SPMF documentation > Mining Frequent Itemsets using the AprioriTID Algorithm

This example explains how to run the AprioriTID algorithm using the SPMF open-source data mining library.

How to run this example?

What is AprioriTID?

AprioriTID is an algorithm for discovering frequent itemsets (groups of items appearing frequently) in a transaction database. It was proposed by Agrawal & Srikant (1993).

AprioriTID is a variation of the Apriori algorithm. It was proposed in the same article as Apriori as an alternative implementation of Apriori. It produces the same output as Apriori. But it uses a different mechanism for counting the support of itemsets.

What is the input of the AprioriTID algorithm?

The input is a transaction database (aka binary context) and a threshold named minsup (a value between 0 and 100 %).

A transaction database is a set of transactions. Each transaction is a set of items. For example, consider the following transaction database. It contains 5 transactions (t1, t2, ..., t5) and 5 items (1,2, 3, 4, 5). For example, the first transaction represents the set of items 1, 3 and 4. This database is provided as the file contextPasquier99.txt in the SPMF distribution. It is important to note that an item is not allowed to appear twice in the same transaction and that items are assumed to be sorted by lexicographical order in a transaction.

Transaction id Items
t1 {1, 3, 4}
t2 {2, 3, 5}
t3 {1, 2, 3, 5}
t4 {2, 5}
t5 {1, 2, 3, 5}

What is the output of the AprioriTID algorithm?

AprioriTID is an algorithm for discovering itemsets (group of items) occurring frequently in a transaction database (frequent itemsets). A frequent itemset is an itemset appearing in at least minsup transactions from the transaction database, where minsup is a parameter given by the user.

For example, if AprioriTID is run on the previous transaction database with a minsup of 40 % (2 transactions), AprioriTID produces the following result:

itemsets support
{1} 3
{2} 4
{3} 4
{5} 4
{1, 2} 2
{1, 3} 3
{1, 5} 2
{2, 3} 3
{2, 5} 4
{3, 5} 3
{1, 2, 3} 2
{1, 2, 5} 2
{1, 3, 5} 2
{2, 3, 5} 3
{1, 2, 3, 5} 2

How should I interpret the results?

In the results, each itemset is annotated with its support. The support of an itemset is how many times the itemset appears in the transaction database. For example, the itemset {2, 3 5} has a support of 3 because it appears in transactions t2, t3 and t5. It is a frequent itemset because its support is higher or equal to the minsup parameter.

Input file format

The input file format used by AprioriTID is defined as follows. It is a text file. An item is represented by a positive integer. A transaction is a line in the text file. In each line (transaction), items are separated by a single space. It is assumed that all items within a same transaction (line) are sorted according to a total order (e.g. ascending order) and that no item can appear twice within the same line.

For example, for the previous example, the input file is defined as follows:

1 3 4
2 3 5
1 2 3 5
2 5
1 2 3 5

Note that it is also possible to use the ARFF format as an alternative to the default input format. The specification of the ARFF format can be found here. Most features of the ARFF format are supported except that (1) the character "=" is forbidden and (2) escape characters are not considered. Note that when the ARFF format is used, the performance of the data mining algorithms will be slightly less than if the native SPMF file format is used because a conversion of the input file will be automatically performed before launching the algorithm and the result will also have to be converted. This cost however should be small.

Output file format

The output file format is defined as follows. It is a text file, where each line represents a frequent itemset. On each line, the items of the itemset are first listed. Each item is represented by an integer and it is followed by a single space. After, all the items, the keyword "#SUP:" appears, which is followed by an integer indicating the support of the itemset, expressed as a number of transactions. For example, here is the output file for this example. The first line indicates the frequent itemset consisting of the item 1 and it indicates that this itemset has a support of 3 transactions.

1 #SUP: 3
2 #SUP: 4
3 #SUP: 4
5 #SUP: 4
1 2 #SUP: 2
1 3 #SUP: 3
1 5 #SUP: 2
2 3 #SUP: 3
2 5 #SUP: 4
3 5 #SUP: 3
1 2 3 #SUP: 2
1 2 5 #SUP: 2
1 3 5 #SUP: 2
2 3 5 #SUP: 3
1 2 3 5 #SUP: 2

Note that if the ARFF format is used as input instead of the default input format, the output format will be the same except that items will be represented by strings instead of integers.

Performance

The Apriori and AprioriTID algorithms are important algorithms for historical reasons and also because they are simple algorithms that are easy to learn. However, faster and more memory efficient algorithms have been proposed. For efficiency, it is recommended to use more efficient algorithms like FPGrowth instead of AprioriTID or Apriori. You can see a performance comparison of Apriori, AprioriTID, FPGrowth, and other frequent itemset mining algorithms by clicking on the "performance" section of this website.

Implementation details

There are two versions of AprioriTID in SPMF. The first one is called AprioriTID and is the regular AprioriTID algorithm. The second one is called AprioriTID_Bitset and uses bitsets as internal structures instead of HashSet of Integers to represent sets of transactions IDs. The advantage of the bitset version is that using bitsets for representing sets of transactions IDs is more memory efficient and performing the intersection of two sets of transactions IDs is more efficient with bitsets (it is done by doing the logical AND operation).

Optional parameter(s)

This implementation allows to specify additional optional parameter(s) :

These parameter(s) are available in the GUI of SPMF and also in the example(s) "MainTestAprioriTID_..._saveToFile .java" provided in the source code of SPMF.

The parameter(s) can be also used in the command line with the Jar file. If you want to use these optional parameter(s) in the command line, it can be done as follows. Consider this example:
java -jar spmf.jar run Apriori_TID contextPasquier99.txt output.txt 40% true
This command means to apply the algorithm on the file "contextPasquier99.txt" and output the results to "output.txt". Moreover, it specifies that the user wants to find patterns for minsup = 40%, and that transaction ids should be output for each pattern found.

Optional feature: giving names to items

Some users have requested the feature of given names to items instead of using numbers. This feature is offered in the user interface of SPMF and in the command line of SPMF. To use this feature, your file must include @CONVERTED_FROM_TEXT as first line and then several lines to define the names of items in your file. For example, consider the example database "contextPasquier99.txt". Here we have modified the file to give names to the items: 

@CONVERTED_FROM_TEXT
@ITEM=1=apple
@ITEM=2=orange
@ITEM=3=tomato
@ITEM=4=milk
@ITEM=5=bread
1 3 4
2 3 5
1 2 3 5
2 5
1 2 3 5

In this file, the first line indicates, that it is a file where names are given to items. Then, the second line indicates that the item 1 is called "apple". The third line indicates that the item 2 is called "orange". Then the following lines define four sequences in the SPMF format.

Then, if we apply a sequential pattern mining algorithm using this file using the user interface of SPMF or the command line, the output file contains several patterns, including the following ones:

orange tomato bread #SUP: 3
orange bread #SUP: 4
apple orange tomato bread #SUP: 2

Note that this feature could be also used from the source code of SPMF using the ResultConverter class. However, there is currently no example provided for using it from the source code.

Where can I get more information about the AprioriTID algorithm?

This is the technical report published in 1994 describing Apriori and AprioriTID.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. Research Report RJ 9839, IBM Almaden Research Center, San Jose, California, June 1994.

For a good overview of frequent itemset mining algorithms, you may read this survey paper.

<< Return to table of contents of SPMF documentation

Copyright © 2008-2020 Philippe Fournier-Viger. All rights reserved.