compute
exy = (ex.tid, ey.iutil + ey.iutil — e.iutil, e, .rutil);
9 Compute Pxy.EU = Pxy.EU + ey.iutil + ey.rutil;
10 else
11 Compute
exy = (ex.tid, ex.iutil + ey.iutil, ey.rutil);
12 Compute Pxy.EU = Pxy.EU +ey.iutil +ey.rutil;
13 Compute eu = eu + e.iutil + e.rutil; /|| For
PUCP strategy if | Pxy |=3
14 Add exy to UL(Pxy);

15 if | Pxy |==

16 Add eu to PUCS,;
17 return UL(Pxy);

18 End Procedure

5766 J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

At first, the TWU of all items are calculated by a database scan in
Step 1. If the TWU of any item is less than the specified min_util, the
item is discarded according to Property 2 for subsequent mining
process. The items, whose TWU are higher than min_util (known
as promising items), are sorted according to the order relation Q
and stored in a global TWU _Table (Liu et al., 2005). In the next pass,
the transactions are sorted according to €, and at the same time
the initial utility-list for each promising item and the EUCS struc-
ture are constructed. These procedures are performed during
Steps 2-5. In Steps 7-38, it finds the high utility 1-itemsets. All
promising 2-itemsets and their utility-list are generated using
Property 8 and the EUCP strategy in Step 9-14. Step 13 calls the
Construct procedure to construct the utility-list of 2-itemsets.
One can find the details of this procedure in Liu and Qu (2012).
In this construction procedure, the progressive expected utility of
the utility-list is calculated in Steps 9-12. Also, in this procedure,
the PUCS structure of an item is updated. The complete modified
Construct procedure of HUI-Miner is given in the procedure
Construct. After this, the reverse depth-first search procedure,
Rsearch, is explored at Step 15 to generate all the itemsets of the
subproblem of an item x.

Procedure Rsearch(a, tail, min_util)

Input: a: item for the subproblem, tail: Set of
utility — list, min_util: minimum utility threshold.
Output: High utility itemsets.

1 If (tail == () return;

2 for each Px < tail from right to left

3 if (SUM(UL(Px).iutils) > min_util)

4 Write Px, Px.utility, Px.support

5 if SUM(UL(Px).iutils) + SUM(UL(Px).rutils) > min_util)
6 Set tailpy, =0 ;

7 for each Py ¢ tail with x < y from left to right

8 if (JOIN(a, Px, Py, min_util)==true)

9 Compute Pxy = Px U Py;

10 Compute UL(Pxy) = Construct(a, P, Px, Py);
11 Compute tailpyy = tailpxy U UL(Z);

12 Call Rsearch(a, tailpy,, min_util);

13 End Procedure

In the Rsearch procedure, the reverse traversal searching is
applied in Step 2. This generates the high utility itemset of length
more than 1 in Steps 3-4. Steps 7-13 are same as the FHM except
Step 8. Step 8 contains the EUCP, PUCP and PUEP strategies in
another procedure, called JOIN. This procedure verifies whether
the joining between two itemsets Px and Py is performed or not.
If the progressive expected utility of Py is below the minimum util-
ity threshold, JOIN procedure returns false, otherwise it checks for
the promising utility value in EUCS or PUCS matrix depending on
the size of Px. If this sub procedure returns true, the itemsets Px
and Py are combined to form Pxy in Step 9 of the Rsearch proce-
dure. The utility-list of this itemset is constructed in Step 10 by

Table 9

HGB basis extracted from Table 1 with min_util = 20 and min_uconf = 80%.
Rule (utility, uconf (%))
B—F (23,100)
D—E (37,100)
F—E (36,90)
E—F (36,81)
A—CE (38,100)
F — DE (36, 80)
B — DFE (24,80)
AFE — C (25,100)

calling the Construct procedure. The procedure calls itself recur-
sively until tail # (. Otherwise, it returns to the main procedure
to perform the exploration on the next subproblem.

Procedure JOIN(a, Px, Py, min _util)

if EU(Py) > min_util
if | Px |==
if 3(x,y, v) € EUCS such that v < min_util
return false;

else
if 3(x,y, v) € PUCS, such that v < min_util
return false;
return true;
else return false;
End procedure

4.3. Deriving high utility closed itemsets and generators

The HUCI-Miner algorithm given in Algorithm 2 identifies the
high utility closed itemsets and generators among the high utility
itemsets. It enables to the efficient generation of the non-redun-
dant association rules among the high utility itemsets using the
utility-confidence framework. The algorithm outputs the resultant
set, CH, which contains the high utility closed itemsets H;, where
each set Hy,1 < k < max, has all high utility k-itemsets and max
is the size of the longest high utility itemset. This algorithm gener-
ates the high utility closed itemsets and generators from the high
utility itemsets using Theorems 2, 3 and Corollary 3. Note that
no additional database scan is required in order to find out the util-
ity unit array of each closed itemset, which is used to calculate the
local utility value of any subset. By scarifying a little more memory
consumption, this can be calculated from the utlity-list of the con-
stituent items of an itemset.

The pseudo-code of the HUCI-Miner algorithm, provided in
Algorithm 2, is a level-wise procedure. It identifies all the high util-
ity itemsets successively as the high utility closed itemset or
generator in each set Hy,1 < k < max, contains the high utility
itemset of length k. It derives the sets CH, 1 < k < max, containing
the closed itemsets and their supports, utility values and the
corresponding generators. At first, it finds all the high utility item-
sets using the FHIM algorithm. After this exploration, the algorithm
examines each high utility k-itemset, k > 2, which is a generator of
a high utility k-itemset (k > 2) by considering the supports of all
its subsets of length k — 1. The algorithm then verifies if it is a
closed itemset by examining the supports of all its subsets of
length k — 1. Two boolean variables closed and key are used in order
to identify whether an itemset is a high utility closed itemset or a
generator. If H, is empty and H,_; is nonempty, by consequence of
Property 5 the elements of H,_; are closed and it is performed in
Steps 15-16. Conversely, if H, is nonempty and H,_; is empty, all
itemsets in H) are generators, and no extra step is needed as all
itemsets are initially marked as generators.

Table 10

Characteristics of datasets.
Dataset |T| | 1] Avgl MaxL Type
Foodmart 4141 1559 4.4 14 Sparse
Chess 3196 75 37 37 Dense
Mushroom 8124 119 23 23 Dense
Connect 67,557 129 43 43 Dense
T1014D100K 100,000 870 10.1 29 Sparse
Retail 88162 16,470 103 76 Sparse
Chain-store 1,112,949 46,086 7.2 170 Sparse

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5767

Algorithm 2. HUCI-Miner (D, min_util)

Input: HUI : {H1,H>,...,Hnax}, where Hy is the set of huis of
length k, max is the size of largest high utility itemset.
Output: High utility closed itemsets with their generators.

1Set CH «— (),HG «— 0 /| HG: Set of high utility
generators

2 Compute H = FHIM(D, min_util) /[H = {H1,Ha, ... Hmax}, Hx
Set of highutility k-itemset

3 for each itemset h € H; do

4 Set h.closed « true; h.key — true;

5 end

6 for (k = 2;k < max; k + +) do

7 ifH, #0

8 for each itemset h € H, do

9 Set h.key — true; h.closed «— true;

10 for all subsets h' € Hy_; of h do

11 if (supp(h') == supp(h))

12 Set h.key — false; h'.closed — false;
13 end

14 end

15 Set CHy_1 «— {h € Hy_; | h.closed = true};
16 Get_generators(CHy_1, Hy);

17 else

18 Set CHy_1 «— {h € H,_ | h.closed = true};
19 Get _generators(CHy_1);

20 end

21 Set CHk — Hk;

22 Get_generators(CHy);

23 Set CH « uU,CH,, with generators;

24 Calculate utility unit array of each closed itemset;
25 End procedure

An itemset c is identified as a generator during Steps 8-12 in the
algorithm HUCI-Miner. If the support of c is same as one of its subsets
having length k — 1in H,_q, then cis not a generator, and conversely,
itis not closed. In Steps 15-18, all the closed itemsets of length k — 1
are added to the set CH,_;. Step 21 discovers the closed itemset of the
maximum length. In Steps 16, 19 and 22, the Get_generators proce-
dure is called in order to update the global list of generators and
assign the generators to the respective closed itemset. It takes the
set CHy as input. For each closed itemset ch € CHy, its proper subsets
in the global set of generators HG are then removed and then added
to the generators of ch (Steps 1-5 in Get_generators procedure). This
procedure updates the global set of generators HG by the itemsets,
which are not closed but they are generators before the starting of
the next iteration. If the set of generators of a given closed itemset
isempty, itindicates that the closed itemset is the generator of itself.
For example, considering the database given in Table 1 with
min_util = 20%. The HUCIs are G(),F(),E(), BF(B), DE(D),FE(),
ACE(A), DFE(DF), BDFE(BE) and ACFE(AFE), where X(Y) means X is
the closed itemset and Y is its generator.

Procedure Get generators(CH,_q,Hy)

Input: CH,_1: high utility closed itemset of length (k — 1)
Output: Assign the generators to each closed itemsets of
CHy_4

1 for each itemset ch € CH, do

2 for all subsets ¢’ € HG of ch do

3 Add ¢’ in ch.generator;

4 end

5 end

6 Compute
HG = HG U {h € H,, | h.key = true A h.close = false};

Theorem 7. For a given minimum utility threshold, the proposed
HUCI-Miner algorithm generates all high utility closed itemsets with
their generators correctly.

Proof. The correctness of our proposed HUCI-Miner algorithm is
based on Theorems 2 and 3. Theorem 2 determines a high utility
itemset hy_;, which is a high utility closed itemset, by comparing
its support with the supports of the high utility k-itemset h, con-
taining the itemset hy_;. Theorem 3 enables if a high utility k-item-
set hy is a generator by examining its support with the supports of
the high utility (k — 1)-itemsets, which are included in h,. Since a
high utility closed itemset cannot be a generator for the large item-
sets, they are not in the global list of generators. Again, the closure
of a non-generator itemset c is the smallest superset of c in the set
of the high utility closed itemsets. This proves that the identifica-
tion of the generators of a closed itemset is correct. [

4.4. Complexity analysis

The time complexity of the utility-list construct procedure is in
the order of O(slogs), where s is the maximum support among all
itemsets and the binary search algorithm is used to get an element
from a utility-list. The complexity of FHIM and FHM are propor-
tional to the cost of total number of candidate high utility itemsets
generated during the mining process. Thus, the time complexity of
FHIM and FHM are O(Cangyn) and O(Cangy), respectively, where
Cangyy and Cangyy are the number of candidate high utility item-
sets generated using the respective algorithms. FHIM is based on
the pruning strategies, PUCP and PUEP, is improved versions of
FHM algorithm. The proposed pruning strategies reduce the
generation of the number of candidate high utility itemsets than
that of FHM (See Table 13). In general, it can be shown that
Cangypy < Cangyy, which makes FHIM is more efficient than FHM.
If Npex is the maximum number of high utility itemsets presents
in some Hyg and max is the maximum length of high utility itemset
obtained, the time complexity of HUCI-Miner algorithm is
O(N?%,, x max) and it is straight forward as it is based on the subset
checking in a level-wise manner and due to the dominating three
for loops in Steps 6, 8 and 10.

5. Utility based non-redundant association rule

From the experiments in Section 6.5, it is observed that a large
number of rules with high utility and high utility confidence are
generated and it grows rapidly. In this subsection, we use high util-
ity closed itemsets to eliminate redundant association rule. A small
number of rules can be generated and provided to the user for the
decision making, from which all the valid rules can be derived by
using the high utility closed itemsets and the utility unit array.
Before proposing our non-redundant rule generation algorithm,
we start with an example to show the existence of redundancy fol-
lowed by a definition provided in Definition 20.

Example 6. Consider an association rule R: X — Y with utility u
and utility-confidence ¢ on an utility-confidence framework. The
semantic interpretation of such a rule is that the utility value of
the itemset XUY is u and the utility-confidence c reflects the
contribution of utility of itemset X to the utility of XU Y from its
total utility value. This means the fraction of utility of X is covered
by X UY. The manager can decide the importance of the rule, if u
and c satisfy the specified thresholds. Consider the database given
in Table 1. Let the manager want to promote the items for
increasing the sells. The question is that “what is the least set of
items from which the manager can take his decision to promote

5768 J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

the sells?”. Consider the wvalid rules R;:B — DFE(24,80%),
Ry : BE — DF(24,100%),R; : BDE — F(24,100%), and R, : BFE
— D(24,100%). The rules R,,R3, and R4 are not useful for taking
decision for promoting the itemset BDFE from the least set of items,
since the decision for the itemset BDFE has already taken from the
rule Ry, which has minimal antecedent. We say the rules R,, R3, and
R4 are redundant to the rule Ry, and R; is a non-redundant rule.

Definition 20. Let R; : X; — Y; and R, : X, — Y, be two valid
association rules on utility-confidence framework. We say that
the rule R, is redundant to the rule R;, if X, uY,CX U
Y1, Ry .utility > R,.utility, supp(R,) = supp(R;) and X; CX,,Y, C Yy,
where R;.utility is the utility of the rule R; fori=1,2.

Definition 20 simply states that an association rule R is a valid
non-redundant rule in utility-confidence framework, if there does
not exist any other valid rule R’ with same support, having more
utility, and an antecedent that is a subset of the antecedent of R,
and a consequent which is a super set of the consequent of R. In
general, a non-redundant association rule is a rule with minimal
antecedent and maximal consequent. We call a non-redundant
rule in utility-confidence framework as a high utility generic rule
(hgr) and denote the set of such non-redundant rules as HGR.
Based on this definition, for the generation of all hgrs, we have pro-
posed the high utility generic basis (HGB) in Section 5.1.

5.1. High utility generic basis (HGB)

It can be noticed that all the rules R; : X; — Y; having the same
support and {X; UY;} N{X;UY;} = 0,i+#j, have the same closure
P(XiUY;). So, if g be a generator of y(X; UY;), all the itemsets in
the interval [g, y(X; U Y;)] have the same support. Thus, if the rule
R:g—7v(g)\g is a valid non-redundant rule, all the rules
Ri:1— y(g)\lgcl, are redundant to the rule R, which has
minimal antecedent and maximal consequent. If it is not a valid
non-redundant rule and no subset of g also generates a valid rule,
by concatenating the items of y(g) \ g valid non-redundant rules
can be formed. This explanation extends to define the following
basis given in Definition 21 that contains all the elements of HGR
defined in Definition 20.

Definition 21. Let HUCI be the set of high utility closed itemsets.
Then the high utility generic basis is defined by HGB={R:g —
h\g|he HUCIAg#0, g C h, uconf(R) > min_.uconf A g :g' C gn
uconf(g’ — h\ g') > min_uconf}.

Consider the database D in the running example given in Table 1.
From Fig. 1, it is clear that DFE is a high utility closed itemset with
utility 36. Consider all valid rules from this itemset. Let min_uconf =
80%. It is easy to verify that the high utility subsets of DFE are
D(22),F(20),E(22), DE(37),DF(24), FE(36), where utilities are speci-
fied within the parenthesis. The itemsets for which uconf(X —
DFE) > min_uconf,X C DFE are F(20) and DF(24). Hence, F — DE is
a HGB rule with utility 36 and utility-confidence 0.8.

In Definition 21, the condition g c h, with g # (), states that
there is no rule, which is either with empty antecedent or empty
consequent. For the formation of basis from high utility closed
itemsets, HUCI ensures that the eliminated redundant rule has
the same support. The non existence of subsets of an antecedent
of a valid rule in the basis HGB indicates that it is the rule with
smallest antecedent and since it is derived from the closed itemset,
it has maximum consequent. Theorem 8 concludes that the con-
struction of HGB leads to extraction of all non-redundant rules
on utility-confidence framework.

Theorem 8. Let h and h’ be two high utility closed itemsets such that
h' c h. Let HG}, be the set containing the generators of h’ and g € HG},

such that uconf(R:g — h\ g) > min_uconf. If there does not exist
any subset g’ of g such that uconf(R' : g’ — h\ g') > min_uconf, then
R:g— h\geHGB.

Proof. It directly follows from Definition 21.R: g — h\ g is a valid
rule and there does not exist any subset g’ of g such that
uconf(g’' — h\ g’) > min_uconf. Hence, R is generated from h con-
taining the smallest antecedent and R € HGB. O

We now provide an approach that constructs HGB basis by
examining all high utility closed patterns level-by-level in
Algorithm 3. The HGB construction algorithm takes as input the
high utility closed itemsets with their generators, the set HUCI
and the user-provided threshold values min_uconf, and min_util.
The main idea of this proposed algorithm is based on Theorem 8.
A basis is added into the HGB set only if there does not exist any
valid rule with smaller antecedent and of same support.
According to Theorem 6, if for a high utility closed itemset h we
have a valid rule with some generator of a subset itemset h’ c h,
that rule is a HGB rule. If such a valid rule does not exist, we can
join the items level-by-level to obtain an antecedent with smaller
length. While adding items to a generator, the algorithm checks
whether the resulting antecedent is a high utility itemset or not.
A set Ly, is used to keep the minimal antecedent for a valid rule,
discovered so far, which is an empty set at the beginning of each
iteration. The algorithm starts searching for the minimal antece-
dent, and as soon as it is found, it is added to Ly, if there does
not exist a subset in L;,,. The supersets of the currently added set
are removed from Lnq. Once all the closed subsets of a closed item-
set are processed, the HGB rules are generated by taking the ele-
ments of Ly, as antecedent. The algorithm continues to generate
HGB rules until no more high utility closed itemsets are processed.
Finally, all elements of HGB basis are generated.

Algorithm 3. HGB construction

Input: HUCI: High utility closed itemset with utility unit
array, min_uconf: minimum utility-confidence and min_util.
Output: HGB: High utility Generic Basis.

1 for each itemset h € HUCI do

2 Set Lmg = {}; [/ ma: minimal antecedent
3 for each h' C h in increasing order of size do
4 Set Leemp = {};
5 for each g € HG,y and g # h do
6 if (% > min.uconf and Ag; € Lima | & cg)
7 Compute Lyg =Ling U g;
8 else
9 Compute Leemp = Liemp U g;
10 end
11 for each g € Lemp do
12 Compute Ay = {iy,i3,...,i}, where each
ieh\g
13 for (j = 1;A; # 0; and (i < k);i+ +) do
14 for all I € A; do
15 if (% > min_uconf and
Ags € Lma | &5 C {gl}) do
16 Remove all I' > {gl} from Ly,;
17 Compute Lypg = Ling U {8} ;
18 end
19 Compute A;,; = Apriorigen(A;, min_util) ;
/| without pruning techniques
20 end
21 end

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5769

(continued)

Algorithm 3. HGB construction

22 end

23 for each g, € Ly, do

24 Compute R=g; — h\ g;

25 Compute R.utility = h.utility;
26 Compute R.uconf = %;
27 Compute HGB = HGBUR;
28 end

29 end

Each high utility closed itemset consists of high utility closed
itemset itself, its generators, support, utility unit array and utility.
The algorithm returns HGB containing all non-redundant rules
with utility and utility-confidence. At first, HGB is initialized with
the empty set and then closed itemsets are passed in increasing
order of their sizes. For an itemset, its closed subsets are processed
in increasing order of their size in Step 3. The algorithm processes
the generators of the closed subsets h' for generating a valid HGB
rule in Step 5. If a generator g satisfies the rule generation criteria
in Step 6, it is added to the set L, in Step 7. Otherwise, it is added
to a temporary set Lem, for further expansion in Step 9. After pro-
cessing all the generators of a subset /', if the set Liemp is nonempty,
the algorithm finds other elements of the equivalence class [h]
level-by-level by simply adopting the Apriorigen procedure
(Agrawal & Srikant, 1994) without pruning strategy with items of
h'\ g using Steps 12-23. The Apriorigen procedure is used for
generating the k-itemset from k — 1-itemset. The expansion of g
is done by combining with the elements of the itemsets returned
by Apriorigen procedure. The resulting itemsets are tested for
HGB conditions, and if the conditions are satisfied, they are added
to the set L, during Steps 15-20. After processing all the subsets,
the algorithm processes each element of L, which contains the
minimal antecedent to generate valid rules from a closed itemset,
and the rule is generated and added to the global set HGB using
Steps 25-30. Finally, after processing all the high utility closed
itemsets, the algorithm returns HGB basis.

Example 7. Consider again the database D given in Table 1.
Further, consider min_util=20 and min_uconf =80%. The
extracted HGB basis is shown in Table 9 using Algorithm 3.

Theorem 9. All rules in the HGB basis are high utility generic rules. In
other words, if R € HGB, then R € HGR and vice versa.

Proof. LetR: g — h\ g € HGB. By Definition 21, h is a closed item-
set. We need to justify whether R: g — h\ g € HGR or not. On con-
trary, assume that R: g — h\ g ¢ HGR. Then there exists a valid
association rule R :g'— h'\g € HGR such that supp(R)=
supp(R),g'Cg, and hch'. If h=h and g=g/, then R=R. If
hch, we have y(h)=hc h' Cy(h'). Then, f(y(h)) > f(y(h)) =
supp(y(h)) > supp(y(h')) = supp(h) > supp(h’) = supp(R) > supp(R').
Again, if g’ c g, there is a valid rule R': g’ — h'\ g’ which has the
smaller antecedent than the antecedent g of the rule R. Thus, by
Definition 21, R ¢ HGB. This leads to a contradiction, and hence,
R e HGR. The converse part follows straightforwardly from
Definition 21 itself. O

Theorem 10. Our proposed algorithm given in Algorithm 3 is com-
plete and sound.

Proof. From Theorem 9, any high utility non-redundant associa-
tion rule is in HGB and vice versa. As a result, the proposed algo-
rithm is complete as well as sound. O

5.2. Deriving all high utility association rules from HGB basis

Note that each element in the proposed high utility generic
basis (HGB) given in Algorithm 3 is a valid association rule. Since
the high utility closed itemsets with utility unit array are loss-less
(Wu et al.,, 2011), we can derive all high utility itemsets with their
actual utility values without accessing the datasets. As a result, all
the valid rules can be derived from HGB basis using HUCI by the
antecedent expansion of a basis element and consequent diminu-
tion by items using Theorem 11.

Algorithm 4. All high utility association rules generation from
HGB

Input: HGB, min_util, min_uconf.
Output: HAR: set of all valid high utility association rules.
1 Set HAR = 0;
2 for all rule Ry : X — Y € HGB do
3 Compute
HAR = HARU {R; : X — Y, Ry .utility, Ry .uconf};
4 for all Z such that Z c Y,Z # () do

5 find_utility(X UZ); [| Calculates the utility of
XUZ from the utility unit array of p(XUZ).
6 if ({X U Z}.utility > min_util)
7 if (M%{ﬁum > min_uconf)
Compute

HAR = HARU {R; : XUZ — Y\ Z, Ry .utility, Ry .uconf’};
9 end
10 end
11 for all rules R, : X — Y € HAR do
12 for all Z such that Z c Y,Z # () do

13 find_utility(X U Z);
14 if ({X U Z}.utility > min_util)
15 ifR, : X —Z ¢ HAR
16 Compute
HAR = HARU {R; : X — Z, Ry .utility, R, .uconf};
17 end
18 end

Algorithm 4 provides the required procedure to generate all
valid association rules from HGB basis, which takes the inputs as
HGB, min_util, and min_uconf. The utility value of any itemset is cal-
culated with the help of the utility unit array of each closed itemset.
We are also able to reconstitute all high utility closed itemsets by
joining antecedent and the consequent parts of a HGB rule. Since
the support of an itemset is evaluated from the smallest closed
itemset containing it, the utility and utility-confidence of all the
rules can be derived exactly.

Theorem 11. Let HUCI be the set of all high utility closed itemsets and
HGB the high utility generic basis. If R : X — Y € HGB, for all subsets Z
of Y, then R’ : X — Z is also a valid association rule, where XUZ is a
high utility itemset.

Proof. Let R: X — Y € HGB and HUCI be the set of all high utility
closed itemsets. The utility confidence of the rule R : X — Y is given

by uconf(R) ="2%Y. Since Z C Y, we have luw(X,Y) < uv(X,Z).

5770

luv(X.Y)

Hence, '”3882) > M5 > min_uconf. As a result, the rule R : X — Z

is valid as XUZ is a high utility itemset. O

Corollary 4. Let R : X — Y be a valid association rule on a utility-con-
fidence framework. Then for any subset Z C Y, if X U Z is a high utility
itemset, R' : X — Z is also a valid association rule.

Theorem 12. The proposed inference algorithm for generating all
valid high utility association rules given in Algorithm 4 is complete.

Proof. LetR: X — Y is a HGB basis. Steps 2-10 of Algorithm 4 gen-
erate all valid association rules by the augmentation on antecedent
by the subset of consequent parts of a HGB basis. Since all HGB
basis are also valid rules, they are added to the global set HAR,
which is used to keep all the high utility association rules in Step
3. After generation of all valid rules by antecedent expansions,
the algorithm generates the valid association rules by applying
decomposition on the generated association rules using
Theorem 11 and Corollary 4 during Steps 11-17. Hence, the pro-
posed inference algorithm for generating all valid high utility
association rules is complete. [

6. Performance evaluation

In Section 6.1, we first perform the simulation of our proposed
utility-confidence framework on a small dataset. We then demon-
strate the computational performance of our proposed FHIM,
HUCI-Miner, and HGB construction algorithms using both syn-
thetic (T1014D100K) and real datasets (Foodmart, Chess,
Mushroom, Connect, Retail, Chain-store) in Sections 6.2-6.5. In
our experiments, seven datasets are selected in order to indicate
the strength of our proposed methods on the different characteris-
tics vary from the less number of transactions to the large number
of transactions, from the less number of items to more number of
items, and also from fully sparse to fully dense.

The datasets T1014D100K, Chess, Mushroom, Connect and Retail
are obtained from frequent itemset mining dataset repository
(FIMI, 2003), Chain-store is obtained from NU-MineBench 2.0
(Pisharath et al., 2005), and Foodmart is from Microsoft foodmart
2000 database. Table 10 shows the characteristics regarding these
datasets in terms of the number of transactions (| T |), the number
of distinct items (| I |), the average number of items in a transaction
(Avgl), the maximum length of transaction MaxL, and its type:
dense or sparse. Except Chain-store and Foodmart, the other four
remaining considered datasets do not provide unit profits of each

Table 11
Top 14 rules with respect to support in support-confidence framework.

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

item (external utility) and item count for each transaction (internal
utility). As in Ahmed et al. (2009, 2011), Liu and Qu (2012), Liu
et al. (2005) and Tseng et al. (2010), we assign in each transaction
of T1014D100K, Mushroom, Chess, Connect and Retail, the internal
utilities randomly between 1 and 10, and the external utilities of
each item are randomly generated using a log-normal distribution
between the range 0.01 and 10. To show the performance of our
proposed algorithms, we compare these with the existing well-
known algorithms: FHM (Fournier-Viger et al, 2014b), CHUD
(Wu et al., 2011, 2014), UP-Growth (Tseng et al., 2010) and UP-
Growth™ Tseng et al. (2013). The FHM implementation is down-
loaded from the SPMF framework (Fournier-Viger, Gomariz,
Soltani, & Gueniche, 2014a). We implement all the experiments
using the Java programming language and run with the Windows
7 operating system on a machine with CPU clock rate 3.20 GHz
and intel core i5 processor with 3.41 GB of main memory. To
enhance the performance of all algorithms, the discovered candi-
date itemsets and high utility itemsets are stored in the main
memory. In all the experiments we have used the minimum utility
threshold min_util, as the percentage of total transaction utility val-
ues of the database.

6.1. Simulation

We have performed the simulation for our proposed utility-
confidence framework on a sample dataset, available in Microsoft
SQL Server 2012 Data Mining Add-ins for Microsoft Office. This
dataset contains 13050 number of transactions and 37 items. The
selling cost of each item provided in this dataset is considered as
the utility of each item and the internal quantity is assigned ran-
domly between 1 and 10, in order to demonstrate the usefulness
of our utility-confidence framework. Since utility value is normally
larger than support, a comparison of the two constraints is not sig-
nified with the same thresholds. As an alternative, we have consid-
ered the same confidence and utility-confidence thresholds and
generates the top 100 rules with respect to support and utility,
respectively. To extract the top 100 association rules in support
confidence framework the TopKRules (Fournier-Viger, Wu, &
Tseng, 2012) implementation in SPMF is used. The minimum con-
fidence is set to 0.4, and after all rules are extracted the top 14
association rules with respect to the support are presented in
Table 11. Additionally, Table 11 contains the utility value and util-
ity-confidence information of the extracted association rules. We
then simulate our proposed algorithm for utility-confidence frame-
work and compare it with traditional association rule mining. The
top 14 rules with respect to utility are extracted and shown in
Table 12.

Rule No. Rule Support Confidence Utility value Utility-confidence
1 Mountain Bottle Cage — Water Bottle 998 0.83 82,295 0.83
2 Road Bottle Cage — Water Bottle 897 0.89 70,427 0.9
3 Mountain Tire Tube — Sport-100 749 0.42 245,572 0.4
4 HL Mountain Tire — Mountain Tire Tube 552 0.68 121,680 0.67
5 Touring Tire Tube — Touring Tire 507 0.57 94,737 0.87
6 Touring Tire — Touring Tire Tube 507 0.87 94,737 0.57
7 ML Mountain Tire — Mountain Tire Tube 435 0.66 84,810 0.66
8 ML Road Tire — Road Tire Tube 363 0.68 66,636 0.68
9 Half-Finger Gloves — Sport-100 352 0.41 154,524 0.42
10 Touring-1000 — Sport-100 344 0.42 4,532,612 0.53
11 Mountain-200, Mountain Bottle Cage — Water Bottle 344 0.8 4,426,705 0.81
12 Water Bottle, Mountain-200 — Mountain Bottle Cage 344 1 4,426,705 1

13 LL Road Tire — Road Tire Tube 334 0.55 57,495 0.56
14 HL Road Tire — Road Tire Tube 326 0.7 78,795 0.72

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5771

Table 12
Top 14 rules with respect to utility in utility-confidence framework.
Rule No. Rule Utility value Utility-confidence Support Confidence
1 Touring-1000 — Sport-100 4,532,612 0.57 344 0.42
2 Water Bottle, Mountain-200 — Mountain Bottle Cage 4,426,705 1 344 1
3 Mountain Bottle Cage, Mountain-200 — Water Bottle 4,426,705 0.81 344 0.8
4 Mountain Tire Tube, Mountain-200 — HL Mountain Tire 2,734,660 1 204 1.0
5 HL Mountain Tire, Mountain-200 — Mountain Tire Tube 2,734,660 0.67 204 0.65
6 Road-550-W — Sport-100 2,610,225 0.73 264 0.43
7 Touring-1000, Water Bottle — Road Bottle Cage 2,322,753 1 195 1.0
8 Road Bottle Cage, Touring-1000 — Water Bottle 2.322,753 0.9 195 0.9
9 Road-750, Water Bottle — Road Bottle Cage 1,742,757 1 278 1.0
10 Road-750, Road Bottle Cage — Water Bottle 1,742,757 0.95 278 0.87
11 Mountain Bottle Cage, Sport-100 — Mountain-200 1,718,844 0.4 135 04
12 Patch kit, Mountain-200 — HL Mountain Tire 1,373,430 0.61 89 0.46
13 Touring Tire Tube, Touring-1000 — Touring Tire 1,319,548 1 95 1.0
14 Touring Tire, Touring-1000 — Touring Tire Tube 1,319,548 0.87 95 0.89
Table 13 From Tables 11 and 12, it is observed that the high support of a
Number of candidates generated with different min_util of different datasets. rule does not necessarily imply a high utility itemset, because
— there exist less frequent items, which are more profitable than
Dataset min_util # of Cand. for # of Cand. for % of Cand. highl . F h fid d utili fi
*) FHM FHIM pruned (%) ighly occurrence itemsets. From the confidence an utility-confi-
dence, it is also clear that the confidence indicates the percentage
Foodmart 0.05 2,862,896 1,198,011 58.15 fsimult fthe antecedent-withe il 0
0.06 15.98.864 1180.953 2613 of simultaneous occurrence of the antecedent wi e consequent,
0.07 1,252,117 1,175,749 6.09 while the utility confidence indicates the percentage of profit of
0.08 1,187,833 1,173,032 1.25 antecedent contributed towards to its total profit selling with the
Chess 20 1,251,083 1238568 1 consequent. Hence, using both the measures simultaneously, one
22 500,398 494,654 1.15 can improve the financial decisions.
24 199,649 197,239 1.21
26 81,662 80,436 15 .) o
6.2. Impact on number of candidate high utility itemsets
Mushroom 1 41,169,325 38,416,343 6.68
2 8,230,798 7,702,670 6.42)))
3 2,788.719 2,611,890 6.34 In this part of experiment, we compare the number of candidate
4 1,152,048 1,079,207 6.32 high utility itemsets generated in FHM and FHIM methods. The
T1014D100K 0004 89,455922 31,066,876 65.27 comparison with other methods is not shown as FHM generates
0.005 52,524,204 24,037,538 54.23 less candidate than HUI-Miner algorithm, which generates less
8-88? ;’jv;?g'ggg };’éggvggg ‘3“7‘-;21 number of candidates than UP-Growth and UP-Growth*. The num-
i Ty i i ber of potential candidates in both FHM and FHIM algorithms indi-
Retail 0.01 71,880,396 50,381,512 299 cates the number of recurrences in the respective methods. For
goz SL073.3 22086264 6.39 each dataset, we vary the value of min_util as the percentage of
003 20,662,033 20,058,672 2.92 taset, y - _percentag
0.04 14535985 14,299,784 1.62 total utility and we calculate the number of candidate itemsets.
Chainsstors (0104 13,217,269 13211125 0.5 The results of most datasets are shown in Table 13. The fifth col-
0.05 6,271,300 6,268,374 0.05 umn of this table represents the percentage of candidate pruned
0.06 3,001,556 2,999,339 0.07 by FHIM. We observe that the number of candidate patterns in
0.07 1,311,632 1,310,693 0.07

Observe that the two confidence measures accord on most of
the association rules, though they both differ in some rules.
Again, most of the rules ranking are different in both the frame-
works. In essence, the traditional association rule mining frame-
work misses two types of rules:

e Rules have low frequent and high utility values.
e Rules with small confidence but contributes more profit share
to the utility value of the antecedent.

For example, in Table 12 the rule Touring Tire, Touring-
1000 — Touring Tire Tube is of less frequent but high utility value
than the rule HL Road Tire — Road Tire Tube of Table 11 and is of
first type. Again, the utility-confidence of the rule Patch kit,
Mountain-200 — HL Mountain Tire is 0.61 in Table 12, which is lar-
ger than its confidence value. It indicates that 61% profit of Patch
kit, Mountain-200 is obtained from the composite selling of Patch
kit, Mountain-200 and HL Mountain Tire, which is more acceptable
than its frequency of selling. This information is not qualified by
support-confidence framework, and this rule is of second type.

our proposed method, FHIM, is less than the number of patterns
generated by FHM algorithm. The experimental results show that
the proposed pruning strategy enables FHIM in reducing the num-
ber of candidate patterns as compared to that for FHM algorithm.
Also, in most datasets, it is observed that the percentage of candi-
dates pruned increases with the decrease of the minimum utility
value. This makes FHIM more faster than FHM.

6.3. Impact on execution time, memory consumption and scalability

We have evaluated the efficiency of our proposed methods in
terms of running time, and memory by varying the minimum util-
ity min_util value against FHM, CHUD, UP-Growth and UP-Growth*
algorithms. When the HUCI-Miner algorithm is composite with
FHIM, the utility unit array of an itemset is calculated from utility
list. For the experiments of UP-Growth and UP-Growth™, the gener-
ated candidate itemsets are stored in a file. To calculate their actual
utility values in phase-Il, the generated candidate itemsets are
loaded in main memory. To optimize the phase-II of UP-Growth
and UP-Growth™ the original dataset is transformed to the revised
dataset that only contains the promising items and the database
scan is performed on the revised dataset as in Liu and Qu (2012).
The phase-II of CHUD algorithm is also performed on the revised

5772
10°
10’4
~ 10’
3
2
2 10'4
g
10'4
10" T . "
0.02 0.04 0.06 0.08 0.10
min_util (%)
(a) Execution time on Foodmart
10°
10’
g
@ 10
(5]
E
=
10'4
I OU
5 6 7 8 9 10
min_util (%)
(c) Execution time on Mushroom
10°
10'1
5
o
2
o
E
i IOL-_\\
10' r r r
0.02 0.04 0.06 0.08 0.10

min_util (%)

(e) Execution time on Retail

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

Y
10’
2 10
(5]
E
=
10'4
10° " " " "
25 26 27 28 29 30
min_util (%)
(b) Execution time on Chess
10°
10’
,g 2
@ 10°]
(o]
=
10'4
10— r .
0.01 0.02 0.03 0.04
min_util (%)

(d) Execution time on T1014D100K
10°
103-\\

3
2
g
£ 10
10’ T T T r
0.05 0.06 0.07 0.08 0.09 0.10
min-util (%)

(f) Execution time on Chain-store

—M-FHIM —@FHM —A—CHUD —W—HUCI-Miner —@—UP-Growth —K—UP-Growth"

Fig. 3. Execution time comparison on the datasets mentioned in Table 10.

transactions with the optimization technique provided in Wu et al.
(2011).

Fig. 3 plots the comparison results on running time for
Foodmart, Chess, Mushroom, T1014D100K, Retail and Chain-store
datasets. The minimum utility value threshold min_util in percent-
age is taken on X-axis as liner scale and the running time in second
is taken on Y-axis as log scale. All the six algorithms are executed
for five times each for fixed min_util value and the average running
time is plotted for each min_util. From Fig. 3, we observe that the
running time for all the datasets is more for low min_util value,
and it grows fast as min_util value decreases. Fig. 3(a) and (c) show
the comparison time on datasets, Foodmart and Mushroom,
respectively. Note that in Foodmart dataset for high utility value,
HUCI-Miner is more efficient than CHUD, but the performance of
HUCI-Miner degrades as min_util value decreases. In case of
Mushroom dataset, CHUD achieves better performance than
HUCI-Miner. The reason is HUCI-Miner performs more activity
for the generation of high utility itemset generators, which scans
over the all high utility itemsets. The running time comparison

on Chess, Retail and Chain-store are shown in Fig. 3(b), (e) and
(f), respectively. The plot of these figures shows that HUCI-Miner
takes less time than CHUD. In this case, the intersection operation
among the Tidlists in CHUD takes more time than the subset test-
ing among high utility itemsets in HUCI-Miner. Also, in the data-
sets Retail and Chain-store the CHUD method takes more time
than UP-Growth as these datasets contain more items and transac-
tions. The intersection operation among Tidlists is costly. In the
dataset T1014D100K, for high minimum utility threshold, HUCI-
Miner is more efficient, but as the min_util value decreases the plot
of HUCI-Miner increases exponentially. Again, in all datasets the
FHIM method dominates the state-of-the-art high utility mining
algorithm FHM. The proposed FHIM method is two times faster
than FHM method for low min_util value. It is clear that FHIM is fas-
ter than other existing methods. For all most datasets, and min_util
values, the superiority of FHIM demonstrates the effectiveness of
the proposed pruning strategies.

We have shown the memory consumption of six algorithms on
Foodmart, Chess, Mushroom, T1014D100K, Retail and Chain-store

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

1000

5773

1000

- —
= _ - —
@ @ s i
= =
Z 100 = 100
S 2
e e
£]
Z 2
a 2 w
= =}
R e
o z
Q =]
£ £
i3 153
= =
1 . . . 1 : : :
0.02 0.04 0.06 0.08 0.10 26 27 28 29 30
min_util (%) min_util (%)
(a) Memory comparison on Foodmart (b) Memory comparison on Chess
1000 1000 K‘
o = At *
= =
Z 100 =
g S
g g
z 2 100-%?4><:
= =}
O 104 o]
- z
=} =}
£ £
& 5
= =
1 . . : . 10— . .
5 6 7 8 9 10 0.01 0.02 0.03 0.04
min_util (%) min_util (%)
(c) Memory comparison on Mushroom (d) Memory comparison on T1014D100K
1000 1000
e S " "
~ b A . 9004
g — 2
= < 800
S 2
a a
E 1001 E 7001
2 z
o =]
o o} —’\\0\‘
)
Z 2 600
g =]
Q L
= =
10 T T T 500 T T T
0.02 0.04 0.06 0.08 0.10 0.06 0.07 0.08 0.09 0.10
min_util (%) min_util (%)

(e) Memory comparison on Retail

—-FHIM —@-FHM —&— CHUD

—W— HUCI-Miner

(f) Memory comparison on Chain-store

—@— UP-Growth —K— UP-Growth"

Fig. 4. Memory Consumption comparison on the datasets mentioned in Table 10.

datasets. The average maximum memory used by each algorithm is
calculated by varying min_util and executing five times. Fig. 4(a)
plots the graph for memory used on the sparse dataset,
Foodmart. This figure shows when the min_util value is less than
0.04%, the memory used increases very fast in HUCI-Miner.
CHUD consumes less memory than FHM and almost same memory
used by FHIM. For high utility value, FHIM dominates CHUD.
Fig. 4(b) plots the memory consumption graph for the dense data-
set, Chess. The growth rate of memory used by CHUD is slightly
more than the memory used in HUCI-Miner as more number of
intersection operations is executed in CHUD. The memory con-
sumption growth rate of HUCI-Miner is similar to the growth of
CHUD in Mushroom and T1014D100K datasets, which is evident
from Fig. 4(c) and (d). The graph on Retail datasets shown in
Fig. 4(e) reflects that the memory used by UP-Growth and UP-
Growth" is almost constant, but for others it grows linearly. The
memory consumption of UP-Growth is very less in the sparse data-
set Chain-store as shown in Fig. 4(f). In all the plots, it can be
observed that the memory consumption of FHIM and FHM are
comparable. The memory consumed by both FHIM and FHM vary
alternatively in Retail and Chain-store datasets. The memory con-
sumed by the local co-occurrence table is less than the memory

used by the utility-list of the extra candidate itemsets generated
by FHM. In general, as the memory used in each algorithm is pro-
portional to the number of candidate itemsets generated, FHIM
consumes less memory than FHM.

We have performed the experiments on the extremely dense
dataset, Connect. For this dataset, our implementation of UP-
Growth, UP-Growth*, and CHUD could not be executed (showing
out of memory) for the considered minimum utility percentage.
So, we have executed and plotted the graphs for FHIM, FHM and
HUCI-Miner for the execution time and memory used in each algo-
rithm shown in Fig. 5. We vary the minimum utility threshold from
27% to 30%. Fig. 5(a) shows the plot of running time comparison
and Fig. 5(b) shows the graph for memory consumption on this
dataset. The FHM algorithm consumes more time than FHIM and
HUCI-Miner, but the growth rate of these algorithms are linear.
The memory consumed by the HUCI-Miner algorithm is more than
other two as it maintains all the extracted high utility itemsets in
the main memory for generating generators and high utility closed
itemsets.

We have performed the experiments on the scalability, which is
measured in terms of the amount of main memory used and execu-
tion time by an algorithm. The study of scalability of FHIM and

5774

—=— FHIM
—e— FHM
S —¥— HUCI-Mine

Time (Sec.)

T T
28.5 29.0

min_util (%)

T
28.0

(a) Execution time comparison

30.0

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

1000

[—¥— HUCI-Miner]

a

=

E

g

£

£ 100

z

8 —=— FHIM
—e— FHM

S H

S

g

5

=

10
27.0

28.5 29.0 29.5

min_util (%)

275 28.0 30.0

(b) Memory Consumption comparison

Fig. 5. Experiment on Connect dataset with varying minimum utility threshold (min_util) in %.

min_util = 0.06%

MB)

S
=3
22

S 103-//_4 g 800
5 107 2
2 Z 600
= o
= o]
10' g
g 400
, § min_util = 0.06%
10 T T T T T T T T
2 4 6 8 10 12 2 4 6 8 10 12
No. of Transactions (1 unit =10’) No. of Transactions (| unit =10’)
(a) Scalability on Time (b) Scalability on Memory
—-FHIM —@—FHM —A— CHUD —W— HUCI-Miner —@—UP-Growth ~ —K—UP-Growth"
Fig. 6. Scalability study by varying number of transactions on Chain-store.
10" ——
min_util = 0.06% @ 1000
2
g 8
5 a
%) £
Z o — E
2 & = — % | =
g F S 4004
£ 104 z
z
=]
§ min_util = 0.06%
10' T r 200 T r
20k 30k 40k 50k 20k 30k 40k 50k
No. of Items No. of Items
(a) Scalability on Time (b) Scalability on Memory
—-FHIM —@—FHM —&A—CHUD —W—HUCI-Miner —4—UP-Growth —¥— UP-Growth"

Fig. 7. Scalability study by varying number of items on Chain-store.

HUCI-Miner is performed by varying the transaction size and num-
ber of items with fixed min_util. We have used the Chain-store
dataset, which is a sparse dataset with a large number of transac-
tions and distinct items. As this dataset contains 1,112,949 number
of transactions, another 87,051 random transaction are added to
make it a dataset of 1,200,000 number of transaction. Again as this
dataset contains 46,086 number of items, another 3914 number of
items are added to this dataset with their utility value are chosen
randomly from the existing utility value distribution of Chain-
store. Then the modified dataset is processed for scalability testing.
Initially, 200,000 random numbers of transactions are selected
from this modified Chain-store dataset and processed. In each
process, another 200,000 random numbers of transactions are

selected and added to the previous processed dataset to increase
the transaction size. The performance results of the experiments
for execution time and memory requirement by varying the
number of transactions are reported in Fig. 6. Fig. 6(a) shows the
execution time of our FHIM and HUCI-Miner algorithms and
existing CHUD, FHM, UP-Growth and UP-Growth" algorithms as a
function of the transaction size. Fig. 6(b) shows the memory
requirement versus the number of transactions. It is clear that
the overall mining time and memory consumption increases
when the number of transactions increases. However, FHM,
FHIM, HUCI-Miner, UP-Growth and UP-Growth® show a linear
increase in run-time and memory utilization when the number
of transactions increases.

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5775
10*
) sl ifp—— min_util = 5%
_ e
//*// —~
m
L s
10 P ;
5 i B 2
(53 =9
%) £
2 =— FHIM g 1004 = FHIM
E . FUM g —e— FHM
—4— CHUD = —— CHUD
v— HUCI-Miner g [—w— HUCI-Miner|
[—— UP-Growth S |—&— UP-Growth
min_util = 5% N = |~ UP-Growth"
10' T T T 10 : r r
5 10 15 20 25 5 10 15 20 25
No. of Transactions (1 unit :104) No. of Transactions (1 unit =104)
(a) Scalability on execution time (b) Scalability on memory
Fig. 8. Scalability study by varying number of transactions on T30I11D500K.
Table 14 Table 15
Number of high utility closed itemset (HUCI) of different datasets. Number of high utility association rules (HAR) and HGB of different datasets.
Dataset min_util in # of # of #HG # of Dataset (min_util (%)) min_uconf in (%) # of HAR # of HGB ¢ in (%)
(%) HUI HUCl HUCHH HE Foodmart (0.04) 70 810,488 11,895 98.53
Foodmart 0.07 637 605 22 627 50 811,876 10,630 98.69
0.06 1487 771 304 1075 30 812,353 7360 99.09
0.05 6276 1076 1581 2667 10 851,635 1599 99.81
004 20766 dge2 4636 64w Mushroom (1) 40 778056 1962 99.75
Chess 28 1982 1519 433 1952 30 827,627 1574 99.81
27 3874 2776 962 3738 20 881,346 1045 99.88
26 7187 4910 1937 6847 10 881,350 1041 99.88
25 13331 &0 38l 133U Chess (25) 90 347346 58208 8324
Mushroom 8 28,764 982 3254 4236 80 1,080,743 92,831 91.41
7 51,188 1470 5453 6923 70 1,953,364 108,552 94.44
6 108,797 2216 10,161 12,377 60 2,466,563 84,271 96.58
2 e 28 I 208l Chain-store (0.03) 9 230 213 739
T1014D100K 0.009 93,155 66,467 9828 76,226 7 277 257 7.22
0.008 111,754 76,226 13,166 89,392 5 348 313 10.06
0.007 141,382 90,187 18,851 109,038 3 411 367 10.71
0.006 192,673 111,544 28,837 140,381
Retail 0.05 1876 1874 2 1876
0.04 2810 2802 8 2810 on scalability are shown in Fig. 8. The execution time taken by each
0.03 4848 4828 20 4848 1 ith li 1 diti ident f Fi 8() Alth h
0.02 9355 9303 52 9355 dlgorithm grows linearly and 1t 1s EVI‘ en ; rorp 1g. a). oug
. the memory consumed by each algorithm in Fig. 8(b) follows some
Chain-store 0.08 118 118 - 118 . s
0.07 151 151 - 151 zigzag path, the graphs are nearly linear as the number of transac-
0.06 193 193 - 193 tions increases.
0.05 260 260 - 260

In order to perform the scalability by varying the number of
items, the same modified database Chain-store is chosen. Initially
20,000 items are randomly chosen, such that each transaction of
Chain store contains at least one item of these 20,000 items. The
modified database is processed for a fixed min_util. In each process,
another 5000 number of random items are selected and added to
the transaction of the previous processed database randomly. The
execution and memory consumption by varying number of items
with a fixed min_util is shown in Fig. 7. The graphs of this figure
shows that both FHIM and HUCI-Miner grow linearly as the num-
ber of items increases as in FHM.

In order to strengthen our experiments, we have performed the
scalability on a synthetic dense dataset, T3011D500K, which is gen-
erated using the code of IBM Quest Synthetic Data Generator. This
dataset contains 100 items with the average transactional length
30 and 500,000 transactions. The execution of CHUD imple-
mentations is out of memory for this dataset for the chosen mini-
mum utility threshold. To test the scalability, initially the first
50,000 transactions are chosen and for the subsequent process
next 50,000 transactions are added. The plots of the rest algorithms

6.4. Impact on number of high utility closed itemsets versus the
number of high utility itemsets

Table 14 reports the number of high utility itemsets (HUI), high
utility closed itemsets (HUCI), and high utility generators (HG)
extracted by HUCI-Miner in various datasets with different
min_util values. The itemset, which is a generator of itself, is not
counted in HG. The symbol ‘~’ represents that there is no generator
except those, who are generators of themselves. From Table 14, we
see that the total number of HUCI and HG is less than or equal to
the total number of high utility itemsets. Since all HUIs can be gen-
erated from HUCIs with the help of utility unit array, HGs help in
finding non-redundant rules in support-confidence framework of
high utility mining. Note that our proposed HUCI-Miner algorithm
achieves a great reduction in compressing the number of high util-
ity itemsets.

6.5. Performance of HGB with different min_uconf

We have evaluated the compactness of our proposed HGB basis.
The major issue on extracting association rule on the utility-confi-
dence framework is concerned with the size of the extracted rule

5776

3
.
e—————A4
g el s
= 104 3
= ~=—DHAR
] —e— HGBC
min_util = 0.04% —— HARHGB]|
10° T T T T T
10 20 30 40 50 60 70

min_uconf (%)

(a) Execution time on Foodmart

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

120
min_util=0.04% ~=—DHAR
s HGBC
|4~ HARHGB
80
%
g
5
£
T 04
e,
"
s i
o—_— o
0 T T T
4 6 8

min_uconf (%)

(b) Execution time on Chain-store

Fig. 9. Evaluation of utility-based association rule generation methods.

sets. We have evaluated the number of rules in HGB basis and the
total number of high utility rules on different datasets by keeping
the fixed min_util value and varying min_uconf, and the results are
reported in Table 15. Let | HAR | be the total number of high utility
association rules and | HGB | the total number of HGB rules. The
compression ratio (J) gained by the basis HGB against the total
rules HAR is given by 6 = 1 — {7t

Compression gain indicates that there is less number of HGB
rules generated as compared to the total rules. In Foodmart,
Mushroom and Chess datasets, the compression gain is more as
compared to the compression gain in Chain-store dataset. It can be
observed that except Chess and Chain-store dataset, the number of
HARs are increased with the decrease of min_uconf. On the other
hand, the number of HGB rules are increased with the increase of
min_uconf. In Chain-store dataset, there is very less number of high
utility itemsets of larger size with the min_util value as compared to
other datasets.

To show the execution time of HGB and all high utility association
rules generation process, we have used some notations as follows.
The direct generation of high utility association rules from the high
utility itemsets using the traditional rule generation method is
denoted as DHAR. The HGB-construction algorithm is denoted as
HGBC and the generation of all high utility association rules from
HGB is denoted as HARHGB. The execution time of each rule genera-
tion method is executed for a fixed minimum utility value and by
varying the utility-confidence value. The running time does not
count the time taken by HUCI-Miner. Although various experiments
on each dataset are performed, we have plotted for the Foodmart
and Chain-store datasets given in Fig. 9. In case of Foodmart dataset,
HARHGB takes more time as compared to the direct method, DHAR.
The inference mechanism consumes more time on checking a rule
present in a set currently discovers the rules set or not. Moreover,
the time complexity of DHAR is a function of the number of HUIs,
but the complexity of HARHGB is a function of the number of rules
discovered so far. In general, the number of rules is exponential to
the number of HUIs. Hence, it is not surprising to see that it takes
more time as compared to the traditional rule generation method.
The rules compressed by HGB is designed to provide fewer non-re-
dundant high utility association rules. In Chain-store datasets, for
the considered minimum utility value, DHAR takes more time. In
both cases, HGBC consumes less execution time as compared to
the direct generation method.

7. Conclusion

Association rule mining techniques are being studied exhaus-
tively by researchers to discover the relationships between item-
sets using statistical measure support and confidence. However,

they do not provide any semantic implication between itemsets,
such as relationship with respect to utility. To provide a semantic
relationship between itemsets, we have used the utility-confidence
framework to mine association rules in high utility itemset mining.
We have addressed the problem of redundancy in association rules
extracted from high utility itemset by proposing a compact repre-
sentation of the rule set, called the high utility generic basis (HGB)
containing rules with minimal antecedent and maximal conse-
quent. To the best of our knowledge, this is the first study on min-
ing non-redundant association rules extracted from the high utility
itemsets. This is a two step process: finding all high utility itemsets
and then extracting all valid rules. To extract the non-redundant
rule set, the high utility closed itemset and generator are mined
first by the proposed algorithm HUCI-Miner that identifies the high
utility itemsets, high utility closed itemsets and associates the high
utility generators to the corresponding closed itemset. We have
proposed an algorithm to mine all non-redundant rules under this
proposed framework. We have further proposed an inference algo-
rithm to derive all valid association rules under this framework.
We have then studied the performance of HUCI-Miner with UP-
Growth, CHUD and FHM algorithms on various datasets and shown
that FHIM and HUCI-Miner almost outperforms than other existing
approaches. Furthermore, experimental results show significantly
better achievement in compactness of the proposed rule mining
algorithms.

In this work, we have addressed the importance of a utility-
based association rule and their redundancies using the semantic
measure utility-confidence. However, there are other utility-based
interestingness measures and subjective interesting measures
(Geng & Hamilton, 2006), which are not incorporated in the high
utility itemset mining. Incorporating various interesting measures
of association rules in high utility itemset mining with the inspira-
tion of this work is an interesting future research direction.
Furthermore, the proposed approach can be used in web-recom-
mendation systems by considering both page weights and the
number of times a user visited to page in a stipulated period of a
web transaction. The proposed concepts and framework could be
extended for discovering rules with negative item utilities and con-
sidering the different types of databases such as temporal data-
bases and dynamic databases. In addition, in future we like to
integrate the proposed framework to associative classification
models.

Acknowledgements

The authors would like to acknowledge the many helpful sug-
gestions of the anonymous reviewers, the Editor and the Editor-
in-Chief, Dr. Binshan Lin, which have improved significantly the
content and the presentation of this paper.

J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778 5777

References

Agrawal, R, & Srikant, R. (1994). Fast algorithms for mining association rules in
large databases. Proceedings of the 20th international conference on very large
data bases. VLDB'94 (Vol. 1215, pp. 487-499). Morgan Kaufmann Publishers Inc..

Ahmed, C., Tanbeer, S., Jeong, B.-S., & Lee, Y.-K. (2009). Efficient tree structures for
high utility pattern mining in incremental databases. IEEE Transactions on
Knowledge and Data Engineering, 21(12), 1708-1721.

Ahmed, C. F,, Tanbeer, S. K., Jeong, B.-S., & Lee, Y.-K. (2011). Huc-prune: An efficient
candidate pruning technique tomine high utility patterns. Applied Intelligence,
34(2), 181-198.

Alonso, F., Martinez, L., Perez, A., & Valente,]. P. (2012). Cooperation between expert
knowledge and data mining discovered knowledge: Lessons learned. Expert
Systems with Applications, 39(8), 7524-7535.

Balcazar, J. L. (2013). Formal and computational properties of the confidence boost
of association rules. ACM Transactions on Knowledge Discovery from Data, 7(4),
19:1-19:41.

Barber, B., & Hamilton, H. J. (2001). Parametric algorithms for mining share frequent
itemsets. Journal of Intelligent Information Systems, 16(3), 277-293.

Barber, B., & Hamilton, H.]. (2003). Extracting share frequent itemsets with
infrequent subsets. Data Mining and Knowledge Discovery, 7(2), 153-185.

Cai, C. H,, Fu, A.-C,, Cheng, C., & Kwong, W. W. (1998). Mining association rules with
weighted items. In Proceedings of international database engineering and
applications symposium (IDEAS’98) (pp. 68-77). IEEE.

Carter, C., Hamilton, H. J., & Cercone, N. (1997). Share based measures for itemsets.
In Principles of data mining and knowledge discovery. Lecture notes in computer
science (Vol. 1263, pp. 14-24). Berlin Heidelberg: Springer.

Chan, R, Yang, Q., & Shen, Y.-D. (2003). Mining high utility itemsets. In Third IEEE
international conference on data mining (ICDM 2003) (pp. 19-26). IEEE.

Cheng, J., Ke, Y., & Ng, W. (2008). Effective elimination of redundant association
rules. Data Mining and Knowledge Discovery, 16(2), 221-249.

Chen, Y., Zhao, Y., & Yao, Y. (2007). A profit-based business model for evaluating rule
interestingness. In Advances in artificial intelligence. Lecture notes in computer
science (Vol. 4509, pp. 296-307). Berlin Heidelberg: Springer.

FIMI, (2003). Fimi: The frequent itemset mining dataset repository. Accessed on
February 2012. <<http://fimi.cs.helsinki.fi/data/>.

Fournier-Viger, P., Gomariz, A., Soltani, A., & Gueniche, T. (2014). SPMF: Open-
source data mining library. Available at <http://www.philippe-fournier-
viger.com/spmf/>. Accessed on August 2014.

Fournier-Viger, P., Wu, C., & Tseng, V. S. (2012). Mining top-k association rules. In
Advances in artificial intelligence. Lecture notes in computer science (Vol. 7310,
pp. 61-73). Berlin Heidelberg: Springer.

Fournier-Viger, P., Wu, C.-W., & Tseng, V. (2014c). Novel concise representations of
high utility itemsets using generator patterns. In Advanced data mining and
applications. Lecture notes in computer science (Vol. 8933, pp. 30-43). Springer
International Publishing.

Fournier-Viger, P., Wu, C,, Zida, S., & Tseng, V. S. (2014b). FHM: Faster high-utility
itemset mining using estimated utility co-occurrence pruning. In Foundations of
intelligent systems. Lecture notes in computer science (Vol. 8502, pp. 83-92).
Springer International Publishing.

Geng, L., & Hamilton, H.]J. (2006). Interestingness measures for data mining: A
survey. ACM Computing Surveys, 38(3), 9.

Han,], Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate
generation. SIGMOD Record, 29(2), 1-12.

Hilderman, R.], Hamiliton, H. J., Carter, C. L., & Cercone, N. (1998). Mining
association rules from market basket data using share measures and
characterized itemsets. International Journal on Artificial Intelligence Tools,
07(02), 189-220.

Huynh-Thi-Le, Q,, Le, T., Vo, B,, & Le, B. (2015). An efficient and effective algorithm
for mining top-rank-k frequent patterns. Expert Systems with Applications, 42(1),
156-164.

Kryszkiewicz, M. K. (1998). Representative association rules. In Research and
development in knowledge discovery and data mining. Lecture notes in computer
science (Vol. 1394, pp. 198-209). Springer Berlin Heidelberg.

Lan, G.-C., Hong, T.-P., & Tseng, V. S. (2014). An efficient projection-based indexing
approach for mining high utility itemsets. Knowledge and Information Systems,
38(1), 85-107.

Lee, D., Park, S.-H., & Moon, S. (2013). Utility-based association rule mining: A
marketing solution for cross-selling. Expert Systems with Applications, 40(7),
2715-2725.

Lin, C.-W., Hong, T.-P., & Lu, W.-H. (2011). An effective tree structure for mining
high utility itemsets. Expert Systems with Applications, 38(6), 7419-7424.

Liu, Y., Liao, W.-K., & Choudhary, A. (2005). A fast high utility itemsets mining
algorithm. In Proceedings of the 1st international workshop on utility-based data
mining (UBDM'05) (pp. 90-99). ACM.

Liu, M., & Qu, J. (2012). Mining high utility itemsets without candidate generation.
In Proceedings of the 21st ACM international conference on information and
knowledge management (CIKM'12) (pp. 55-64). ACM.

Li, Y.-C., Yeh, J.-S., & Chang, C.-C. (2008). Isolated items discarding strategy for
discovering high utility itemsets. Data & Knowledge Engineering, 64(1), 198-217.

Luna, J. M., Romero,]. R, Romero, C., & Ventura, S. (2014). Reducing gaps in
quantitative association rules: A genetic programming free-parameter
algorithm. Integrated Computer-Aided Engineering, 21(4), 321-337.

Luna,]J. M., Romero, J. R, & Ventura, S. (2012). Design and behavior study of a
grammar-guided genetic programming algorithm for mining association rules.
Knowledge and Information Systems, 32(1), 53-76.

Mata, J., Alvarez, J., & Riquelme, J. (2001). Mining numeric association rules via
evolutionary algorithm. In Proceedings of the 5th international conference on
artificial neural networks and genetic algorithms (ICANNGA'01) (pp. 264-267).

Mishra, D., Das, A. K, & Mukhopadhyay, S. (2014). A secure user anonymity-
preserving biometric-based multi-server authenticated key agreement scheme
using smart cards. Expert Systems with Applications, 41(18), 8129-8143.

Park, J., Chen, M.-S., & Yu, P. (1995). An effective hash-based algorithm for mining
association rules. SIGMOD Record, 24(2), 175-186.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999). Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1), 25-46.

Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., & Lakhal, L. (2005). Generating a
condensed representation for association rules. Journal of Intelligent Information
Systems, 24(1), 29-60.

Pears, R, Koh, Y. S., Dobbie, G., & Yeap, W. (2013). Weighted association rule mining
via a graph based connectivity model. Information Sciences, 218(0), 61-84.
Pei, J., Han, J., Lu, H,, Nishio, S., Tang, S., & Yang, D. (2001). H-mine: Hyper-structure
mining of frequent patterns in large databases. In Proceedings of the 2001 IEEE

international conference on data mining (ICDM'01) (pp. 441-448). IEEE.

Pisharath,]J., Liu, Y., Liao, W.K,, Choudhary, A., Memik, G., & Parhi, J. (2005). Nu-
minebench version 2.0 dataset and technical report. Available at <http://cucis.
ece.northwestern.edu/projects/DMS/MineBench.html>. Accessed on June 2013.

Ramkumar, G.D., Ramkumar, S., & Shalom, T. (1998). Weighted association rules:
Model and algorithm. In Proceedings of fourth ACM international conference on
knowledge discovery and data mining (pp. 661-666).

Sadik, A. T. (2008). Premises reduction of rule based expert systems using
association rules technique. International Journal of Soft Computing, 3(3),
195-200.

Sahoo, J., Das, A. K, & Goswami, A. (2014). An effective association rule mining
scheme using a new generic basis. Knowledge and Information Systems, 1-30.

Salleb-Aouissi, A., Vrain, C., & Nortet, C. (2007). Quantminer: A genetic algorithm for
mining quantitative association rules. In Proceedings of the 20th international
Jjoint conference on artificial intelligence (IJCAI'07) (pp. 1035-1040). Morgan
Kaufmann Publishers Inc.

Shie, B.-E., Tseng, V. S., & Yu, P. S. (2010). Online mining of temporal maximal utility
itemsets from data streams. In Proceedings of the 2010 ACM symposium on
applied computing (SAC'10) (pp. 1622-1626). ACM.

Shie, B.-E., Yu, P. S., & Tseng, V. S. (2012). Efficient algorithms for mining maximal
high utility itemsets from data streams with different models. Expert Systems
with Applications, 39(17), 12947-12960.

Shie, B.-E., Yu, P. S., & Tseng, V. S. (2013). Mining interesting user behavior patterns
in mobile commerce environments. Applied Intelligence, 38(3), 418-435.

Song, W., Liy, Y., & Li,]. (2014). Mining high utility itemsets by dynamically pruning
the tree structure. Applied Intelligence, 40(1), 29-43.

Szathmary, L., Napoli, A., & Kuznetsov, S. (2007). Zart: A multifunctional itemset
mining algorithm. In Proceedings of the fifth international conference on concept
lattices and their applications (CLA'07) (pp. 26-37).

Szathmary, L., Valtchev, P., Napoli, A., & Godin, R,, et al. (2008). An efficient hybrid
algorithm for mining frequent closures and generators. In: 6th International
conference on concept lattices and their applications (CLA'08) (pp. 47-58).

Szathmary, L., Valtchev, P., Napoli, A., & Godin, R. (2009). Efficient vertical mining of
frequent closures and generators. In Advances in intelligent data analysis VIII
(pp. 393-404). Berlin Heidelberg: Springer.

Tao, F., Murtagh, F., & Farid, M. (2003). Weighted association rule mining using
weighted support and significance framework. In Proceedings of the ninth ACM
SIGKDD international conference on knowledge discovery and data mining
(KDD'03) (pp. 661-666). ACM.

Tseng, V. S., Shie, B.-E., Wu, C.-W., & Yu, P. S. (2013). Efficient algorithms for mining
high utility itemsets from transactional databases. IEEE Transactions on
Knowledge and Data Engineering, 25(8), 1772-1786.

Tseng, V. S., Wu, C.-W., Shie, B.-E., & Yu, P. S. (2010). Up-growth: An efficient
algorithm for high utility itemset mining. In Proceedings of the 16th ACM SIGKDD
international conference on knowledge discovery and data mining (KDD’10)
(pp. 253-262). ACM.

Wang, W.,, Yang, ., & Yu, P. S. (2000). Efficient mining of weighted association rules
(war). In Proceedings of the sixth ACM SIGKDD international conference on
knowledge discovery and data mining (KDD'00) (pp. 270-274). ACM.

Wang, K., Zhou, S., & Han, J. (2002). Profit mining: From patterns to actions. In
Advances in database technology — EDBT 2002. Lecture notes in computer science
(Vol. 2287, pp. 70-87). Berlin Heidelberg: Springer.

Webb, G. (2006). Discovering significant rules. In Proceedings of the twelfth ACM
SIGKDD international conference on knowledge discovery and data mining
(KDD’06) (pp. 434-443). ACM.

Wu, C. W.,, Fournier-Viger, P., Yu, P. S., & Tseng, V. S. (2011). Efficient mining of a
concise and lossless representation of high utility itemsets. In Proceedings of the
2011 IEEE 11th international conference on data mining (ICDM'11) (pp. 824-833).
1EEE,

Wu, C. W., Fournier-Viger, P., Yu, P. S., & Tseng, V. S. (2014). Efficient algorithms for
mining the concise and lossless representation of closed+ high utility itemsets.
IEEE Transactions on Knowledge and Data Engineering, 99(PrePrints), 1.

Xu, Y., Li, Y., & Shaw, G. (2011). Reliable representations for association rules. Data &
Knowledge Engineering, 70(6), 555-575.

5778 J. Sahoo et al./Expert Systems with Applications 42 (2015) 5754-5778

Yahia, S., Gasmi, G., & Nguifo, E. (2009). A new generic basis of “factual” and
“implicative” association rules. Intelligent Data Analysis, 13(4), 633-656.

Yan, L, & Li, C. (2006). Incorporating pageview weight into an association-rule-
based web recommendation system. In Al 2006: Advances in Artificial Intelligence
(pp. 577-586). Berlin Heidelberg: Springer.

Yan, X,, Zhang, C., & Zhang, S. (2005). Armga: Identifying interesting association
rules with genetic algorithms. Applied Artificial Intelligence, 19(7), 677-689.
Yao, H., Hamilton, HJ., & Butz, CJ. (2004). A foundational approach to mining
itemset utilities from databases. In Proceedings of the fourth SIAM international

conference on data mining (Vol. 4, pp. 215-221).

Yao, H., Hamilton, H.], & Geng, L. (2006). A unified framework for utility-based
measures for mining itemsets. In Proceedings of ACM SIGKDD 2nd workshop on
utility-based data mining (pp. 28-37). ACM.

Yun, U. (2007). Efficient mining of weighted interesting patterns with a strong
weight and/or support affinity. Information Sciences, 177(17), 3477-3499.

Yun, U,, Ryang, H., & Ryu, K. H. (2014). High utility itemset mining with techniques
for reducing overestimated utilities and pruning candidates. Expert Systems with
Applications, 41(8), 3861-3878.

Zaki, M. (2004). Mining non-redundant association rules. Data Mining and
Knowledge Discovery, 9(3), 223-248.

Zhang, H., Padmanabhan, B., & Tuzhilin, A. (2004). On the discovery of significant
statistical quantitative rules. In Proceedings of the tenth ACM SIGKDD
international conference on knowledge discovery and data mining (KDD'04)
(pp. 374-383). ACM.

