Publications

Books

1.

Fournier-Viger, P., Lin. J. C.-W., Vo, B., Nkambou, R., Tseng, V. S. (editors). High-Utility Pattern Mining: Theory, Algorithms and Applications, Springer, 2019. Chapters contributed by many authors. ISBN 978-3-030-04920-1 (book on SpringerLink)

high utility pattern mining book

2. Chiroma, H., Abdulhamid, S. M., Fournier-Viger, P., Garcia, N. M. (editors). Machine learning and Data Mining for Emerging Trend in Cyber Dynamics. Springer, 2020, in preparation... (call for chapters, deadline: 2020-3-30 )

Book Chapters

2019 1. Fournier-Viger., P., Lin, J. C.-W., Truong, T., Nkambou, R. (2019). A survey of high utility itemset mining. In: Fournier-Viger et al. (eds). High-Utility Pattern Mining: Theory, Algorithms and Applications, Springer (to appear), p. 1-46.
DOI: 10.1007/978-3-030-04921-8_1
  2. Qu, J.-F., Liu, M., Fournier-Viger (2019). Efficient algorithms for high utility itemset mining without candidate generation . In: Fournier-Viger et al. (eds). High-Utility Pattern Mining: Theory, Algorithms and Applications, Springer, p. 131-160.
DOI: 10.1007/978-3-030-04921-8_5
  3. Truong, T., Fournier-Viger., P. (2019). A survey of high utility sequential pattern mining. In: Fournier-Viger et al. (eds). High-Utility Pattern Mining: Theory, Algorithms and Applications, Springer, p. 97-130.
DOI: 10.1007/978-3-030-04921-8_4
  4. Dinh, D.-T., Huynh, V.-N., Le, B., Fournier-Viger, P., Huynh, U., Nguyen, Q.-M. (2019). A Survey of Privacy Preserving Utility Mining.In: Fournier-Viger et al. (eds). High-Utility Pattern Mining: Theory, Algorithms and Applications, Springer, p.207-232
DOI: 10.1007/978-3-030-04921-8_8
  5. Djenouri, Y., Fournier-Viger, P., Belhadi, A., Lin, J. C.-W. (2019). Methaheuristics for High Utility and Frequent Itemset Mining . In: Fournier-Viger et al. (eds). High-Utility Pattern Mining: Theory, Algorithms and Applications, Springer, p. 261-278.
DOI: 10.1007/978-3-030-04921-8_10
  6. Wu. C.-W., Fournier-Viger, P., Gu, J. Y., Tseng, V.S. (2019). Mining Compact High Utility Itemsets without Candidate Generation . In: Fournier-Viger et al. (eds). High-Utility Pattern Mining: Theory, Algorithms and Applications, Springer.
DOI: 10.1007/978-3-030-04921-8_11
2015 7. Snow, E., Moghrabi, C., Fournier-Viger, P. (2015). Automatic Grading of Open-ended Questions Using Semantic Web Ontologies and Functional Concepts. In. Taylor, K., Gerber, A., Meyer, T., Orgun, M. (Eds.) Ontologies: Theory and Applications in Information Systems and the Semantic Web, 12 pages.
2013 8. Faghihi, U., Fournier-Viger, P., Nkambou, R. (2013). CELTS: A Cognitive Tutoring Agent with Human-Like Learning Capabilities and Emotions. In Ayala, A. P. (Ed.) Intelligent and Adaptive Educational-Learning Systems: Achievements and Trends, Springer, pp. 339-365.1
<2010 9. Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. (2010). Building Intelligent Tutoring Systems for Ill-Defined Domains. In Nkambou, R., Mizoguchi, R., Bourdeau, J. (Eds.). Advances in Intelligent Tutoring Systems, Springer, p.81-101.
  10. Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. (2010). Learning Procedural Knowledge from User Solutions To Ill-Defined Tasks in a Simulated Robotic Manipulator. In Romero et al. (Eds.). Handbook of Educational Data Mining, CRC Press, p. 451-465.
  11. Fournier-Viger, P., Nkambou, R., Faghihi, U., Mephu Nguifo, E. (2009). Mining Temporal Patterns to Improve Agents Behavior: Two Case Studies. In Cao, L. (Ed.) Data Mining and Multiagent Integration, Springer, p.77-92.

Journal Papers

      Indexes / SCR rank / ISSN / CA (Chinese Academy Rank)
2019 1. Fournier-Viger, P., Li, J., Lin, J. C., Chi, T. T., Kiran, R. U. (2019). Mining Cost-Effective Patterns in Event Logs. Knowledge-Based Systems (KBS), Elsevier, 25 pages,
DOI: 10.1016/j.knosys.2019.105241
ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0950-7051
CA: Q2 JCR: Q1
2. Fournier-Viger, P., Cheng, C., Cheng, Z., Lin, J. C.-W., Selmaoui-Folcher, N. (2019). Mining Significant Trend Sequences in Dynamic Attributed Graphs. Knowledge-Based Systems (KBS), Elsevier, to appear. [source code]
DOI: 10.1016/j.knosys.2019.06.005
ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0950-7051
CA: Q2 JCR: Q1
3. Truong, T., Duong, H., Le, B., Fournier-Viger, P., Yun, U. (2019). Efficient High Average-Utility Itemset Mining Using Novel Vertical Weak Upper-Bounds. Knowledge-Based Systems (KBS), Elsevier, 31(2): 301-314
DOI: 10.1016/j.knosys.2019.07.018
ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0950-7051
CA: Q2 JCR: Q1
4. Nguyen, L, Nguyen, P., Nguyen, T., Vo, B., Fournier-Viger, P., Tseng, V. S. (2019). Mining High Utility Itemsets in Dynamic Profit Databases. Knowledge-Based Systems (KBS), Elsevier,175: 130-144.
DOI: 10.1016/j.knosys.2019.03.022
ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0950-7051
CA: Q2 JCR: Q1
5.

Fournier-Viger, P., Zhang, Y., Lin, J. C.W., Fujita, H., Koh, Y.S. (2019). Mining Local and Peak High Utility Itemsets. Information Sciences, Elsevier, 481: 344-367. [source code][ppt]

DOI: 10.1016/j.ins.2018.12.070

ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0020-0255
CA: Q2 JCR: Q1
6. Fournier-Viger, P., Li, Z., Lin, J. C. W., Kiran, R. U., Fujita, H. (2019). Efficient Algorithms to Identify Periodic Patterns in Multiple Sequences. Information Sciences, Elsevier, 489: 205-226 [source code][ppt]
DOI: 10.1016/j.ins.2019.03.050
ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0020-0255
CA: Q2 JCR: Q1
7.

Truong, T., Duong, H., Le, B., Fournier-Viger, P. (2019). EHAUSM: An Efficient Algorithm for High Average Utility Sequence Mining. Information Sciences, Elsevier, to appear.

ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0020-0255
CA: Q2 JCR: Q1
8. Lin, J. C.-W., Shao, Y., Fournier-Viger, P., Fujita, H. (2019). BILU-NEMH: A BILU Neural-Encoded Mention Hypergraph for Mention-Extraction. Information Sciences, Elsevier, 496: 53-64.
DOI: 10.1016/j.ins.2019.04.059
ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0020-0255
CA: Q2 JCR: Q1
9. Yun, U., ... Fournier-Viger P. ... (2019). Uncertainty based Pattern Mining for Maximizing Profit of Manufacturing Plants with List Structure. IEEE Transactions on Industrial Electronics. to appear. ISI, EI, SCI
SCR: Q1
IF: 7.05
ISSN: 0278-0046
CA: Q1 JCR: Q1
10. Fournier-Viger, P., Yang, P., Li, Z., Lin, J. C.-W., Kiran. R. U. (2019). Discovering Rare Correlated Periodic Patterns in Multiple Sequences. Data & Knowledge Engineering (DKE), to appear, 10.1016/j.datak.2019.101733.

ISI, EI, SCI
SCR: Q1
IF: 1.46
ISSN: 0169-023X
CA: Q4 JCR: Q3

11. Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C., Tseng, V. S., Yu, P. (2019). A Survey of Utility-Oriented Pattern Mining. IEEE Transactions on Knowledge and Data Engineering (TKDE), to appear... ISI, EI, SCI,
SCR: Q1
IF: 4.561
ISSN: 1041-4347
CA: Q2 JCR: Q1
12. Truong, T., Duong, H., Le, B., Fournier-Viger, P. (2019). Efficient Vertical Mining of High Average-Utility Itemsets based on Novel Upper-Bounds. IEEE Transactions on Knowledge and Data Engineering (TKDE), 31(2): 301 - 314. ISI, EI, SCI, Q1
IF: 4.561
ISSN: 1041-4347
CA: Q2 JCR: Q1
13. Fournier-Viger, P., Yang, P., Lin, J. C.-W, Duong, Q.-H., Dam, T.-L., Sevcik, L., Uhrin, D., Voznak, M. (2019). Discovering Periodic Itemsets using Novel Periodicity Measures. Advances in Electrical and Electronic Engineering, 17(1):33-44, DOI: 10.15598/aeee.v17i1.3185. ISSN 1804-3119  
14. Luna, J. M., Fournier-Viger, P., Ventura, S. (2019). Frequent Itemset Mining: a 25 Years Review. WIREs Data Mining and Knowledge Discovery, Wiley, to appear.
DOI: 10.1002/widm.1329
ISI, EI, SCI, Q1
IF:
ISSN: 1942-4787
CA: Q3 JCR: Q2
15. Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C., Yu, P. S. (2019). HUOPM: High Utility Occupancy Pattern Mining. IEEE Transactions on Cybernetics. IEEE. 14 pages. (to appear)
DOI: 10.1109/TCYB.2019.2896267
ISI, EI, SCI, Q1
IF:
ISSN: 2168-2267
CA: Q1 JCR: Q1
16. Gang, W., Lin, J. C. W., Fournier-Viger, P., Chao, H.-C., Yu, P. S. (2019) A Survey of Parallel Sequential Pattern Mining. ACM Transactions on Knowledge Discovery from Data (TKDD), 13(3): 25:1-25:34.
DOI: 10.1145/3314107

ISI, EI, SCI,
SCR: Q1
IF: 2.8
ISSN: 1556-4681
CA: Q4 JCR: Q2

17. Chi, T. T., Duong, H., Le, B., Fournier-Viger, P. (2019). FMaxCloHUSM: An Efficient Algorithm for Mining Frequent Closed and Maximal High Utility Sequences. Engineering Applications of Artificial Intelligence (EAAI), Elsevier, 85: 1-20.
DOI: 10.1016/j.engappai.2019.05.010
ISI, EI, SCI,
SCR: Q1
IF: 2.819
ISSN: 0952-1976
CA: Q2 JCR: Q1
18. Lin, J. C.-W., Wu, J. M-T., Fournier-Viger, P., Chen, C.-H., Zhang, Y. (2019). A Sanitization Approach to Secure Shared Data in an IoT Environment. IEEE Access, 7: 25359-25368.
DOI: 10.1109/access.2019.2899831
ISI, EI, SCI,
SCR: Q2
IF: 4.098
ISSN: 2169-3536
CA: Q2 JCR: Q1
19. Lin, J. C.-W., Zhang, S., Zhang, Y., Zhang, B., Fournier-Viger, P., Djenouri, Y. (2019). Hiding Sensitive Itemsets with Multiple Objective Optimization. Soft computing, Springer, 23 (23): 12779–12797.
DOI: 10.1007/s0050
ISI, EI, SCI, Q3
IF: 2.367
ISSN: 1432-7643
CA: Q3 JCR: Q2
20. Amirat, H., Lagraa, N., Fournier-Viger, P., Ouinten, Y. (2019). NextRoute: A lossless model for accurate mobility prediction. Journal of Ambient Intelligence and Humanized Computing, Springer. (to appear)
DOI: 10.1007/s12652-019-01327-w

ISI, EI, SCI, Q2?
IF: 1.910
ISSN: 1868-5137
CA: Q4 JCR: Q3

21. Win, K. N., Chen, J., Chen, Y., Fournier-Viger, P. (2019) PCPD: A Parallel Crime Pattern Discovery System for Large-scale Spatio-temporal Data based on Fuzzy Clustering. International Journal of Fuzzy Systems, Springer, 21(6):1961–1974.
DOI: 10.1007/s40815-019-00673-3
ISI,EI, SCI
IF: 2.396
ISSN: 1562-2479
CA: Q3 JCR: Q2
22. Lin, J. C.-W., Li, T., Pirouz, M., Zhang, J., Fournier-Viger, P. (2019). High Average-Utility Sequential Pattern Mining based on Uncertain Databases. Knowledge and Information Systems (KAIS), Springer, 56(1): 165-196.
DOI: 10.1007/s10115-019-01385-8
ISI, EI, SCI, Q2
IF: 2.39
ISSN:0219-1377
CA: Q3 JCR: Q2
23. Win, K. N., Li, K., Chen, J., Fournier-Viger, P., Li, K. (2019). Fingerprint Classification and Identification Algorithms for Criminal Investigation : A Survey. Future Generation Computer Systems, Elsevier, to appear.
DOI: 10.1016/j.future.2019.10.019

ISI, EI, SCI,
IF: 5.768
ISSN: 0167-739X
CA: Q2

24. Wu. J. M. T, Lin, J. C.-W., Fournier-Viger, P. Dj, Y., Chen, C.-H., Li, Z.(2019). Density-based Clustering Method for Privacy-Preserving Data Mining. Mathematical Biosciences and Engineering (MBE), 11 pages.
DOI: ___

SCI, JCR Q3
IF: 1.230
ISSN: 1547-1063
CA: Q4 JCR: Q3

2018 25. Duong, H., Ramampiaro, H., Norvag, K., Fournier-Viger, P., Dam, T.-L. (2018). High Utility Drift Detection in Quantitative Data Streams. Knowledge-Based Systems (KBS), Elsevier, 157 (1): 34-51.
DOI: 10.1016/j.knosys.2018.05.014
ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0950-7051
CA: Q2 JCR: Q1
26.

Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C., Fujita, H. (2018). Extracting non-redundant correlated purchase behaviors by utility measure. Knowledge-Based Systems (KBS), Elsevier, 143: 30-41.
DOI: 10.1016/j.knosys.2017.12.003

ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0950-7051
CA: Q2 JCR: Q1
27.

Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H., Fournier-Viger, P., Li, X., Mirjalili, S. (2018). Binary Dragonfly Optimization for Feature Selection using Time-Varying Transfer functions. Knowledge-Based Systems (KBS), Elsevier, 161(1): 185-204.
DOI: 10.1016/j.knosys.2018.08.003

ISI, EI, SCI, Q1
IF: 5.3
ISSN: 0950-7051
CA: Q2 JCR: Q1
28. Lin, C.-W., Ren, S., Fournier-Viger, P., Hong, T.-P. (2018). MEMU: More Efficient Algorithm to Mine High Average-Utility Patterns with Multiple Minimum Average-Utility Thresholds. IEEE Access, 6: 7593-7609.
DOI: 10.1109/ACCESS.2018.2801261
ISI, EI, SCI, Q2
IF: 4.098
ISSN: 2169-3536
CA: Q2 JCR: Q1
29. W. J. M. T., Lin, J.C.W. Pirouz, M., Fournier-Viger, P. (2018) TUB-HAUPM: Tighter Upper Bound for Mining High Average-Utility Patterns. IEEE Access 6: 18655-18669.
DOI: 10.1109/ACCESS.2018.2820740
ISI, EI, SCI, Q2
IF: 4.098
ISSN: 2169-3536
CA: Q2 JCR: Q1
30. Fournier-Viger, P., Zhang, Y., Lin, J. C.-W., Dinh, T., Le, B. (2018) Mining Correlated High-Utility Itemsets Using Various Correlation Measures. Logic Journal of the IGPL, Oxford Academic, to appear. [source code]
DOI: 10.1093/jigpal/jzz068
ISI, EI, SCI,
IF: 0.575
ISSN:1367-0751
CA: Q4 JCR: Q3
31. Zhang, B., Lin, J. C.-W., Fournier-Viger, P., Djenouri, Y. (2018) A (k, p)-anonymity Framework to Sanitize Transactional Database with Personalized Sensitivity. Journal of Internet Technology, Taiwan Academic Network (to appear). to appear. ISI, EI, SCI, JCR Q3
IF: 0.715
ISSN:1607-9264
CA: Q4 JCR: JCR: Q4
32.

Dinh, D.-T., Le, B., Fournier-Viger, P., Huynh, V.-N. (2018) An efficient algorithm for mining periodic high-utility sequential patterns. Applied Intelligence, 48(12):4694-4714.
DOI: 10.1007/s10489-018-1227-x

ISI, EI, SCI, Q2
IF: 1.983
ISSN: 0924-669X
CA: Q3 JCR: Q2
33. Lin, J. C.-W., Shao, Y., Fournier-Viger, P., Djenouri, Y. (2018) Maintenance algorithm for high average-utility itemsets with transaction deletion. Applied Intelligence, 48(10): 3691-3706
DOI: 10.1007/s10489-018-1180-8
ISI, EI, SCI, Q2
IF: 1.983
ISSN: 0924-669X
CA: Q3 JCR: Q2
34. Le, T., Vo, B., Fournier-Viger, P., Lee, M. Y., Baik, S. W. (2018). SPPC: A New Tree Structure for Mining Erasable Patterns in Data Streams. Applied Intelligence, 459: 117-134.
DOI: 10.1007/s10489-018-1280-5
ISI, EI, SCI, Q2
IF: 1.983
ISSN: 0924-669X
CA: Q3 JCR: Q2
35. Djenouri, Y., Djenourni, D., Belhadi, A., Fournier-Viger, P., Lin, J. C.-W. (2018) A New Framework for Metaheuristic-based Frequent Itemset Mining. Applied Intelligence, 48(12): 4775-4791 ()
DOI: 10.1007/s10489-018-1245-8
ISI, EI, SCI, Q2
IF: 1.983
ISSN: 0924-669X
CA: Q3 JCR: Q2
36. Le, B. Dinh, D.-T., Huynh, N.V., Nguyen, Q. M., Fournier-Viger, P. (2018). An Efficient Algorithm for Hiding High Utility Sequential Patterns. International Journal of Approximate Reasoning, Elsevier, 95: 77-92.
DOI: 10.1016/j.ijar.2018.01.005
ISI, EI, SCI,
IF: 2.845
ISSN: 0888-613X
CA: Q3 JCR: Q2
37. Lin, J. C.-W., Ren, S.-F., Fournier-Viger, P., Pan, J.-S., Hong, T.-P. (2018). Efficiently Updating the Discovered High Average-Utility Itemsets with Transaction Insertion. Engineering Applications of Artificial Intelligence (EAAI), Elsevier, 72: 136-149.
DOI: 10.1016/j.engappai.2018.03.021
ISI, EI, SCI, Q1
IF: 2.819
ISSN: 0952-1976
CA: Q2 JCR: Q1
38. Djenouri, Y., Belhadi, A, Fournier-Viger, P., Fujita, H. (2018) Mining Diversified Association Rules in Big Datasets: a Cluster/GPU/Genetic Approach. Information Sciences, Elsevier, to appear.
DOI: 10.1016/j.ins.2018.05.031
ISI, EI, SCI,
IF: 4.305
ISSN: 0020-0255
CA: Q2 JCR: Q1
39. Djenouri, Y., Belhadi, A, Fournier-Viger, P., Lin, J. C.-W. (2018) Fast and Effective Cluster-based Information Retrieval using Frequent Closed Itemsets. Information Sciences, Elsevier, 453: 154-167.
DOI: 10.1016/j.ins.2018.04.008
ISI, EI, SCI, Q1
IF: 4.305
ISSN:0020-0255
CA: Q2 JCR: Q1
40. Djenouri, Y., Djenouri, D., Belhadi, A, Fournier-Viger, P., Lin, J. C.-W., Bendjoudi, A. (2018) Exploiting GPU parallelism in improving bee swarm optimization for mining big transactional databases. Information Sciences, Elsevier, 496: 326-342.
DOI: 10.1016/j.ins.2018.06.060
ISI, EI, SCI, Q1
IF: 4.305
ISSN:0020-0255
CA: Q2 JCR: Q1
41. Lin, J.-C.W., Yang, L., Fournier-Viger, P., Hong, T.-P. (2018). Mining of Skyline Patterns by Considering both Frequent and Utility Constraints. Engineering Applications of Artificial Intelligence, Elsevier, 77: 229-238.
DOI: 10.1016/j.engappai.2018.10.010
ISI, EI, SCI, Q1
IF: 2.819
ISSN: 0952-1976
CA: Q2 JCR: Q1
42. Lin, J.-C.W., Zhang, Y., Fournier-Viger, P., Hong, T.-P. (2018) Efficiently Updating the Discovered Multiple Fuzzy Frequent Itemsets with Transaction Insertion, International Journal of Fuzzy Systems, Springer, 20(8):2440–2457.
DOI: 10.1007/s40815-018-0520-5
ISI, EI, SCI
IF: 2.19
ISSN: 1562-2479
CA: Q3 JCR: Q2
43. Djenouri, Y., Djenouri, D., Belhadi, A, Fournier-Viger, P., Lin, J. C.-W., (2018). GPU-based Swarm Intelligence for Association Rule Mining in Big Databases. Intelligent Data Analysis, IOS Press, 23(1): 57-76.
DOI: 10.3233/IDA-173785
ISI, EI, SCI,
IF: 0.612
ISSN 1088-467X 
CA: Q4 JCR: Q4
2017 44. Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C., Hong, T.-P., Fujita, H. (2017). Incremental High-Utility Itemset Mining: A Survey. WIREs Data Mining and Knowledge Discovery, Wiley, to appear.
DOI: 10.1002/widm.1242
ISI, EI, SCI, Q1
ISSN: 1942-4787
CA: Q3 JCR: Q2
45. Fournier-Viger, P., Lin, J. C.-W., Vo, B, Chi, T.T., Zhang, J., Le, H. B. (2017). A Survey of Itemset Mining. WIREs Data Mining and Knowledge Discovery, Wiley, e1207 doi: 10.1002/widm.1207, 18 pages. ISI, EI, SCI, Q1
ISSN: 1942-4787
CA: Q3 JCR: Q2
46. Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., Koh, Y. S., Thomas, R. (2017). A Survey of Sequential Pattern Mining. Data Science and Pattern Recognition (DSPR), vol. 1(1), pp. 54-77. ISSN: 2520-4165
47. Lin, J. C. W, Ren, S., Fournier-Viger, P. Hong, T.-P., Su, J.-W., Vo, B. (2017). A Fast Algorithm for Mining High Average-Utility Itemsets. Applied Intelligence, Springer, 47:331-347.
DOI: 10.1007/s10489-017-0896-1
ISI, EI, SCI, Q2
IF: 1.983
ISSN: 0924-669X
CA: Q3 JCR: Q2
48. Bouakkaz, M., Ouinten, Y., Loudcher, S., Fournier-Viger, P. (2017). Efficiently mining frequent itemsets applied for textual aggregation. Applied Intelligence, Springer, 48(4):1013-1019).
DOI: 10.1007/s10489-017-1050-9
ISI, EI, SCI, Q2
IF: 1.983
ISSN: 0924-669X
CA: Q3 JCR: Q2
49. Nguyen, L. T. T., Vo, B., Nguyen, L. T. T., Fournier-Viger, P., Selamat, A. (2017). ETARM: an efficient top-k association rule mining algorithm. Applied Intelligence, Springer, vol. 48, no. 5, 1148-1160.
DOI: 10.1007/s10489-017-1047-4
ISI, EI, SCI, Q2
IF: 1.983
ISSN: 0924-669X
CA: Q3 JCR: Q2
50. Duong, Q.H., Fournier-Viger, P., Ramampiaro, H., Norvag, K. Dam, T.-L. (2017). Efficient High Utility Itemset Mining using Buffered Utility-Lists . Applied Intelligence, Springer, 48(7), pp. 1859–1877.
DOI: 10.1007/s10489-017-1057-2
ISI, EI, SCI, Q2
IF: 1.983
ISSN: 0924-669X
CA: Q3 JCR: Q2
51. Zhang, J., Zhu, X., Fournier-Viger, P., Lin, J. C.-W. (2017). FRIOD: A Deeply Integrated Feature-Rich Interactive System for Effective and Efficient Outlier Detection,. IEEE Access (to appear)
DOI: 10.1109/ACCESS.2017.2771237
ISI, EI, SCI, Q2
IF: 4.098
ISSN: 2169-3536
CA: Q2 JCR: Q1
52.

Lin, C.-W., Ren, S., Fournier-Viger, P., Hong, T.-P. (2017). EHAUPM: Efficient High Average-Utility Pattern Mining with Tighter Upper-Bounds. IEEE Access, 5: 12927-12940.
DOI: 10.1109/ACCESS.2017.2717438

ISI, EI, SCI, Q2
IF: 4.098
ISSN: 2169-3536
CA: Q2 JCR: Q1
53. Lin, C.-W., Liu, Q., Fournier-Viger, P., Hong, T.-P. (2017). PTA: An Efficient System for Transaction Database Anonymization . IEEE Access, vol. 4, pp. 6467-6479, IEEE.
DOI: 10.1109/ACCESS.2016.2596542
ISI, EI, SCI, Q2
IF: 4.098
ISSN: 2169-3536
CA: Q2 JCR: Q1
54. Djenouri, Y., Habbas, Z., Djenouri, D., Fournier-Viger, P. (2017). Bee Swarm Optimization For Solving MAXSAT Problem Using Prior Knowledge. Soft Computing, Springer, 496: 326-342.
DOI: 10.1007/s00500-017-2956-1
ISI, EI, SCI, Q3
IF: 2.784
ISSN: 1432-7643
CA: Q3 JCR: Q2
55. Djenouri, Y., Belhadi, A., Fournier-Viger, P. Extracting Useful Knowledge from Event Logs: A Frequent Itemset Mining Approach (2017). Knowledge-Based Systems (KBS), Elsevier,139: 132-148.
DOI: 10.1016/j.knosys.2017.10.016
ISI, EI, SCI, Q1
IF: 4.396
ISSN: 0950-7051
CA: Q2 JCR: Q1
56. Lin, J. C.-W., Gan, W., Fournier-Viger, P., Chao, H.-C., Wu. J. T., Zhan, J. (2017). Extracting Recent Weighted-based Patterns from Uncertain Temporal Databases. Engineering Applications of Artificial Intelligence, Elsevier, 61, pp. 161-172
DOI: 10.1016/j.engappai.2017.03.004
ISI, EI, SCI, Q1
IF: 2.819
ISSN: 0952-1976
CA: Q2 JCR: Q1
57. Lin, J. C.-W., Gan, W., Fournier-Viger, P., Chao, H.-C., Zhan, J. (2017). Mining of Frequent Patterns with Multiple Minimum Supports. Engineering Applications of Artificial Intelligence, Elsevier, 60:83-96.
DOI: 10.1016/j.engappai.2017.01.009
ISI, EI, SCI, Q1
IF: 2.819
ISSN: 0952-1976
CA: Q2 JCR: Q1
58. Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C., Zhan, J., Zhang, J. (2017). Exploiting highly qualified pattern with frequency and weight occupancy. Knowledge and Information Systems (KAIS), Springer, 56(1): 165-196.
DOI: 10.1007/s10115-017-1103-8
ISI, EI, SCI, Q2
IF: 2.247
ISSN:0219-1377
CA: Q3 JCR: Q2
59. Le, B., Duong, H., Truong, T., Fournier-Viger, P. (2017). FCloSM, FGenSM: Two New Algorithms for Efficiently Mining Frequent Closed and Generator Sequences using Local Pruning Strategy. Knowledge and Information Systems (KAIS), Springer, 53(1):71-107.
DOI: 10.1007/s10115-017-1032-6
ISI, EI, SCI, Q2
IF: 2.247
ISSN:0219-1377
CA: Q3 JCR: Q2
60. Dam, T.-L., Li, K., Fournier-Viger, P., Duong, H. (2017). An efficient algorithm for mining top-k on-shelf high utility itemsets. Knowledge and Information Systems (KAIS), Springer, 62:621-655.
DOI: 10.1007/s10115-016-1020-2
ISI, EI, SCI, Q2
IF: 2.247
ISSN:0219-1377
CA: Q3 JCR: Q2
61. Zida, S., Fournier-Viger, P., Lin, J. C.-W., Wu, C.-W., Tseng, V.-S. (2017). EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining . Knowledge and Information Systems (KAIS), Springer, 51(2), 595-625 [powerpoint] [source code]
DOI: 10.1007/s10115-016-0986-0
ISI, EI, SCI, Q2
IF: 2.247
ISSN:0219-1377
CA: Q3 JCR: Q2
62. Lin, J. C., Hong, T.-P., Fournier-Viger, P., Liu, Q., Wong, J.-W., Zhan, J. (2017). Efficient Hiding of Confidential High-Utility Itemsets with Minimal Side Effects.. Journal of Theoretical and Experimental Artificial Intelligence, Taylor and Francis (to appear)
DOI: 10.1080/0952813X.2017.1328462
ISI, EI, SCI, Q2
IF:_
ISSN: 2169-3536
__________
63. Dam, T.-L., Li, K., Fournier-Viger, P., Duong, H. (2017). CLS-Miner: Efficient and Effective Closed High utility Itemset Mining. Frontiers of Computer Science, Springer (to appear), 13(2): 357-381
DOI: 10.1007/s1170
ISI, EI, SCI, Q2
IF: 1.105
ISSN: 2095-2228
CA: Q4 JCR: Q3
64. Lin, J. C.-W., Zhang, J. Fournier-Viger, P., Hong, T.-P.(2017). A Two-Phase Approach to Mine Short-Periodic High Utility Itemsets in Transactional Databases. Advanced Engineering Informatics, Elsevier, 33, 29-43.
DOI: 10.1016/j.aei.2017.04.007
ISI, EI, SCI, Q1
ISSN: 1474-0346
CA: Q2 JCR: Q2
65. Amirat, H., Lagraa, N., Fournier-Viger, P., Ouinten, Y. (2017). MyRoute: a Graph-dependency Based Model for Real-time Route Prediction. Journal of Communications, Engineering and Technology Publishing, vol. 12, no. 12, 668-676. 10.12720/jcm.12.12.668-676
DOI: 10.12720/jcm.12.12.668-676.
ISI, EI, SCI, Q4
IF:
ISSN: 1796-2021
-----------
66. Lin, J. C.-W., Li, T., Fournier-Viger, P., Zhang, J. (2017). Mining of High Average-Utility Patterns with Item-Level Thresholds. Journal of Internet Technology, Taiwan Academic Network (to appear).
DOI:
ISI, EI, SCI, JCR Q3
IF: 0.715
ISSN:1607-9264
CA: Q4 JCR: Q4
67. Zhang, B., Lin, J. C.-W., Li, T., Gan, W., Fournier-Viger, P. (2017). Mining High Utility-Probability Sequential Patterns in Uncertain Databases. PLoS One, Public Library of Science, to appear.
DOI:
ISI, EI, SCI, Q1
IF:
ISSN: 1932-6203
68. Mustafa, R. U., Nawaz, M. S., Ferzund, J., Lali, M. I. U., Shazad, B., Fournier-Viger, P. (2017). Early Detection of Controversial Urdu Speeches from Social Media. Data Science and Pattern Recognition (DSPR), vol. 1(2), 26-42. ISSN: 2520-4165
2016 69.

Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P. Chao, H.-C. (2016). FDHUP: Fast Algorithm for Mining Discriminative High Utility Patterns . Knowledge and Information Systems (KAIS), Springer, June 2017, Volume 51, Issue 3, 873-909
DOI: 10.1007/s10115-016-0991-3

ISI, EI, SCI, Q2
IF: 2.004
ISSN:0219-1377
CA: Q3 JCR: Q2
70. Dougnon, Y. R., Fournier-Viger, P., Lin, J. C.-W., Nkambou, R. (2016). Inferring Social Network User Profiles using a Partial Social Graph. Journal of Intelligent Information Systems (JIIS), Springer, 47(2): 313-344.
DOI: 10.1007/s10844-016-0402-y
ISI, EI, SCI, Q4
IF: 1.294
ISSN: 0925-9902
CA: Q4 JCR: Q3
71. Tseng, V., Wu, C., Fournier-Viger, P., Yu, P. S. (2016). Efficient Algorithms for Mining Top-K High Utility Itemsets. IEEE Transactions on Knowledge and Data Engineering (TKDE), 28(1): 54-67. [source code]
DOI: 10.1109/TKDE.2015.2458860
ISI, EI, SCI, Q1
IF: 2.07
ISSN: 1041-4347
CA: Q2 JCR: Q1
72. Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P., Tseng, V. S. (2016). Efficiently Mining Uncertain High-Utility Itemsets. Soft Computing, Springer, 21:2801-2820.
DOI: 10.1007/s00500-016-2159-1
ISI, EI, SCI, Q3
IF: 2.472
ISSN: 1432-7643
CA: Q3 JCR: Q2
73. Lin, J. C.-W., Yang, L., Fournier-Viger, P., Hong, T.-P., Voznak, M. (2016). A binary PSO approach to mine high-utility itemsets. Soft Computing, Springer. 21(17): 5103-5121
DOI: 10.1007/s00500-016-2106-1
ISI, EI, SCI, Q3
IF: 2.472
ISSN: 1432-7643
CA: Q3 JCR: Q2
74. Dam, T.-L., Li, K. , Fournier-Viger, P. (2016). Chemical reaction optimization with unified tabu search for the vehicle routing problem. Soft Computing, Springer, 21(21): 6421-6433
DOI: 10.1007/s00500-016-2200-4
ISI, EI, SCI, Q3
IF: 2.472
ISSN: 1432-7643
CA: Q3 JCR: Q2
75. Lin, J. C.-W., Liu, Q., Fournier-Viger, P., Hong, T.-P., Voznak, M., Zhan, J. (2016). A Sanitization Approach For Hiding Sensitive Itemsets Based On Particle Swarm Optimization. Engineering Applications of Artificial Intelligence, 53:1-18.
DOI: 10.1016/j.engappai.2016.03.007
ISI, EI, SCI Q2
IF: 2.894
ISSN: 0952-1976
CA: Q2 JCR: Q1
76. Lin, J. C.-W., Li, T., Fournier-Viger, P., Hong, T.-P., Voznak, M., Zhan, J. (2016). An Efficient Algorithm to Mine High Average-Utility Itemsets. Advanced Engineering Informatics, Elsevier, 30(2): 233-243.
DOI: 10.1016/j.aei.2016.04.002
ISI, EI, SCI, Q1
IF: 2.68
ISSN: 1474-0346
CA: Q2 JCR: Q2
77. Lin, J. C. W., Gan, W., Fournier-Viger, P., Hong, T. P., Tseng, V. S. (2016). Weighted frequent itemset mining over uncertain databases. Applied Intelligence, 44:232-250.
DOI: 10.1007/s10489-015-0703-9
ISI, EI, SCI, Q2
IF: 1.904
ISSN: 0924-669X
CA: Q3 JCR: Q2
78. Dam, T.-L., Li, K., Fournier-Viger, P. (2016). An efficient algorithm for mining top-rank-k frequent patterns. Applied Intelligence, Springer, 45(1): 96-111.
DOI: 10.1007/s10489-015-0748-9
ISI, EI, SCI, Q2
ISSN: 0924-669X
CA: Q3 JCR: Q2
79. Lin, J. C. W., Gan, W., Fournier-Viger, P., Hong, T. P., Tseng, V. S. (2016). Fast Algorithms for Mining High-Utility Itemsets with Various Discount Strategies. Advanced Engineering Informatics, 30(2): 109-126.
DOI: 10.1016/j.aei.2016.02.003
ISI, EI, SCI, Q1
IF: 2.68
ISSN: 1474-0346
CA: Q2 JCR: Q2
80. Lin, J. C. W., Fournier-Viger, Gan, W. (2016). FHN: An Efficient Algorithm for Mining High-Utility Itemsets with Negative Unit Profits. Knowledge-Based Systems (KBS), Elsevier, 111(1):283-298
DOI: 10.1016/j.knosys.2016.08.022
ISI, EI, SCI, Q1
IF: 4.529
ISSN: 0950-7051
CA: Q2 JCR: Q1
81. Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P., Zhan, J. (2016). Efficient Mining of High-Utility Itemsets Using Multiple Minimum Utility Thresholds. Knowledge-Based Systems (KBS), Elsevier, 113:100-115.
DOI: 10.1016/j.knosys.2016.09.013
ISI, EI, SCI, Q1
IF: 4.529
ISSN: 0950-7051
CA: Q2 JCR: Q1
82. Duong, Q.-H., Liao, B., Fournier-Viger, P., Dam, T.-L. (2016). An efficient algorithm for mining the top-k high utility itemsets, using novel threshold raising and pruning strategies. Knowledge-Based Systems (KBS), Elsevier, 104:106-122.
DOI: 10.1016/j.knosys.2016.04.016
ISI, EI, SCI, Q1
IF: 4.529
ISSN: 0950-7051
CA: Q2 JCR: Q1
83.

Lin., J. C. W., Gan. W., Fournier-Viger, P., Tseng, V. S. (2016). Efficient Algorithms for Mining High-Utility Itemsets in Uncertain Databases. Knowledge-Based Systems (KBS), Elsevier, 96, 171-187.
DOI: 10.1016/j.knosys.2015.12.019

ISI, EI, SCI, Q1
IF: 4.529
ISSN: 0950-7051
CA: Q2 JCR: Q1
84. Lin., J. C. W., Gan. W., Fournier-Viger, P., Hong, T. P. (2016). Efficiently Updating the Discovered Sequential Patterns for Sequence Modification. Int'l Journal of Software Engineering and Knowledge Engineering (IJSEKE), 26(8), pp 1285-1313.
DOI: 10.1142/S0218194016500455
EI, SCI, Q4
IF: 4.529
ISSN: 0218-1940
CA: Q4 ________
2015 85. Fournier-Viger, P., Wu, C.-W., Tseng, V.S., Cao, L., Nkambou, R. (2015). Mining Partially-Ordered Sequential Rules Common to Multiple Sequences. IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(8): 2203-2216. [source code] ISI, EI SCI, Q1
IF: 2.07
ISSN: 1041-4347
86. Tseng, V., Wu, C., Fournier-Viger, P., Yu, P. S. (2015). Efficient Algorithms for Mining the Concise and Lossless Representation of Closed+ High Utility Itemsets. IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(3): 726-739. [source code] ISI, EI, SCI, Q1
IF: 2.07
ISSN: 1041-4347
87. Lin., J. C. W., Yang, L., Fournier-Viger, Frnda, J., Sevcik, L., Voznak, M. (2015). An Evolutionary Algorithm to Mine High-Utility Itemsets. Advances in Electrical and Electronic Engineering, Vol. 13, No.5., pp. 392-398. ISI, EI, SCI, Q4
ISSN: 1582-7445
88. Lin, J. C. W., Tin, L., Fournier-Viger, P., Hong, T. P. (2015). A fast Algorithm for mining fuzzy frequent itemsets. Journal of Intelligent and Fuzzy Systems, 29(6), 2373-2379. ISI, EI, SCI, Q4
IF: 1.81
ISSN: 1064-1246
89. Lin, J. C., Gan, W., Fournier-Viger, P., Hong, T.-P. (2015). RWFIM: Recent Weighted-Frequent Itemsets Mining. Engineering Applications of Artificial Intelligence, Elsevier, 45, 18-32. ISI, EI, SCI, Q2
IF: 2.21
ISSN: 0952-1976
CA: Q2 JCR: Q1
2014 90. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu., C., Tseng, V. S. (2014). SPMF: a Java Open-Source Pattern Mining Library. Journal of Machine Learning Research (JMLR), 15: 3389-3393. ISI, EI SCI, Q1
IF: 2.47
ISSN: 1532-4435
2013 91. Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E., Mayers, A., Faghihi, U. (2013). A Multi-Paradigm Intelligent Tutoring System for Robotic Arm Training. IEEE Transactions on Learning Technologies (TLT), 6(4): 364-377. ISI, EI, SSCI, Q4
IF: 1.22
ISSN: 1939-1382
2012 92. Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E. (2012). CMRules: Mining Sequential Rules Common to Several Sequences. Knowledge-based Systems, Elsevier, 25(1): 63-76. [source code] ISI, EI, SCI, Q1
IF: 4.104
ISSN: 0950-7051
93. Faghihi, U., P. Fournier-Viger, Nkambou, R. (2012). A Computational Model for Causal Learning in Cognitive Agents, Knowledge-Based Systems, Elsevier, 30, 48-56 ISI, EI, SCI, Q1
IF: 4.104
ISSN: 0950-7051
2011 94. Faghihi, U., Poirier, P., Fournier-Viger, P., Nkambou, R. (2011). Human-Like Learning in a Cognitive Agent. Journal of Experimental & Theoretical Artificial Intelligence, Taylor & Francis, 23(4): 497-528. ISI, EI, SCI, Q4
IF: 0.33
ISSN: ISSN: 2169-3536
95. Nkambou, R., Fournier-Viger, P., Mephu Nguifo, E. (2011). Learning Task Models in Ill-defined Domain Using an Hybrid Knowledge Discovery Framework. Knowledge-Based Systems, Elsevier, 24(1):176-185. ISI, EI, SCI, Q1
IF: 2.42
96. Faghihi, U., Fournier-Viger, P, Nkambou, R., Poirier, P. (2011). Identifying Causes Helps a Tutoring System to Better Adapt to Learners During Training Sessions. Journal of Intelligent Learning Systems and Application, Scientific Research Publishing, 3(3): 139-154. IF: 1.13
<2010 97. Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E. (2010). Exploiting Sequential Patterns Found in Users’ Solutions and Virtual Tutor Behavior to Improve Assistance in ITS. Educational Technology & Society, 13(1):12-24. SSCI
IF: 1.34
ISSN: 1436-4522
98. Nkambou, R, Fournier-Viger, P., Mephu Nguifo, E. (2009). Improving the Behavior of Intelligent Tutoring Agents with Data Mining. IEEE Intelligent Systems, 24(3):46-53. ISI, EI, SCI, Q2
IF: 3.14
ISSN: 1541-1672
99. Fournier-Viger, P., Nkambou, R., Mayers, A. (2008). Evaluating Spatial Representations and Skills in a Simulator-Based Tutoring System. IEEE Transactions on Learning Technologies (TLT), 1(1):63-74. ISI, EI, SSCI
IF: 0.82
ISSN: 1939-1382
100. Fournier-Viger, P., Najjar, M., Mayers, A., Nkambou, R. (2006). A Cognitive and Logic based Model for Building Glass-box Learning Objects. Interdisciplinary Journal of Knowledge and Learning Objects, 2:77-94. IF: 22
ISSN: 2375-2084

Conference Papers

2020 1. Nawaz, M. Z., Hasan, O., Nawaz, S., Fournier-Viger, P., Sun, M. (2016). Proof Searching in HOL4 with Genetic Algorithm. Proc. 35th Symposium on Applied Computing (ACM SAC 2020). ACM Press,  
2019 2. Fournier-Viger, P., Li, J., Lin, J. C.-W., Chi, T.T. (2019). Discovering and Visualizing Patterns in Cost/Utility Sequences. Proc. 21st Intern. Conf. on Data Warehousing and Knowledge Discovery (DAWAK 2019), Springer, pp. 73-88.
DOI: 10.1007/978-3-030-27520-4_6
 
3. Fournier-Viger, P., Cheng, C., Cheng, Z., Lin, J. C.-W., Selmaoui-Folcher, N. (2019). Finding Strongly Correlated Trends in Dynamic Attributed Graphs. Proc. 21st Intern. Conf. on Data Warehousing and Knowledge Discovery (DAWAK 2019), Springer, pp. 250-265.
DOI: 10.1007/978-3-030-27520-4_18
 
4. Gomez, H. M., Bifet, A., Fournier-Viger, P., Granatyr, J., Read, J. (2019). Network of Experts: Learning from evolving data streams through network-based ensembles. Proc. 26th International Conference on Neural Information Processing (ICONIP 2019). Springer, 12 pages, to appear.  
 
5. Ktistakis, R., Fournier-Viger, P., Puglisi, S., Raman, R. (2019). Succinct BWT-based Sequence prediction. Proc. 30th International Conference on Database and Expert Systems Applications (DEXA 2019), Springer, pp. 91-10.
DOI: 10.1007/978-3-030-27618-8_7
 
6.

Kiran, U., Reddy, T. Y., Fournier-Viger, P., Toyoda, M., Reddy, P. K., Kitsuregawa, M. (2019). Efficiently Finding High Utility-Frequent Itemsets using Cutoff and Suffix Utility. Proc. 23nd Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD 2019), Springer, LNAI, pp. 191-203.
DOI: 10.1007/978-3-030-16145-3_15

accept. rate: 24.7 %
7. Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Iran, U. (2019). TKG: Efficient Mining of Top-K Frequent Subgraphs. Proc. of 7th Intern. Conf. on Big Data Analytics (BDA 2019), Springer, 20 pages, to appear. [ppt] [source code]
DOI:
 
8. Duong, H., Truong, T., Le, B., Fournier-Viger, P. (2019). An Explicit Relationship between Sequential Patterns and their Concise Representations. Proc. of 7th Intern. Conf. on Big Data Analytics (BDA 2019), Springer, 20 pages, to appear.
DOI:
 
9. Fournier-Viger, P., Yang, P., Lin, J. C.-W., Yun, U. (2019). HUE-SPAN: Fast High Utility Episode Mining. Proc. 14th Intern. Conference on Advanced Data Mining and Applications (ADMA 2019) Springer LNAI, pp. 169-184. [ppt]
DOI: 10.1007/978-3-030-35231-8_12
 
10. Tang, F., Tse, D., Huang, D. T. J., Koh, Y. S., Fournier-Viger, P. (2019). Adaptive Self-Sufficient Itemset Miner for Transactional Data Streams. Proc. 16th Pacific Rim Intern. Conf on Artificial Intelligence (PRICAI-2019), Springer LNCS, to appear.
DOI: 10.1007/978-3-030-29911-8_32
 
11. Fournier-Viger, P., Yang, P., Lin, J. C.-W., Kiran, U. (2019). Discovering Stable Periodic-Frequent Patterns in Transactional Data. Proc. 32nd Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA AIE 2019), Springer LNAI, pp. 230-244. [ppt] [source code]
DOI: 10.1007/978-3-030-22999-3_21
* Best paper award*
12. Lin, J. C.-W., Wu, J. M.T., Fournier-Viger, P., Hong, T.P., Ting, L. (2019). Efficient Mining of High Average-Utility Sequential Patterns from Uncertain Databases. Proc. 2019 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2019). (to appear)
 
13. Kiran, U., Zettsu, K., Toyoda, M., Fournier-Viger, P., Reddy, P. R., Kitsuregawa, M. (2019). Discovering Spatial High Utility Itemsets in Spatiotemporal Databases. Proc. of 31st Intern. Conf. on Scientific and Statistical Database Management (SSDBM 2019), ACM, pp. 49-60
DOI: 10.1145/3335783.3335789
 
14. Wu, J. W.M., Lin, J. C. W., Fournier-Viger, P., Wiktorski, T., Hong, T.P. (2019). A GA-based Framework for Mining High Fuzzy Utility Itemsets. Proc. IEEE BigData 2019, IEEE, to appear
DOI:
 
15. Lin, J. C. W., Li, Y., Fournier-Viger, P., Djenouri, Y., Wang, S.-L. (2019). Mining High-Utility Sequential Patterns from Big Datasets. Proc. IEEE BigData 2019, IEEE, to appear.
DOI:
 
16. Win, K. N., Chen, J., Xiao, G., Chen, Y., Fournier-Viger (2019) A Parallel Crime Activity Clustering Algorithm based on Apache Spark Cloud Computing Platform. Proc. of 21st IEEE Conferences on High Performance Computing and Communications (HPCC-2019).pp. 68-74.
DOI: 10.1109/HPCC/SmartCity/DSS.2019.00025
 
17. Wu, J. M.-T., Lin, J. C.-W., Fournier-Viger, P., Chen, C.-H., Zhang, Y. et al. (2019). A Swarm-based Data Sanitization Algorithm in Privacy-Preserving Data Mining. Proc. of  2019 IEEE Congress on Evolutionary Computation (IEEE CEC 2019), pp. 1461-1467.
DOI: 10.1109/CEC.2019.8790271
 
18. Djenouri, Y., Djenouri, D., Belhadi, A., Lin, J. C.W., Bendjoudi, A., Fournier-Viger, P. A Novel Parallel Framework for Metaheuristic-based Frequent Itemset Mining. Proc. of 2019 IEEE Congress on Evolutionary Computation (IEEE CEC 2019). pp. 1439-1445
DOI: 10.1109/CEC.2019.8790116
 
19. Lin, J. C.W., ... Fournier-Viger, P., ... (2019). A Project-based PMiner Algorithm in Uncertain Databases. Proc. 2019 Conference on Technologies and Applications of Artificial Intelligence (TAAI 2019), to appear
DOI:
 
20. Pham, H. Q., Tran, D., Duong, N. B., Fournier-Viger, P., Ngom, A. (2019). Nuclear: An efficient method for mining frequent itemsets based on kernels and extendable sets. Proc. 6th International Conference on Data Mining and Database, 6(9): 69-86.
DOI: 10.5121/csit.2019.90607
 
21. Nawaz, M. S., Sun, M., Fournier-Viger, P. (2019). Proof Guidance in PVS with Sequential Pattern Mining. Proc. of 9th Intern. Conf. Fundamentals of Software Engineering (FSEN 2019), 15 pages, Springer, LNCS.
DOI: 10.1007/978-3-030-31517-7_4
 
2018 22. Fournier-Viger, P., Zhang, Y., Lin, J. C.-W., Fujita, H., Koh, Y.-S. (2018). Mining Local High Utility Itemsets. Proc. 29th International Conference on Database and Expert Systems Applications (DEXA 2018), Springer, pp. 450-460. [source code] [ppt]
DOI: 10.1007/978-3-319-98812-2_41
 
23. Lin, J.-C.W., Fournier-Viger, P., Wu, L., Gan, W., Djenouri, Y., Zhang, J. (2018). PPSF: A privacy-preserving data mining library. Proc. of IEEE International Conference on Data Mining (ICDM 2018) (demo), to appear. [software]
DOI: 10.1109/ICDMW.2018.00208

24. Lin, J. C.-W., Zhang, Y. Y., Fournier-Viger, P., Djenouri, Y., Zhang, J. (2018) A Metaheuristic Algorithm for Hiding Sensitive Itemsets. Proc. 29th International Conference on Database and Expert Systems Applications (DEXA 2018), Springer, pp. 492-498
DOI: 10.1007/978-3-319-98812-2_45
 
25. Fournier-Viger, P., Li, Z., Lin, J. C.-W., Fujita, H., Kiran, U. (2018). Discovering Periodic Patterns Common to Multiple Sequences. Proc. 20th Intern. Conf. on Data Warehousing and Knowledge Discovery (DAWAK 2018), Springer, pp. 231-246 [source code] [ppt]
DOI: 10.1007/978-3-319-98539-8_18
Acceptance rate: 17%
26. Lin, J. C.-W., Fournier-Viger, P, Liu, Q., Djenouri, Y., Zhang, J. (2018) Anonymization of Multiple and Personalized Sensitive Attributes. Proc. 20th Intern. Conf. on Data Warehousing and Knowledge Discovery (DAWAK 2018), Springer, pp. 204-215.
DOI: 10.1007/978-3-319-98539-8_16
Acceptance rate: 17%
27. Stirling, M., Koh, Y.S., Fournier-Viger, P., Ravana, S.D. (2018). Concept Drift Detector Selection for Hoeffding Adaptive Trees. Proc. 31st Australasian Joint Conference on Artificial Intelligence (AI 2018), Springer, pp. 730-736.
DOI: 10.1007/978-3-030-03991-2_65
 
28. Fournier-Viger, P., Zhang, Y., Lin, J. C.-W., Koh, Y.-S. (2018). Discovering High utility Change Points in Transactional Data. Proc. 13th Intern. Conference on Advanced Data Mining and Applications (ADMA 2018) Springer LNAI, pp. 392-402 [ppt]
DOI: 10.1007/978-3-030-05090-0_33
 
29. Liu, T., Bai, X., Zhang, D., Cao, X. Fournier-Viger, P., (2018). Influence of Early Season Performance and Team Value on Chinese Football Super League Rankings. Proceedings of 3rd International Conference on Big Data Analysis (ICBDA 2018), IEEE to appear.
DOI:
 
30. Fournier-Viger, P., Li, X., Yao, J., Lin, J. C.-W. (2018). Interactive Discovery of Statistically Significant Itemsets. Proc. 31rd Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA AIE 2018), Springer LNAI, pp. 101-113.
DOI: 10.1007/978-3-319-92058-0_10
 
31. Wu, J. W.M., Lin, J.C-W., Pirouz, M., Fournier-Viger, P. (2018). New Tighter Upper Bounds for Mining High Average-Utility Itemsets. Proc. 2018 International Conference on Big Data and Education (ICBDE 2018), ACM, pp. 27-32.
DOI: 10.1145/3206157.3206168
 
32. Amirat, H., Benslimane, A., Fournier-Viger, P., Lagraa, N. (2018). LocRec: Rule-based Successive Location Recommendation in LBSN. Proceedings of 2018 IEEE International Conference on Communications (ICC 2018), IEEE, pp. 1-6.
DOI: 10.1109/ICC.2018.8422183
 
33. Djenouri, Y., Lin, J. C.-W., Djenouri, D., Belhadi, A., Fournier-Viger, P. (2018). GBSO-RSS: GPU-based BSO for Rules Space Summarization. Proc. 1st International Conference on Big Data and Deep Learning Applications (ICBDL 2018), 123-129.
DOI: 10.1007/978-981-13-0869-7_14
ISBN: 978-981-13-0869-7
34. de Souza, K. V.-C. K., Almhana, C., Fournier-Viger, P., Almhana, J. (2018). Radio Data Transmission Reduction in Power-Constrained WSN. Proceedings of 14th International Wireless Communications & Mobile Computing Conference (IWCMC 2018), IEEE, pp. 285-290.
DOI: 10.1109/IWCMC.2018.8450353
 
35. Lin, J. C.-W., Li, Y., Fournier-Viger, P., Tan, L. (2018). Mining high utility itemsets from multiple databases. Proc. 2nd Intern. Conf. on Smart Vehicular Technology, Transportation, Communication and Applications (VTCA 2018), Springer, pp. 139-146.
DOI: 10.1007/978-3-030-04585-2_17
ISBN: 978-3-030-04585-2
2017 36. Kiran, U., Venkatesh, J. N., Fournier-Viger, P., Toyoda, M., Reddy, P. K., Kitsuregawa, M. (2017). Discovering Periodic Patterns in Non-Uniform Temporal Databases. Proc. 21st Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD 2017) Part II, Springer, LNAI, pp. 604-617.
DOI: 10.1007/978-3-319-57529-2_47
 
37. Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C., Tseng, V.S. (2017). Mining High-Utility Itemsets with both Positive and Negative Unit Profits from Uncertain Databases. Proc. 21st Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD 2017) Part I, Springer, LNAI, pp. 434-446
DOI: 10.1007/978-3-319-57454-7_34
 
38. Lin, J. C.-W., Zhang, J., Fournier-Viger, P. (2017). High Utility Sequential Pattern Mining with Multiple Minimum Utility Thresholds. Proc. of the APWeb-WAIM Joint Conference on Web and Big Data 2017(APWeb-WAIM 2017), Springer, pp.215-229.
DOI: 10.1007/978-3-319-63579-8_17
 
39. Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C.(2017). Exploiting High Utility Occupancy Patterns. Proc. of the APWeb-WAIM Joint Conference on Web and Big Data 2017(APWeb-WAIM 2017), Springer, pp.239-247
DOI: 10.1007/978-3-319-63579-8_19
 
40. Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C.(2017). Extracting Non-redundant Correlated High Utility Purchase Behaviors. Proc. 19th Intern. Conf. on Data Warehousing and Knowledge Discovery (DaWaK 2017), Springer, pp. 433-446
DOI: 10.1007/978-3-319-64283-3_32
 
41. Djenouri, Y., Belhadi, A., Fournier-Viger, P., Lin, J. C.-W. (2017). An Hybrid Multi-Core/GPU-based Mimetic Algorithm for Big Association Rule Mining. Proc. 11th Intern. Conference on Genetic and Evolutionary Computing (ICGEC 2017), Springer, pp. 56-65
DOI: 10.1007/978-981-10-6487-6_8
 
42. Zhang, X., Wu, C.-W., Fournier-Viger, P., Van, L.-D., Tseng, Y.-C. (2017). Analyzing Students' Attention in Class Using Wearable Devices. Proc. 18th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM 2017), IEEE, pp. 1-9.
DOI: 10.1109/WoWMoM.2017.7974306
 
43.

Dalmas, B., Fournier-Viger, P., Norre, S. (2017). TWINCLE: A Constrained Sequential Rule Mining Algorithm for Event Logs. Proc. 9th International KES Conference (IDT-KES 2017), Elsevier, pp. 205-214
DOI: 10.1016/j.procs.2017.08.069

 
44. Lin, J. C.-W., Ren, S., Fournier-Viger, P., Hong, T.-P. (2017). Mining of High Average-Utility Itemsets with a Tighter Upper-Bound Model. Proceedings of 4th Multidisciplinary International Social Networks Conference on Social Informatics 2017 (MISNC 2017), to appear.
DOI:
 
45.

Liu, T., Fournier-Viger, P., Hohmann, A. (2017). Using Diagnostic Analysis to Discover Offensive Patterns in a Football Game. Proceedings of International Conference on Data Science and Business Analytics (ICDSBA 2017), Springer, pp. 381-386.
DOI: 10.1007/978-3-319-72745-5_43

ISBN: 978-3-319-72745-5
46. de Souza, K. V.-C. K., Almhana, C., Fournier-Viger, P., Almhana, J. (2017). Energy-Efficient Partitioning Clustering Algorithm for Wireless Sensor Network. Proceedings of 10th EAI International Wireless Internet Conference (WiCON 2017), Springer, pp. 14-23.
DOI: 10.1007/978-3-319-90802-1_2
 
2016 47. Fournier-Viger, P., Lin, C.W., Wu, C.-W., Tseng, V. S., Faghihi, U. (2016). Mining Minimal High-Utility Itemsets. Proc. 27th International Conference on Database and Expert Systems Applications (DEXA 2016). Springer, LNCS, pp. 88-101. [ppt] [source code] [video]
DOI: 10.1007/978-3-319-44403-1_6

48. Lin, C.W., Gan, W., Fournier-Viger, P., Chen, H.-C. (2016). More Efficient Algorithms for Mining High-Utility Itemsets with Multiple Minimum Thresholds. Proc. 27th International Conference on Database and Expert Systems Applications (DEXA 2016). Springer, LNCS, pp. 71-87.
DOI: 10.1007/978-3-319-44403-1_5

49. Lin, C.W., Gan, W., Fournier-Viger, P., Chen, H.-C. (2016). Mining Recent High-Utility Patterns from Temporal Databases with Time-Sensitive Constraint. Proc. 18th Intern. Conf. on Data Warehousing and Knowledge Discovery (DAWAK 2016). Springer, LNCS, pp. 3-16
DOI: 10.1007/978-3-319-43946-4_1

50. Fournier-Viger, P., Lin, C.W., Gomariz, A., Soltani, A., Deng, Z., Lam, H. T. (2016). The SPMF Open-Source Data Mining Library Version 2. Proc. 19th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2016) Part III. Springer, pp. 36-40.
DOI: 10.1007/978-3-319-46131-1_8

51. Fournier-Viger, P., Zida, S. Lin, C.W., Wu, C.-W., Tseng, V. S. (2016). EFIM-Closed: Fast and Memory Efficient Discovery of Closed High-Utility Itemsets. Proc. 12th Intern. Conference on Machine Learning and Data Mining (MLDM 2016). Springer, LNAI, pp. 199-213. [ppt] [source code]
DOI: 10.1007/978-3-319-41920-6_15

52. Lin, C.W., Gan, W., Fournier-Viger, P., Hong, T.-P. (2016). Efficient Mining of Weighted Frequent Itemsets in Uncertain Databases. Proc. 12th Intern. Conference on Machine Learning and Data Mining (MLDM 2016). Springer, LNAI, pp. 236-250.
DOI: 10.1007/978-3-319-41920-6_18

53. Fournier-Viger, P., Lin, C.W., Duong, Q.-H., Dam, T.-L. (2016). FHM+: Faster High-Utility Itemset Mining using Length Upper-Bound Reduction. Proc. 29th Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA AIE 2016), Springer LNAI, pp. 115-127. [ppt] [source code]
DOI: 10.1007/978-3-319-42007-3_11

54. Lin, C.W., Li, T., Fournier-Viger, P., Hong, T.-P., Su, J.-W. (2016). Fast Algorithms for Mining Multiple Fuzzy Frequent Itemsets. Proc. 16th IEEE Conference on Fuzzy Systems (FUZZY-IEEE 2016), IEEE, to appear
DOI: 10.3233/IFS-151936

55. Lin, C.W., Ren, S., Fournier-Viger, P., Su, J.-H., Vo, B. (2016). A More Efficient Algorithm to Mine High Average-Utility Itemsets. Proc. 12th Intern. Conf. on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2016). Springer, pp 101-110.
DOI:

56. Lin, C.-W., Zhang, J., Fournier-Viger, P., Hong, T.-P., Chen, C.-M. (2016). Efficient Mining of Short Periodic High-Utility Itemsets. Proc. 27th IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016). IEEE, to appear
DOI: 10.1109/SMC.2016.7844710

57. Lin, C.W., Gan, W., Fournier-Viger, P., Han-Chieh, C. (2016). More Efficient Algorithms for Mining Frequent Patterns with Multiple Minimum Supports. Proc. 17th International Conference Web-Age Information Management (WAIM 2016), Springer LNAI, pp. 3-16.
DOI: 10.1007/978-3-319-39937-9_1

58. Lin, C.W., Gan, W., Fournier-Viger, P., Han-Chieh, C. (2016). Mining Recent High Expected Weighted Itemset from Uncertain Databases. Proc. 18th Asia-Pacific Web Conference (APWeb 2016), Springer, LNCS, pp. 581-593.
DOI: 10.1007/978-3-319-45814-4_47

59. Lin, C.W., Li, T., Fournier-Viger, P., Hong, T. P., Tseng, V. S. (2016). Efficient Mining of Uncertain Data to Discover High-Utility Itemsets. Proc. 17th International Conference Web-Age Information Management (WAIM 2016), Springer LNAI, pp. 17-30.
DOI: 10.1007/978-3-319-39937-9_2

60. Voznak, M., Rozhon, J., Mikulec, M., Rezac, F., Komosny, D., Lin, J.C.-W.,Fournier-Viger, P. (2016) Employing the neural networks to parametrically assess the quality of a voice call. Proc. 2016 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS 2016), pp. 1-5.
DOI: 10.1109/SPECTS.2016.7570521

61. Fournier-Viger, P., Lin, C. W., Dinh, T., Le, H. B. (2016). Mining Correlated High-Utility Itemsets Using the Bond Measure. Proc. 11 th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2016), Springer LNAI, pp.53-65. [ppt] [source code]
DOI: 10.1007/978-3-319-32034-2_5

62. Fournier-Viger, P., Lin, C.W., Duong, Q.-H., Dam, T.-L. (2016). PHM: Mining Periodic High-Utility Itemsets. Proc. 16th Industrial Conference on Data Mining. Springer LNAI 9728, pp. 64-79. [ppt] [source code]
DOI: 10.1007/978-3-319-41561-1_6
* Nominated for best paper award (one of the three finalists)*
63. Lin, C.W., Li, T., Fournier-Viger, P., Hong, T.-P., Su, J.-H. (2016). Efficient Mining of High Average-Utility Itemsets with Multiple Minimum Thresholds. Proc. 16th Industrial Conference on Data Mining. Springer LNAI 9728, pp. 14-28.
DOI: 10.1007/978-3-319-41561-1_2

64. Fournier-Viger, P., Zida, S., Lin, C.W., Wu, C.W., Tseng., V. (2016). Efficient closed high-utility itemset-mining. Proc. 31th Symposium on Applied Computing (ACM SAC 2016). ACM Press, pp. 898-900. [source code]
DOI: 10.1145/2851613.2851884
* Nominated for best poster award (one of the six finalists)*
65. Lin, C.W., Gan, W., Fournier-Viger, P., Hong, T.-P. (2016). Efficient Algorithms for Mining Recent Weighted Frequent Itemsets in Temporal Transactional Databases. Proc. 31th Symposium on Applied Computing (ACM SAC 2016). ACM Press, pp.861-866
DOI: 10.1145/2851613.2851648

66. Faghihi, U., Chatman, D., Gautier, N., Gholson, J., Gholson, J., Lipkal, M., Dill, R, Fournier-Viger, P., Maldonado-Bouchard, S. (2016). How to Apply Gamification Techniques to Design a Gaming nvironment for Algebra concepts. Proc. 3rd Intern. Conf. on E-Learning, E-Education, and Online Training (eLEOT 2016), Springer LNICST, 8 pages.
DOI: 10.1007/978-3-319-49625-2_8

67. Pokou J. M., Fournier-Viger, P., Moghrabi, C. (2016). Authorship Attribution Using Small Sets of Frequent Part-of-Speech Skip-grams. Proc. 29th Intern. Florida Artificial Intelligence Research Society Conference (FLAIRS 29), AAAI Press, pp. 86-91 [datasets].
DOI:

68. Pokou J. M., Fournier-Viger, P., Moghrabi, C. (2016). Using Frequent Fixed or Variable-Length POS Ngrams or Skip-grams for Blog Authorship Attribution . Proc. 12th Intern. Conf. on Artificial Intelligence Applications and Innovations (AIAI 2016), Springer LNAI, pp. 63-74 [datasets].
DOI: 10.1007/978-3-319-44944-9_6

69.

Lin, J. C.-W., Liu, Q., Fournier-Viger, P., Hong, T.-P., Zhan, J., Voznak, M. (2016). An Efficient Anonymous System for Transaction Data. Proceedings of 3rd Multidisciplinary International Social Networks Conference on Social Informatics 2016 (MISNC 2016), pp. 28.
DOI: 10.1145/2955129.2955136


70. Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P. (2016). Mining Discriminative High Utility Patterns. Proc. 8th Asian Conference on Intelligent Information and Database Systems (ACIIDS 2016), Springer, pp. 219-229.
DOI: 10.1007/978-3-662-49390-8_21

71. Lin, J. C.-W., Lv, X., Fournier-Viger, P., Wu, T.-Y., Hong, T.-P. (2016). Efficient Mining of Fuzzy Frequent Itemsets with Type-2 Membership Functions. Proc. 8th Asian Conference on Intelligent Information and Database Systems (ACIIDS 2016), Springer, pp. 191-200.
DOI: 10.1007/978-3-662-49390-8_18

72. Fournier-Viger, P., Lin, C.-W., Duong, Q.-H., Dam, T.-L., Sevcic, L., Uhrin, D., Voznak, M. (2016). PFPM: Discovering Periodic Frequent Patterns with Novel Periodicity Measures. Proc. 2nd Czech-China Scientific Conference 2016, Elsevier, 10 pages. [source code] [video] [ppt]
DOI:


73. Pokou J. M., Fournier-Viger, P., Moghrabi, C. (2016). Authorship Attribution using Variable-Length Part-of-Speech Patterns. Proc. 7th Intern. Conf. on Agents and Artificial Intelligence (ICAART 2016), pp. 354-361 [datasets].
DOI: 10.5220/0005710103540361

2015 74. Zida, S., Fournier-Viger, P., Lin, J. C.-W., Wu, C.-W., Tseng, V.S. (2015). EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining. Proceedings of the 14th Mexican Intern. Conference on Artificial Intelligence (MICAI 2015), Springer LNAI 9413, pp. 530-546. [ppt] [source code]
75. Dougnon, Y. R., Fournier-Viger, P., Lin, J. C.-W., Nkambou, R. (2015). More Accurate User Profile Inference in Online Social Networks. Proceedings of the 14th Mexican Intern. Conference on Artificial Intelligence (MICAI 2015), Springer LNAI 9414, pp. 533-546.
76. Fournier-Viger, P., Lin, J. C.-W., Gueniche, T., Barhate, P. (2015). Efficient Incremental High Utility Itemset Mining. Proc. 5th ASE International Conference on Big Data (BigData 2015), 6 pages. [ppt] [video] [source code]
77. Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P., Tseng, V. S. (2015). Mining Potential High-Utility Itemsets over Uncertain Databases. Proc. 5th ASE International Conference on Big Data (BigData 2015), 6 pages. [video]
78. Gueniche, T., Fournier-Viger, P., Raman, R., Tseng, V. S. (2015). CPT+: Decreasing the time/space complexity of the Compact Prediction Tree. Proc. 19th Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD 2015), Springer, LNAI9078, pp. 625-636. [ppt] accept. rate: 6 %
(long presentation)
79. Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J. C. W., Tseng, V.S., (2015). Efficient Mining of High Utility Sequential Rules. Proc. 11th Intern. Conference on Machine Learning and Data Mining (MLDM 2015). Springer, LNAI 9166, pp. 157-171. [source code] * Nominated for best paper award (one of the three finalists)*
80. Wu, C.W., Fournier-Viger, P., Gu, J.-Y., Tseng, V.S. (2015). Mining Closed+ High Utility Itemsets without Candidate Generation. Proc. 2015 Conference on Technologies and Applications of Artificial Intelligence (TAAI 2015), pp. 187-194. [source code] * Merit Paper Award *
81. Tseng, V. S., Wu, C.-W., Lin, J.-H., Fournier-Viger, P. (2015). UP-Miner: A Utility Pattern Mining Toolbox. Proc. of IEEE International Conference on Data Mining (ICDM 2015) (demo), pp. 1656-1659.
82. Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P., Tseng. V. (2015). Mining High-Utility Itemsets with Various Discount Strategies. Proc. 2015 IEEE/ACM International Conference on Data Science and Advanced Analytics (DSAA’2015), 6 pages, pp. 1-10. accept. rate: 22 %
83. Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P. (2015). Mining Weighted-Frequent Itemsets with Time-Sensitive Constraint. Proc. 17th Asia-Pacific Web Conference (APWeb 2015), Springer, LNCS, pp.635-646. accept. rate: 23 %
84. Dougnon, Y. R., Fournier-Viger, P., Lin, J. C.-W., Nkambou, R. (2015). Accurate Social Network User Profiling. Proc. 38th German Conference on Artificial Intelligence (KI 2015), Springer LNAI 9324, pp. 265-270.
85. Lin, J. C.-W., Yang, L., Fournier-Viger, P., Wu, M.-T., Hong, T.-P., Wang, L. (2015). A Swarm-based Approach to Mine High-Utility Itemsets. Proc. 2nd Multidisciplinary Intern. Social Networks Conference (MISNC 2015). Springer, pp. 572-581.
86
Lin, J. C.-W., Wu, T.-S., Fournier-Viger, P., Lin, G., Hong, T.-P. (2015). A Sanitization Approach of Privacy Preserving Utility Mining, Proc. 9th Intern. Conference on Genetic and Evolutionary Computing (ICGEC 2015), pp. 47-57. *Best Paper Award*
87
Lin, J. C-W., Liu, Q., Fournier-Viger, P., Hong, T.-P., Pan, J. S. (2015). A Swarm-based Sanitization Approach for Hiding Confidential Itemsets. Proc. of the Eleventh Intern. Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 572-583.
88. Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P. (2015). Mining High-Utility Itemsets with Multiple Minimum Utility Thresholds. Proc. 8th Intern. C* Conference on Computer Science & Software Engineering (C3S2E15). ACM, pp. 9-17.
89. Dougnon, Y. R., Fournier-Viger, P., Nkambou, R. (2015). Inferring User Profiles in Social Networks using a Partial Social Graph. Proc. 28th Canadian Conference on Artificial Intelligence (AI 2015), Springer, LNAI 9091, pp. 84-99. accept. rate: 18 %
90. Gueniche, T., Fournier-Viger, P. (2015). Réduction de la complexité spatiale et temporelle du Compact Prediction Tree pour la prédiction de séquences. Proc. 15ème conférence Interne sur l'extraction et la gestion des connaissances (EGC 2015), Revue des Nouvelles Technologies de l'Information, vol. E-28, pp.59-70. * Nominated for best paper award *
91. Fournier-Viger, P., Zida, S. (2015). FOSHU: Faster On-Shelf High Utility Itemset Mining– with or without negative unit profit. Proc. 30th Symposium on Applied Computing (ACM SAC 2015). ACM Press, pp. 857-864. [source code] accept. rate: 20 %
2014 92. Fournier-Viger, P., Wu, C.W., Tseng, V.S. (2014). Novel Concise Representations of High Utility Itemsets using Generator Patterns. Proc. 10th Intern. Conference on Advanced Data Mining and Applications (ADMA 2014), Springer LNCS 8933, pp. 30-43. [ppt] [source code] *Best Paper Award*
93. Fournier-Viger, P. (2014). FHN: Efficient Mining of High-Utility Itemsets with Negative Unit Profits. Proc. 10th Intern. Conference on Advanced Data Mining and Applications (ADMA 2014), Springer LNCS 8933, pp. 16-29. [ppt][source code]
94. Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R. (2014). Fast Vertical Mining of Sequential Patterns Using Co-occurrence Information. Proc. 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2014) Part 1, Springer, LNAI, 8443. pp. 40-52. [ppt][source code] accept. rate: 27 %
95. Fournier-Viger, P., Gomariz, A., Sebek, M., Hlosta, M. (2014). VGEN: Fast Vertical Mining of Sequential Generator Patterns. Proc. 16th Intern. Conf. on Data Warehousing and Knowledge Discovery (DAWAK 2014), Springer, LNCS 8646, pp. 476--488. [source code] accept. rate: 31 %
96. Fournier-Viger, P., Gueniche, T., Zida, S., Tseng, V. S. (2014). ERMiner: Sequential Rule Mining using Equivalence Classes. Proc. 13th Intern. Symposium on Intelligent Data Analysis (IDA 2014), Springer, LNCS 8819, pp. 108-119. [source code]
97. Mwamikazi, E., Fournier-Viger, P., Moghrabi, C., Baudouin, R. (2014). A Dynamic Questionnaire to Further Reduce Questions in Learning Style Assessment. Proc. 10th Int. Conf. Artificial Intelligence Applications and Innovations (AIAI2014), Springer, LNAI, pp. 224-235.
98. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V. S. (2014) FHM: Faster High-Utility Itemset Mining using Estimated Utility Co-occurrence Pruning. Proc. 21st Intern. Symposium on Methodologies for Intelligent Systems (ISMIS 2014), Springer, LNAI, pp. 83-92. [ppt][source code]
99. Gueniche, T., Fournier-Viger, P., Nkambou, R., Tseng, V. S. (2014) WBPL: An Open-Source Library for Predicting Web Surfing Behaviors. Proc. 21st Intern. Symposium on Methodologies for Intelligent Systems (ISMIS 2014), Springer, LNAI, pp. 524-529.
100. Fournier-Viger, P., Wu, C.-W., Gomariz, A., Tseng, V. S. (2014). VMSP: Efficient Vertical Mining of Maximal Sequential Patterns. Proc. 27th Canadian Conference on Artificial Intelligence (AI 2014), Springer, LNAI, pp. 83-94. [ppt] [source code] accept. rate: 23 %
101. Mwamikazi, E., Fournier-Viger, P., Moghrabi, C., Barhoumi, A., Baudouin, R. (2014). An Adaptive Questionnaire for Automatic Identification of Learning Styles. Proc. 27th Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA AIE 2014), Springer, LNAI 8481, pp. 399-409.
2013 102. Fournier-Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E., Thomas, R. (2013). TKS: Efficient Mining of Top-K Sequential Patterns. Proc. 9th Intern. Conference on Advanced Data Mining and Applications (ADMA 2013) Part I, Springer LNAI 8346, pp. 109-120. [ppt] [source code] accept. rate: 14 %
( full paper)
103. Gueniche, T., Fournier-Viger, P., Tseng, V. S. (2013). Compact Prediction Tree: A Lossless Model for Accurate Sequence Prediction. Proc. 9th Intern. Conference on Advanced Data Mining and Applications (ADMA 2013) Part II, Springer LNAI 8347, pp. 177-188. accept. rate: 14 %
(full paper)
104. Fournier-Viger, P., Wu, C.-W., Tseng, V. S. (2013). Mining Maximal Sequential Patterns without Candidate Maintenance. Proc. 9th Intern. Conference on Advanced Data Mining and Applications (ADMA 2013) Part I, Springer LNAI 8346, pp. 169-180. [ppt] [source code]
105. Fournier-Viger, P., Mwamikazi, E., Gueniche, T., Faghihi, U. (2013). Memory Efficient Itemset Tree for Targeted Association Rule Mining. Proc. 9th Intern. Conference on Advanced Data Mining and Applications (ADMA 2013) Part II, Springer LNAI 8347, pp. 95-106. [ppt] [source code]
106. Fournier-Viger, P., Tseng, V. S. (2013). TNS: Mining Top-K Non-Redundant Sequential Rules. Proc. 28th Symposium on Applied Computing (ACM SAC 2013). ACM Press, pp. 164-166. [source code]
107. Snow, E., Moghrabi, C., Fournier-Viger, P. (2013). Assessing Procedural Knowledge in Free-text Answers through a Hybrid Semantic Web Approach. Proc. of the 25th IEEE Intern. Conference on Tools with Artificial Intelligence (ICTAI 2013), IEEE, pp. 698-706.
2012 108. Fournier-Viger, P. Gueniche, T., Tseng, V.S. (2012). Using Partially-Ordered Sequential Rules to Generate More Accurate Sequence Prediction. Proc. 8th Intern. Conference on Advanced Data Mining and Applications (ADMA 2012), Springer LNAI 7713, pp. 431-442. accept. rate: 19%
109. Fournier-Viger, P., Nkambou, R., Mayers, A., Mephu Nguifo, E., Faghihi, U. (2012). Multi-Paradigm Generation of Tutoring Feedback in Robotic Arm Manipulation Training. Proceedings of the 11th Intern. Conf. on Intelligent Tutoring Systems (ITS 2012), LNCS 7315, Springer, pp. 233-242. accept. rate: 15 %
110. Fournier-Viger, P., Tseng, V.S. (2012). Mining Top-K Non-Redundant Association Rules. Proc. 20th Intern. Symposium on Methodologies for Intelligent Systems (ISMIS 2012), Springer, LNCS 7661, pp. 31- 40. [source code] * Nominated for best paper award *
111. Fournier-Viger, P., Wu, C.-W., Tseng, V. S. (2012). Mining Top-K Association Rules. Proceedings of the 25th Canadian Conf. on Artificial Intelligence (AI 2012), Springer, LNAI 7310, pp. 61-73. [source code] [ppt] accept. rate: 29 %
112. Fournier-Viger, P., Wu, C.-W., Tseng, V.S., Nkambou, R. (2012). Mining Sequential Rules Common to Several Sequences with the Window Size Constraint. Proceedings of the 25th Canadian Conf. on Artificial Intelligence (AI 2012), Springer, LNAI 7310, pp.299-304. [source code]
2011 113. Wu, C.-W., Fournier-Viger, P., Yu., P. S., Tseng, V. S. (2011). Efficient Mining of a Concise and Lossless Representation of High Utility Itemsets. Proceedings of the 11th IEEE Intern. Conference on Data Mining (ICDM 2011). IEEE CS Press, pp.824-833. accept. rate: 12 %
114. Fournier-Viger, P., Tseng, V. S. (2011). Mining Top-K Sequential Rules. Proceedings of the 7th Intern. Conf. on Advanced Data Mining and Applications (ADMA 2011). LNAI 7121, Springer, pp.180-194. [source code] [ppt] accept. rate: 18 %
( full paper)
115. Fournier-Viger, P., Nkambou, R., Tseng, V. S. (2011). RuleGrowth: Mining Sequential Rules Common to Several Sequences by Pattern-Growth. Proceedings of the 26th Symposium on Applied Computing (ACM SAC 2011). ACM Press, pp. 954-959. [source code][ppt]
116. Fournier-Viger, P., Nkambou, R., Mayers, A., Mephu Nguifo, E., Faghihi, U. (2011). An Hybrid Expertise Model to Support Tutoring Services in Robotic Arm Manipulations. Proceedings of the 10th Mexican Intern. Conference on Artificial Intelligence (MICAI 2011), LNAI 7094, Springer, pp. 478-489.
117. Faghihi, U., Fournier-Viger, P., Nkambou, R. (2011).A Cognitive Tutoring Agent with Episodic and Causal Learning Capabilities.Proceedings of the 15th Intern. Conf. on Artificial Intelligence and Education (AIED 2011). IOS Press, pp. 72-80. accept. rate: 32%
118. Faghihi, U., Fournier-Viger, P., Nkambou, R. (2011). Implementing an Efficient Causal Learning Mechanism in a Cognitive Tutoring Agent. Proceedings of the 24th Intern.Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE 2011), LNAI 6704, Springer, pp.27-36.
119. Faghihi, U., Fournier-Viger, P., Nkambou, R. (2011). A Cognitive Tutoring Agent with Automatic Reasoning Capabilities.Proceedings of the 24th Intern. Florida Artificial Intelligence Research Society Conference (FLAIRS 2011), AAAI press, pp.448-449.
<2010 120. Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E. (2010). CMRules: An Efficient Algorithm for Mining Sequential Rules Common to Several Sequences. Proceedings of the 23th Intern. Florida Artificial Intelligence Research Society Conference (FLAIRS 2010). AAAI press, pp. 410-415. [source code] [ppt]
121. Faghihi, U., Fournier-Viger, P., Nkambou, R. & Poirier, P. (2010). The Combination of a Causal Learning and an Emotional Learning Mechanism for an Improved Cognitive Tutoring Agent. Proceedings of the 23th Intern.Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE 2010), LNAI 6097, Springer, pp. 438-449.
122. Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. & Mayers, A.(2010). ITS in Ill-defined Domains: Toward Hybrid Approaches. Proceedings of the 10th Intern. Conf. on Intelligent Tutoring Systems (ITS 2010), LNCS 6095, Springer, pp. 749-751.
123. Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. (2009). Exploiting Partial Problem Spaces Learned from Users' Interactions to Provide Key Tutoring Services in Procedural and Ill-Defined Domains. Proc. 14th Intern. Conf. on Artificial Intelligence and Education (AIED 2009). IOS Press. pp. 383-390.
124. Faghihi, U., Fournier-Viger, P., Nkambou, R. & Poirier, P. (2009). A Generic Episodic Learning Model Implemented in a Cognitive Agent by Means of Temporal Pattern Mining. Proc. 22nd Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE 2009), LNAI 5579, Springer, pp. 545-555.
125. Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. & Faghihi, U. (2009). Building Agents that Learn by Observing other Agents Performing a Task - A Sequential Pattern Mining Approach. Proceedings of the 22nd Intern.Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE 2009), SCI 214, Springer, pp. 279-284.
126. Faghihi, U., Fournier-Viger, P., Nkambou, R., Poirier, P., Mayers, A. (2009). How Emotional Mechanism Helps Episodic Learning in a Cognitive Agent. Proceedings of the 2009 IEEE Symposium on Intelligent Agents, pp. 23-30.
127. Faghihi, U., Nkambou, R, Poirier, P., & Fournier-Viger, P. (2009). Emotional Learning and a Combined Centralist-Peripheralist Based Architecture for a More Efficient Cognitive Agent. Proceedings of the 7th IEEE Intern. Conference on Industrial Technology (ICIT 2009), 6 pages.
128. Fournier-Viger, P., Nkambou, R & Mephu Nguifo, E. (2008), A Knowledge Discovery Framework for Learning Task Models from User Interactions in Intelligent Tutoring Systems. Proceedings of the 7th Mexican Intern. Conference on Artificial Intelligence (MICAI 2008). LNAI 5317, Springer, pp. 765-778. *Best Paper Award*
accept. rate: 25%
129. Fournier-Viger, P., Nkambou, R., Mayers, A. (2008). A Framework for Evaluating Semantic Knowledge in Problem-Solving-Based Intelligent Tutoring Systems. Proceedings of the 21th Intern. Florida Artificial Intelligence Research Society Conference (FLAIRS 2008). AAAI press, pp. 409-414.
130. Nkambou, R, Mephu Nguifo, E. & Fournier-Viger, P. (2008). Using Knowledge Discovery Techniques to Support Tutoring in an Ill-Defined Domain. Proceedings of the 9th Intern. Conference on Intelligent Tutoring Systems (ITS 2008). LNCS 5091, Springer, pp. 395-405. * Nominated for best paper award *
accept. rate: 30%
131. Fournier-Viger, P., Nkambou, R., Mayers, A. (2008). Evaluating Spatial Knowledge through Problem-Solving in Virtual Learning Environments. Proceedings of the Third European Conference on Technology Enhanced Learning (EC-TEL 2008). LNCS 5192, Springer, pp 15-26. *In top 14*
accept. rate: 21%
132. Fournier-Viger, P., Nkambou, R & Mephu Nguifo, E. (2008). A Data Mining Framework for the Acquisition of Procedural Knowledge in Intelligent Tutoring Systems. Proceedings of the 16th Intern. Conference on Computers in Education (ICCE 2008). pp. 153-157.
133. Nkambou, R., Mephu Nguifo, E., Couturier, O. & Fournier-Viger, P. (2007). Problem-Solving Knowledge Mining from Users' Actions in an Intelligent Tutoring System. Proceedings of the 19th Canadian Conference on Artificial Intelligence (AI'2007), LNAI 3501, Springer, pp: 393-404. accept. rate: 17%
134. Fournier-Viger, P., Nkambou, R., Mayers, A., Dubois, D. (2007). Automatic Evaluation of Spatial Representations for Complex Robotic Arms Manipulations. Proceedings of the 7th IEEE Intern. Conference on Advanced Learning Technologies (ICALT 2007), pp: 279-281.
135. Nkambou R., Mephu Nguifo, E., Couturier, O., Fournier-Viger, P. (2007). A Framework for Problem-Solving Knowledge Mining from Users’ Actions. Proceedings of the 13th Intern. Conference on Artificial Intelligence in Education (AIED 2007). pp: 623-625.
136. Najjar, M., Fournier-Viger, P., Lebeau, J.-F. & Mayers., A. (2006). Recalling Recollections according to Temporal Contexts - Applying a Novel Cognitive Knowledge Representation Approach. Proceedings of the 5th IEEE Intern. Conference on Cognitive Informatics (ICCI 2006), pp. 424-433.
137. Fournier-Viger P., Najjar, M., Mayers, A., Nkambou, R. (2006). From Black-box Learning Objects to Glass-Box Learning Objects. Proceedings of the 8th Intern. Conference on Intelligent Tutoring Systems (ITS 2006). LNCS 4053, Springer, pp: 258-267. accept. rate: 32%
138. Najjar, M., Fournier-Viger, P., Mayers, A., Bouchard, F. (2005). Memorising Remembrances in Computational Modelling of Interrupted Activities. Proceedings of the 7th Intern. Conference on Computational Intelligence & Natural Computing (CINC 2005). pp: 483-486.
139. Najjar, M., Fournier-Viger, P., Mayers, A., Hallé, J. (2005). DOKGETT - An Authoring Tool for Cognitive Model-based Generation of the Knowledge. Proceedings of the 5th IEEE Intern. Conference on Advanced Learning Technologies (ICALT 2005), pp: 371-375.
140. Najjar, M., Fournier-Viger, P., Mayers, A., Hallé, J. (2005). Tools and Structures for Modelling Domain/User Knowledge in Virtual Learning. Proceedings of the 16th AACE World Conference on Educational Multimedia, Hypermedia & Telecommunications (ED-MEDIA 2005). pp: 4023-4028.
141. Fournier-Viger, P., Najjar, M., Mayers, A. (2005). Combining the Learning Objects Paradigm with Cognitive Modelling Theories - a Novel Approach for Knowledge Engineering. Proceedings of the ITI 3rd Intern. Conference on Information & Communication Technology (ICICT 2005). pp: 565-578.
142. Najjar, M., Mayers, A., Fournier-Viger, P. (2004). Goal-based Modelling of the Learner Behaviour for Scaffolding Individualised Learning Instructions. Proceedings of the 7th Intern. Conference on Computer and Information Technology (ICCIT 2004). pp: 255-262.
143. Najjar, M., Mayers, A., Fournier-Viger, P. (2004). Representing Correct/Erroneous Knowledge during Learning : A Framework for a Novel Cognitive-based Student Model. Proceedings of the 2004 Intern. Conference on Intelligent Knowledge Systems (IKS 2004). pp: 236-242.

Workshop Papers

2019 1.

Saideep, C., Kiran, R. U., Zettsu, K., Fournier-Viger, P., Kitsuregawa, M., Reddy, P.K. (2019). Discovering Periodic Patterns in Irregular TimeSeries. Proc. 2nd International Workshop on Utility-Driven Mining (UDML2019), in conjunction with the ICDM 2019 conference, IEEE ICDM Proceedings, 9 pages.

2018 2. Fournier-Viger, P., Liu, T., Lin, J. C.-W. (2018). Football Pass Prediction using Player Locations. Proc. of the 5th Machine Learning and Data Mining for Sports Analytics (MLSA 2018), in conjunction with the PKDD 2018 conference, Springer LNAI 11330, pp. 1–7, 2019. [source code] [presentation video : HTML5 / AVI ]
  3. Li, J., Fournier-Viger, P., Lin, J. C.-W., Truong, T. (2018). Discovering low-cost high utility patterns. 1st International Workshop on Utility-Driven Mining (UDM2018), in conjunction with the KDD 2018 conference, ACM press, 9 pages. [ppt]
  4. Truong, T., Tran, A., Duong, A., Le, B., Fournier-Viger, P.(2018). EHUSM: Mining High Utility Sequences with a Pessimistic Utility Model. 1st International Workshop on Utility-Driven Mining (UDM2018), in conjunction with the KDD 2018 conference (UDML 2018), 9 pages.
  5. Djenouri, Y., Belhadi, A., Fournier-Viger, P., Lin, C.-W. (2018) Discovering Strong Meta Association Rules using Bee Swarm Optimization. 7th Workshop on Biologically Inspired Techniques for Data Mining (BDM'18), in conjunction with the 22nd Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD 2018).
2012 6. Snow, E., Moghrabi, C., Fournier-Viger, P. (2012). Assessing Procedural Knowledge in Open-ended Questions through Semantic Web Ontologies. Proc. of the 8thAustralasian Ontology Workshop (AOW2012), in conjunction with the 25th Australasian Joint Conference on Artificial Intelligence, CEUR, pp. 86-97.
2008 7. Nkambou, R, Fournier-Viger, P., Dubois, D. (2008). RomanTutor, a Tutoring System for Training Astronauts on Robotic Arm Manipulations. Proceedings of the Demonstration Program of the 9th Intern. Conference on Intelligent Tutoring Systems (ITS 2008), pp. 51-53.
  8. Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. (2008). A Sequential Pattern Mining Algorithm for Extracting Partial Problem Spaces from Logged User Interactions. Proc. of the 3rd Intern. Workshop on Intelligent Tutoring Systems in Ill-Defined Domain: Assessment and Feedback in Ill-Defined Domains (in conjunction with ITS2008). June 23-27, Montreal, Canada.

French Publications

1. Fournier-Viger, P. (2010), Un modèle hybride pour le support à l'apprentissage dans les domaines procéduraux et mal-définis. Ph.D. Thesis, University of Quebec in Montreal, Montreal, Canada, 184 pages.
2. Fournier-Viger, P., Mephu Nguifo, E., Nkambou, R. (2009), Extraction de motifs séquentiels à partir de traces d'utilisation pour la construction automatique de modèles de tâches dans les systèmes tutoriels intelligents. Short paper. Journée thématique : Fouille de données séquentielles et ses applications, Université d'Orléans, Nov. 27, Orleans, France.
3. Fournier-Viger, P. (2005). Un modèle de représentation des connaissances à trois niveaux de sémantique pour les systèmes tutoriels intelligents. M.Sc. dissertation, University of Sherbrooke, Sherbrooke, Canada, 194 pages. Chapter 4: Une introduction aux logiques de descriptions.

Other contributions

1. Fournier-Viger, P. (2019) Foreword of the Advances in Electrical and Electronic Engineering journal, volume 17, issue 1.  
2. Fournier-Viger, P. (2012), Intelligent tutoring systems in Ill-Defined Domains - Bibliography 2003-2012. In Paviotti, G., Rossi, P.G., Zarka, D. (Ed.) Intelligent Tutoring Systems: An overview, Pensa Multimedia, p. 153-161. (book appendix).

Other information

Number of citations per year (total 4148 - Google Scholar - 2019/05/31)

90
51
51
57
72
121
294
403
733
982
1203
<2010 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019