Below is the list of my books, chapters, journal papers, conference papers and workshop papers
2021 | 1. |
Mehta, M., Pattel, M., Fournier-Viger, P., Lin, J. C.-W.
(editors). Tracking and Preventing Diseases using
Artificial Intelligence. Springer, 2021, ISBN:
978-3-030-76732-7 (book
on SpringerLink) |
2. |
Kiran, R. U., Fournier-Viger, P., Mondal, A., Luna, J.M.,
Lin, J. C.-W. (editors) Periodic Pattern Mining:
Theory, Algorithms and Applications, Springer,
2021, ISBN: 978-981-16-3963-0 (book
on SpringerLink) |
|
2020 | 3. |
Chiroma, H., Abdulhamid, S. M., Fournier-Viger, P., Garcia,
N. M. (editors). Machine learning and Data Mining for
Emerging Trends in Cyber Dynamics. Springer, 2021,
|
2019 | 4. |
Fournier-Viger, P., Lin. J. C.-W., Vo, B., Nkambou, R.,
Tseng, V. S. (editors). High-Utility Pattern Mining:
Theory, Algorithms and Applications, Springer,
2019. |
2024. | 1. | Benavides-Prado, D., Erfani, S. M., Fournier-Viger, P., Boo, Y. L., Koh, Y. S. (2024).: Data Science and Machine Learning - 21st Australasian Conference, AusDM 2023, Auckland, New Zealand, December 11-13, 2023, Proceedings. Communications in Computer and Information Science 1943, Springer 2024, ISBN 978-981-99-8695-8 |
2022 | 1. | Guerrero, J., Fournier-Viger, P. Proceedings of Asia Conference on Algorithms, Computing and Machine Learning (CACML), IEEE, 2022. DOI: 10.1109/CACML55074.2022.00002 ISBN: 978-1-6654-8290-5 |
2. | P. Fournier-Viger et al.(Eds.): Proceedings of MEDI 2022 workshops, CCIS 1751, pp. x-yy, 2022. 10.1007/978-3-031-23119-3 | |
3. | Fournier-Viger, P., Hassan, A., Bellatreche, L. Proceedings of MEDI 2022, LNCS 13761, Springer, 2022. ISBN: 978-3-031-21594-0 |
|
4. | Fujita, H., Fournier-Viger. P., ... (editors) Proceedings of the 35th Intern. Conf. on
Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA AIE 2022), LNAI 13343, Springer, 2022. ISBN: 978-3-031-08529-1 |
|
2021 | 1. | Bhattacharyya, D., Saha, S, K. Fournier-Viger, P. Proceedings of 2nd International Conference on Machine Intelligence and Soft Computing (ICMISC-2021), Advances in Intelligent Systems and Computing, Springer, 2021. |
2. |
Kamp, M. ... Fournier-Viger, P. ... (editors) Proceedings of PKDD 2021 workshops,Communications in Computer and Information Science, CCIS1524, CCIS1525, Springer, 2021, Volume 1 and Volume 2. | |
2020 | 2. | Fujita, H., Fournier-Viger. P., Ali, M., Sasaki,
J. (editors) Proceedings of the 33rd Intern. Conf. on
Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA AIE 2020), Lectures Notes in Artificial
Intelligence 12144, Springer, 2020. ISBN: 978-3-030-55788-1. |
3. | Fujita, H., Fournier-Viger. P., Ali, M., Sasaki,
J. (editors) Poster proceedings of the 33rd Intern. Conf. on
Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA AIE 2020), 2020. ISBN: 978-4-901195-48-5 |
|
2019 | 4. |
Madria, S., Fournier-Viger, P., Chaudhary, S., Krishna Reddy,
P. (editors) Proceedings of the 7th International Conference
on Big Data Analytics (BDA 2019), 2019, Lecture Notes in
Computer Science 11932, Springer, 2019. |
|
2021 | 1. | Nouioua, M., Fournier-Viger, P., He, G., Nouioua, F., Min, Z. (2020). A Survey of Machine Learning for Network Fault Management. In the book “Machine Learning and Data Mining for Emerging Trends in Cyber Dynamics”, Springer, p. 1-27. | corr. auth. |
2. | Fournier-Viger, P., Wu. Y., Dinh, D.-T., Song, W., Lin, J.C.W. (2021). Discovering Periodic High Utility Itemsets in a Discrete Sequence. In the book “Periodic Pattern Mining: Theory, Algorithms and Application”, Springer, to appear. | corr. auth. * -- | |
3. | Fournier-Viger, P., Chi, T. T., Wu, Y., Qu, J.-F., Lin, J. C.W., Li, Z. (2021). Finding Periodic Patterns in Multiple Discrete Sequences. In the book “Periodic Pattern Mining: Theory, Algorithms and Application”, Springer, to appear. | corr. auth. -- | |
4. | Ahmed, U., Lin, J.C.W., Fournier-Viger, P. (2021). Privacy Preservation of Periodic Frequent Patterns using Sensitive Inverse Frequency . In the book “Periodic Pattern Mining: Theory, Algorithms and Application”, Springer, to appear. | ||
5. | Wu, Y., Geng, M., Li, Y., Guo, L., Fournier-Viger. P. (2021). NetHAPP: High Average Utility Periodic Gapped Sequential Pattern Mining. In the book “Periodic Pattern Mining: Theory, Algorithms and Application”, Springer, to appear. | -- | |
6. | Lin, J. C.-W., Li, T., Fournier-Viger, P., Zhang, J. (2021). Analytics of Multiple-Threshold Model for High Average-Utilization Patterns in Smart City Environments. In the book "Data-Driven Mining, Learning and Analytics for Secured Smart Cities", Springer. | ||
2019 | 7. | Fournier-Viger., P., Lin, J. C.-W., Truong, T.,
Nkambou, R. (2019). A
survey of high utility itemset mining. In:
Fournier-Viger et al. (eds). High-Utility Pattern Mining:
Theory, Algorithms and Applications, Springer (to appear), p.
1-46. DOI: 10.1007/978-3-030-04921-8_1 |
corr. auth. |
8. | Qu, J.-F., Liu, M., Fournier-Viger (2019). Efficient
algorithms for high utility itemset mining without candidate
generation. In: Fournier-Viger et al. (eds).
High-Utility Pattern Mining: Theory, Algorithms and
Applications, Springer, p. 131-160. DOI: 10.1007/978-3-030-04921-8_5 |
||
9. | Truong, T., Fournier-Viger., P. (2019).
A survey of high utility sequential pattern mining.
In: Fournier-Viger et al. (eds). High-Utility Pattern Mining:
Theory, Algorithms and Applications, Springer, p. 97-130. DOI: 10.1007/978-3-030-04921-8_4 |
||
10. | Dinh, D.-T., Huynh, V.-N., Le, B.,
Fournier-Viger, P., Huynh, U., Nguyen, Q.-M. (2019). A
Survey of Privacy Preserving Utility Mining.In:
Fournier-Viger et al. (eds). High-Utility Pattern Mining:
Theory, Algorithms and Applications, Springer, p.207-232 DOI: 10.1007/978-3-030-04921-8_8 |
||
11. | Djenouri, Y., Fournier-Viger, P., Belhadi, A.,
Lin, J. C.-W. (2019). Methaheuristics for High Utility
and Frequent Itemset Mining . In: Fournier-Viger et
al. (eds). High-Utility Pattern Mining: Theory, Algorithms and
Applications, Springer, p. 261-278. DOI: 10.1007/978-3-030-04921-8_10 |
||
12. | Wu. C.-W., Fournier-Viger, P., Gu, J. Y., Tseng,
V.S. (2019).
Mining Compact High Utility Itemsets without Candidate
Generation. In: Fournier-Viger et al. (eds).
High-Utility Pattern Mining: Theory, Algorithms and
Applications, Springer. DOI: 10.1007/978-3-030-04921-8_11 |
||
2015 | 13. | Snow, E., Moghrabi, C., Fournier-Viger, P. (2015). Automatic Grading of Open-ended Questions Using Semantic Web Ontologies and Functional Concepts. In. Taylor, K., Gerber, A., Meyer, T., Orgun, M. (Eds.) Ontologies: Theory and Applications in Information Systems and the Semantic Web, 12 pages. | |
2013 | 14. | Faghihi, U., Fournier-Viger, P., Nkambou, R. (2013). CELTS: A Cognitive Tutoring Agent with Human-Like Learning Capabilities and Emotions. In Ayala, A. P. (Ed.) Intelligent and Adaptive Educational-Learning Systems: Achievements and Trends, Springer, pp. 339-365.1 | |
<2010 | 15. | Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. (2010). Building Intelligent Tutoring Systems for Ill-Defined Domains. In Nkambou, R., Mizoguchi, R., Bourdeau, J. (Eds.). Advances in Intelligent Tutoring Systems, Springer, p.81-101. | corr. auth. |
16. | Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. (2010). Learning Procedural Knowledge from User Solutions To Ill-Defined Tasks in a Simulated Robotic Manipulator. In Romero et al. (Eds.). Handbook of Educational Data Mining, CRC Press, p. 451-465. | corr. auth. | |
17. | Fournier-Viger, P., Nkambou, R., Faghihi, U., Mephu Nguifo, E. (2009). Mining Temporal Patterns to Improve Agents Behavior: Two Case Studies. In Cao, L. (Ed.) Data Mining and Multiagent Integration, Springer, p.77-92. | corr. auth. |
Indexes / IF / ISSN / Chinese Ac. Sc. Rank / JCR Rank / CCF Rank | |||
2024. | 1. | Nawaz, Z., Nawaz, M. S., Fournier-Viger, P., He, Y. Analysis and Classification of Fake News using Sequential Pattern Mining, Big Data Mining and Analytics, Tsinghua University Press (to appear). | IS, EI IF: 13.6 ISSN: 2096-0654 CAS: Q1 corr. auth. |
2. | Nawaz, M. S., Nawaz, M. Z., Fournier-Viger, P., Luna, J.-M. (2024). Analysis and Classification of Employee Attrition and Absenteeism in Industry: A Sequential Pattern Mining-Based Methodology. Computers in Industry (COMIND). Elsevier (to appear) | IS, EI, SCI IF: 10 ISSN 0166-3615 CAS: Q1, JCR: Q1, corr. auth. |
|
3. | Nawaz, M. S., Fournier-Viger, P., Nawaz, S., Gan, W., He, Y. (2024). FSP4HSP: Frequent sequential patterns for the improved classification of heat shock proteins, their families, and sub-types. International Journal of Biological Macromolecules (BIOMAC). Elsevier (to appear) | IS, EI, SCI IF: 8.2 ISSN 1879-0003 CAS: Q1, JCR: Q1, corr. auth. |
|
4. | Nawaz, M. S., Fournier-Viger, P., Nawaz, S., Zhu, H., Yun U. (2024). SPM4GAC: SPM based approach for genome analysis and classification of macromolecules. International Journal of Biological Macromolecules (BIOMAC). Elsevier (to appear) | IS, EI, SCI IF: 8.2 ISSN 1879-0003 CAS: Q1, JCR: Q1, corr. auth. |
|
5. | Nawaz, M. S., Nawaz, M. Z., Gong, Y., Fournier-Viger, P., Diallo, A. B. (2024). In-Silico Framework for Genome Analysis . Future Generation Computer Systems, Elsevier, to appear. | ISI, EI, SCI, |
|
6. | Nawaz, S. M., Nawaz, Z., Zhang, J., Fournier-Viger, P., Qu, J. (2024). Exploiting the Sequential Nature of Genomic Data for Improved Analysis and Identification. Computers in Biology and Medicine (CIBM), Elsevier, to appear DOI: |
EI, SCI (on hold) IF: 6.698 IF: 6.9 ISSN: 1879-0534 CAS: Q2 JCR: Q1, corr. auth. |
|
7. | Song, W., Sun, Z., Fournier-Viger, P., Wu, Y. (2024) MRI-CE: Minimal rare itemset discovery using the cross-entropy method. Information science (to appear). | ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
8. | Yun, U., ... Fournier-Viger, P. ... (2024). An Efficient Approach for Incremental Erasable Utility Pattern Mining from non-binary Data. Knowledge and Information Systems (KAIS), Springer, to appear | ISI, EI, SCI, IF: 2.39 ISSN:0219-1377 CAS: Q4 JCR: Q3 CCF-B |
|
9. | Zhu, J., Niu, X., Li, F., Wang, Y., Fournier-Viger, P., She, K. (2024). STTraj2Vec: A spatio-temporal trajectory representation learning approach. Knowledge-Based Systems (KBS), Elsevier, to appear. | ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
10. | Chen X., Liu, T., Fournier-Viger, P., Zhang, B., Long, G., Zhang, Q. (2024). A Fine-grained Self-adapting Prompt Learning Approach for Few-shot Learning with Pre-trained Language Models . Knowledge-Based Systems (KBS), Elsevier, to appear. | ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
11. | Duong, H., Quang, H., Truong, T., Fournier-Viger, P. (2024). Efficient Algorithms to Mine Concise Representations of Frequent High Utility Occupancy Patterns. Applied Intelligence, to appear. |
ISI, EI, SCI, Q1_ IF: ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
12. | He, Y., Fournier-Viger, P., Ventura, S., Zhang, L. (2024). Introduction to the Special Issue on Recent Advances on Digital Economy-Oriented Artificial Intelligence. Engineering Applications of Artificial Intelligence (EAAI), to appear (editorial for special issue) | ISI, EI, SCI, SCR: Q1 IF: 2.819 ISSN: 0952-1976 CAS: Q2 JCR: Q1 CCF-C |
|
13. | Frnda, J., Durica, M., Lin, J. C.-W., Fournier-Viger, P. (2024) Video dataset containing video quality assessment scores obtained from standardized objective and subjective testing. Data in Brief, to appear | ... | |
2023. | 14. | Geng, M. Wu, Y., Li, Y., Liu, J., Fournier-Viger, P. Zhu, X., Wu, X. (2023). Repetitive non overlapping sequential pattern mining. IEEE
Transactions on Knowledge and Data Engineering (TKDE), to
appear. DOI: |
ISI, EI, SCI IF: 4.561 ISSN: 1041-4347 CAS: Q2 JCR: Q1 CCF-A |
15. | Wu, Y., Meng, Y., Li, Y., Guo, L., Zhu, X., Fournier-Viger, P. (2023). COPP-Miner: Top-k contrast order-preserving pattern mining for time series classification. IEEE
Transactions on Knowledge and Data Engineering (TKDE), to
appear. DOI: |
ISI, EI, SCI SCR: Q1 IF: 4.561 ISSN: 1041-4347 CAS: Q2 JCR: Q1 CCF-A |
|
16. | Qu, J.-F., Fournier-Viger, P., Liu, M., Hang, B., Hu, C. (2023). Mining High Utility Itemsets Using Prefix Trees and Utility Vectors. IEEE
Transactions on Knowledge and Data Engineering (TKDE), to
appear. DOI: |
ISI, EI, SCI SCR: Q1 IF: 4.561 ISSN: 1041-4347 CAS: Q2 JCR: Q1 CCF-A |
|
17. | Wu. Y., Zhao, X., Li, Y., Guo, L., Zhu, X., Fournier-Viger, P., Wu, X. (2023). OPR-Miner: Order-preserving rule mining for time series . IEEE
Transactions on Knowledge and Data Engineering (TKDE), to
appear. DOI: 10.1109/TKDE.2022.3224963 |
ISI, EI, SCI SCR: Q1 IF: 4.561 ISSN: 1041-4347 CAS: Q2 JCR: Q1 CCF-A |
|
18. | Ouarem, O., Nouioua, F., Fournier-Viger, P. (2023). A Survey of Episode Mining. WIREs Data Mining and Knowledge Discovery, Wiley, to appear. | ISI, EI, SCI IF: 7.8 ISSN: 1942-4787 CAS: Q3, JCR: Q1, corr. auth. |
|
19. | Luna, J. M., Kiran, R. U., Fournier-Viger, P., Vventura, S. (2023).Efficient Mining of Top-k High Utility Itemsets through Genetic Algorithms. Information
Sciences, Elsevier, 624: 529-553. DOI: 10.1016/j.ins.2022.12.092 |
ISI, EI, SCI IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
20. | Gan, W., Huang, S., Miao, J., Han, X., Fournier-Viger, P. (2023).Targeted Mining of Top-k High Utility ltemsets. Engineering Applications of
Artificial Intelligence (EAAI), Elsevier, Volume 126, Part D, November 2023, 107047 DOI: 10.1016/j.engappai.2023.107047 |
ISI, EI, SCI, SCR: Q1 IF: ISSN: 0952-1976 CAS: Q2 JCR: Q1 CCF-C |
|
21. | Nawaz, S. M., Fournier-Viger, P., He, Y., Zhang, Q. (2023). PSAC-PDB: Analysis and Classification of Protein Structures. Computers in Biology and Medicine (CIBM), Elsevier, 158: 106814 (2023) DOI: 10.1016/j.compbiomed.2023.106814 |
EI, SCI IF: 6.698 IF: 6.9 ISSN: 1879-0534 CAS: Q2 JCR: Q1, corr. auth. |
|
22. | Ouarem, O., Nouioua, F., Fournier-Viger. (2023). Discovering Frequent Parallel Episodes in Complex Event Sequences by Counting Distinct Occurrences. Applied Intelligence, to appear. |
ISI, EI, SCI IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
23. | Nawaz, S., Fournier-Viger, P., Aslam, M., Li, W., He, Y., Niu, X. .(2023). Using Alignment-Free and Pattern Mining Methods for SARS-CoV-2 Genome Analysis. Applied Intelligence, to appear. |
ISI, EI, SCI IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
24. | Ahmed, U., Lin, J. C.-W., Fournier-Viger, P. (2023). Federated deep active learning for attention-based transaction classification. Applied Intelligence, 53(8): 8631-8643 DOI : 10.1007/s10489-022-04388-1 |
ISI, EI, SCI IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
25. | He, Y., Li, X., Zhang, M., Fournier-Viger, P., Huang, J. Z. (2023). A Novel Observation Points-Based Positive-Unlabeled Learning Algorithm. CAAI
Transactions on Intelligence Technology, to appear. DOI: 10.1049/cit2.12100. |
EI, SCI SCR: IF: ISSN: 2468-2322 CAS: JCR: ... |
|
26. | Aslam, M., Nawaz, M. S., Fournier-Viger, P., Li, W. (2023).
Comparative Analysis and Classification of SARS-CoV-2 Spike Protein Structures in PDB. COVID journal,
|
SCR: IF: ISSN: 2673-8112 CAS: JCR: |
|
27. | Wang, Z., Fournier-Viger, P., Wang, Y.-P., Fu, Y., (2023). Crosstalk between Computational Medicine and Neuroscience in Healthcare. Frontiers in neurosciences (editorial article) | ||
2022. | 28. | He, Y., Ou, G., Fournier-Viger, P., Huang, J. Z. (2022). Attribute Grouping-Based Naive Bayesian Classifier . Science China, to appear. DOI: |
... |
29. | He, Y., Ye, X, Cui, L, Fournier-Viger, P., Luo, C., Huang, J. Z., Suganthan, P. N. (2022) Wireless Network Slice Assignment with Incremental Random Vector Functional Link Network. IEEE Transactions on Network Science and Engineering, 10(3): 1283-1296 DOI: 10.1109/TNSE.2022.3178740 |
SCIE IF: ISSN: 2327-4697 CAS: ... JCR: ... |
|
30. | He, Y., Ye, X., Huang D., Fournier-Viger, P., Huang, J. Z.
(2022). A Hybrid Method to Measure Distribution
Consistency of Mixed-Attribute Data Sets. IEEE
Transactions on Artificial Intelligence, IEEE, 4(1): 182-196. DOI: 10.1109/TAI.2022.3151724 |
IF: ISSN: 2691-4581 CAS: ... JCR: ... |
|
31. | He, Y., ... Fournier-Viger,
P. ... (2022). A Novel Correlation Gaussian Process Regression-Based Extreme Learning Machine. Knowledge and
Information Systems (KAIS), Springer, 65(5): 2017-2042 DOI: 10.1007/s10115-022-01803-4 |
ISI, EI, SCI, Q2 IF: 2.39 ISSN:0219-1377 CAS: Q3 JCR: Q2 CCF-B |
|
32. | He, Y., Ye, X, Huang, J. Z., Fournier-Viger, P. (2022). Bayesian
Attribute Bagging-Based Extreme Learning Machine for
High-dimensional Classification and Regression. ACM
Trans. Intell. Syst. Technol., ACM, to appear. DOI: 10.1145/3495164 |
ISI, EI, SCI_ SCR: Q1 IF: 4.6 ISSN: 2157-6904 CAS: Q3 JCR: Q1 |
|
33. | Gan, W., Chen, G., Yin, H., Fournier-Viger,
P., Chen, C., Yu, P. S. (2022). Towards Revenue Maximization with Popular and Profitable Products . ACM Transactions
on Data Science), 2(4): article 42. DOI: 10.1145/3488058 |
_ ISSN: 2691-1922 |
|
34. | Nguyen, T.-T., Nguyen, L. T.T., Nguyen, T. D. D.,
Fournier-Viger, P., Nguyen, N.-T., Vo, B. (2022).
Efficient mining of cross-level high-utility itemsets in
taxonomy quantitative databases. Information
Sciences, Elsevier, to appear. DOI: 10.1016/j.ins.2021.12.017 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
35. | Le, B., Truong, T., Duong, H., Fournier-Viger, P., Fujita, H. (2022) H-FHAUI: Hiding Frequent High Average Utility Itemsets. Information
Sciences, Elsevier, to appear. DOI: 10.1016/j.ins.2022.07.027 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
36. | Liu, J., Fournier-Viger, P., Zhou, M., He, G., Nouioua, M.
(2022). CSPM: Discovering Compressing Stars in Attributed Graphs. Information Sciences, Elsevier, 609: 172-194 DOI: 10.1016/j.ins.2022.08.008 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B, corr. auth. |
|
37. | Zhang, X., Qi, Y., Chen, G., Gan, W., Fournier-Viger, P.... (2022). Fuzzy-driven Periodic Frequent Pattern Mining. Information Sciences, Elsevier, to appear. DOI: 10.1016/j.ins.2022.11.009 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B, |
|
38. | Wang, S., Niu, X., Fournier-Viger, P., Zhou, D., Min, F. (2022) A Graph Based Approach for Mining Significant Places in Trajectory Data. Information Sciences, Elsevier DOI: 10.1016/j.ins.2022.07.046 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B, |
|
39. | Wu, Y., Yuan, Z., Li, Y., Guo, L, Fournier-Viger, P., Wu, X.
(2022). Nonoverlapping Weak-gap Sequential Pattern
Mining. Information Sciences, Elsevier, to appear. DOI: 10.1016/j.ins.2021.12.064 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
40. | He, Y., Li, X., Huang, J. Z., Fournier-Viger, P., Li, M.
(2022). Observation Points Classifier Ensemble for
High-Dimensional Imbalanced Classification. CAAI
Transactions on Intelligence Technology, to appear. DOI: 10.1049/cit2.12100 |
SCI SCR: IF: ISSN: 2468-2322 CAS: JCR: ... |
|
41. |
Xu, G., Xian, D., Fournier-Viger, P., Li, X., Ye, Y., Hu, X.
(2022). AM-ConvGRU: A Spatio-Temporal Model for
Typhoon Path Prediction. Neural Computing and
Applications, Springer, to appear. |
ISI, EI, SCI |
|
42. | Song, W., Ye, W., Fournier-Viger, P. (2022). Mining
sequential patterns with flexible constraints from MOOC data. Applied Intelligence, to appear. DOI : 10.1007/s10489-021-03122-7 |
ISI, EI, SCI, Q1_ IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
43. | Amirat, H., Lagraa, N., Fournier-Viger, P., Ouinten, Y., Kherfi, M. L., Guellouma, Y. (2022) Incremental Tree-based Successive POI Recommendation in Location-based Social Networks . Applied Intelligence, 53(7): 7562-7598 DOI:10.1007/s10489-022-03842-4 |
ISI, EI, SCI, Q1_ IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
44. | Nouioua, F., Lekfir, M., Fournier-Viger, P. (2022). Hiding
Sensitive Frequent Itemsets by Item Removal via Two-Level Multi-Objective Optimization. Applied
Intelligence, Springer, to appear. DOI: 10.1007/s10489-022-03808-6 |
ISI, EI, SCI, Q1_ IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
45. | He, Y., . Ou, G.-L., Philippe Fournier-Viger, Huang, J.
Z., Suganthan, P. N., (2022). A novel
dependency-oriented mixed-attribute data classification method.
Expert Systems with Applications, Elsevier, to appear. DOI: 10.1016/j.eswa.2022.116782 |
ISI, EI, SCI, IF: ISSN: 0957-4174 CAS: JCR: CCF-C |
|
46. | Nawaz, M. S., Fournier-Viger, P., Nawaz, M. Z., Chen, G., Wu, Y. (2022) MalSPM: Metamorphic Malware Behavior Analysis and Classification using Sequential Pattern Mining. Computers & Security, Elsever, to appear DOI: 10.1016/j.cose.2022.102741 |
ISI, EI, SCI, |
|
47. | Yun, U. ... Fournier-Viger, P. ... (2022) Mining High Occupancy Patterns to Analyze Incremental Dynamic Data in Intelligent Systems. ISA Transactions, Elsevier, to appear. DOI: 10.1016/j.isatra.2022.05.003 |
EI, SCI IF: 5.468 ISSN: 0019-0578 CAS: Q2 JCR _____ SJR: Q1 |
|
48. | Duong, H., Hoang, T., Tran, T., Truong, T., Le, B., Fournier-Viger, P. (2022). Efficient Algorithms for Mining Closed and Maximal High Utility Itemsets. Knowledge-Based Systems (KBS), Elsevier, to appear. | ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
49. | Wu., P., Niu, X., Fournier-Viger, P., Huang, C., Wang, B. (2022). UBP-Miner: An Efficient Bit Based High Utility Itemset Mining Algorithm.
Knowledge-Based Systems (KBS), Elsevier, to appear. DOI : 10.1016/j.knosys.2022.108865 |
ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
2021. | 50. | Gan, W., Lin, J. C. W., Zhang, J., Yin, H., Fournier-Viger, P., Chao, H.-C., Yu, P. S. (2021). Utility Mining Across Multi-Dimensional Sequences. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(5): 82:1-82:24. | ISI, EI, SCI SCR: Q1 IF: 2.8 ISSN: 1556-4681 CAS: Q4 JCR: Q2 CCF-B |
51. |
Wu, Y., Luo, L., Li, Y., Guo, L., Fournier-Viger, P., Wu, X. (2019). NTP-Miner: Nonoverlapping three-way sequential pattern mining. ACM Transactions on Knowledge Discovery from Data (TKDD), to appear. |
ISI, EI, SCI |
|
52. | Wu, Y., Geng, M., Li, Y., Guo, L, Li, Z., Fournier-Viger, P., Zhu, X., Wu, X. (2021). HANP-Miner: High Average Utility Nonoverlapping Sequential Pattern Mining. Knowledge-Based Systems (KBS), Elsevier, to appear. | ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
53. | Wang, Y., Wu, Y., Li, Y., Yao, F., Fournier-Viger, P., Wu, X. (2021). Self-Adaptive Nonoverlapping Sequential Pattern Mining. Applied Intelligence, to appear. | ISI, EI, SCI, Q1_ IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
54. | Fournier-Viger, P., Wang Y., Yang, P., Lin, J. C.-W., Yun, U. (2021). TSPIN: Mining Top-k Stable Periodic Patterns. Applied Intelligence, to appear. [source code & data] | ISI, EI, SCI, Q1 IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
55. | Nouioua, M., Fournier-Viger, P., W. C.-W., Lin, J. C.-W., Gan, W. (2021). FHUQI-Miner: Fast High Utility Quantitative Itemset Mining. Applied Intelligence, to appear. [source code & data] [ppt] | ISI, EI, SCI, Q1 IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
56. | Chi, T. T., Duong, H., Le, B, Fournier-Viger, P., Yun, U. (2021). Frequent High Minimum Average Utility Sequence Mining with Constraints in Dynamic Databases using Efficient Pruning Strategies. Applied Intelligence, to appear. | ISI, EI, SCI, Q1 IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
57. | Chi, T. T., Duong, H., Le, B, Fournier-Viger, P., Yun, U. (2021). Mining Interesting Sequences with Low Average Cost and High Average Utility. Applied Intelligence, to appear. | ISI, EI, SCI, Q1 IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
58. | Nawaz, S., Fournier-Viger, P., Shojaee, A., Fujita, H. (2021). Using Artificial Intelligence Techniques for COVID-19 Genome Analysis. Applied Intelligence, 51(5): 3086-3103 [source code and data + SPMF] | ISI, EI, SCI, Q1 IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
59. | Huynh, H., Nguyen, L., Vo, B., Oplatková, Z., Fournier-Viger,
P., Yun, U. (2021). An Efficient Parallel Algorithm for
Mining Weighted Clickstream Patterns. Information
Sciences, Elsevier, 553: 353-375. DOI: |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
60. | Nawaz, M.S., Nawaz, M.Z., Hasan, O, Fournier-Viger, P., Sun,
M. (2021). An Evolutionary/Heuristic-Based Proof
Searching Framework for Interactive Theorem Prover.
Applied Soft Computing, Elsevier. 104: 107200 DOI: 10.1016/j.asoc.2021.107200 |
ISI, EI, SCI, |
|
61. | Nawaz, M.S., Fournier-Viger, P., Yun, U., Wu, Y., Song, W. (2021). Mining High Utility Itemsets with Hill Climbing and Simulated Annealing. ACM Transactions on Management Information Systems (to appear) |
ISI, EI, SCI, |
|
62. | Kim, H., Yun, U., Baek, Y., Kim, H., Nam, H., Lin, J. C.-W.,
Fournier-Viger, P. (2021). Damped Sliding Window based
Utility Pattern Mining over Stream Data.
Knowledge-based Systems, Elsevier, 213(15):106653 DOI: 10.1016/j.knosys.2020.106653 |
ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
63. | Fujita, H., Fournier-Viger, P., Sasaki, J., Ali, M. (2021). Advances in Theory and Applications of Artificial Intelligence. AI Magazine, 42 (1):86-87, AAAI. (conference report) | ISI, EI, SCI, _ IF: 2.1 ISSN 0738-4602 CAS: Q4 JCR: Q2 |
|
64. | Bouakkaz, M., Ouinten, Y., Loudcher, S., Fournier-Viger, P. (2021), Enhancing link prediction in dynamic networks using content aggregation. Cluster Computing, DOI: 10.1007/s10586-021-03290-8 | ISI, EI, SCI IF: 3.47 ISSN 1386-7857 CAS: Q3 JCR: Q3 |
|
65. | Lin, J. C.-W., Djenouri, Y., Srivastava, G., Fournier-Viger, P. (2021). Mining Profitable and Concise Patterns in Large-Scale Internet of Things Environments. Wireless Communications and Mobile Computing, Hindawi, DOI: 10.1155/2021/6653816 | ||
66. | Wu, J. M.-T., Srivastava, G., Jolfaei, A., Fournier-Viger, P., Lin, J.C.W.(2021). Hiding Sensitive Information in eHealth Datasets. Future Generation Computer Systems, Elsevier, 117: 169-180. |
ISI, EI, SCI, |
|
2020. | 67. |
Gan, W., Lin, J. C.-W., Fournier-Viger, P., Zhang. J., Chao,
H.-C., Yu, P. S. (2020). Fast Utility Mining on
Sequence Data. IEEE Transactions on Cybernetics.
IEEE. 51(2), 487-500 |
ISI, EI, SCI, Q1 IF: 11.469 ISSN: 2168-2267 CAS: Q1 JCR: Q1 CCF-B |
68. | Qu, J., Fournier-Viger, P., Liu, M., Hang, B., Wang, F. (2020)
Mining High Utility Itemsets Using Extended Chain
Structure and Utility Machine. Knowledge-Based
Systems (KBS), Elsevier, 208:106457 DOI: 10.1016/j.knosys.2020.106457 |
ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
69. |
Gan, W., Lin, J., Fournier-Viger, P., Chao, H.C., Yu, P.S.
(2020). Beyond Frequency: Utility Mining with Varied
Item-Specific Minimum Utility. ACM Transactions on
Internet Technology, ACM, 21(1): 3:1-3:32. |
ISI, EI, SCI, |
|
70. | Shabtay, L., Fournier-Viger, P., Yaari, R., Dattner, I.
(2020). A Guided FP-growth algorithm for mining
multitude-targeted item-sets and class association rules in
imbalanced data. Information Sciences, Elsevier, 553:
353-375. DOI: 10.1016/j.ins.2020.10.020 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
71. |
Fournier-Viger, P., Yang, P., Kiran, R. U., Ventura, S.,
Luna, J. M.. (2020). Mining
Local Periodic Patterns in a Discrete Sequence.
Information Sciences, Elsevier, 544: 519-548. [source
code] [ppt]
|
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B, corr. auth. |
|
72. | Fournier-Viger, P., He, G., Cheng, C., Li, J., Zhou, M., Lin,
J.C-W., Yun, U. (2020). A
Survey of Pattern Mining in Dynamic Graphs.
WIREs Data Mining and Knowledge Discovery, Wiley, 10(6). DOI: 10.1002/WIDM.1372 |
ISI, EI, SCI, Q1 IF: ISSN: 1942-4787, corr. auth. |
|
73. |
Liu, X., Niu, X., Fournier-Viger, P. (2020) Fast
Top-K Association Rule Mining Using Rule Generation Property
Pruning. Applied Intelligence, Springer, to appear
|
ISI, EI, SCI, Q2 IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
74. |
Nawaz, S., Nawaz, Z, Hasan, O., Fournier-Viger, P., Sun, M.
(2020) Proof Searching and Prediction in HOL4 with
Evolutionary/Heuristic and Deep Learning Techniques.
Applied Intelligence, Springer, to appear |
ISI, EI, SCI, Q2 IF: 3.264 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
75. | Noor, S., Guo, Y., Shah, S. H. H., Fournier-Viger, P., Nawaz,
M. S. (2020). Analysis of Public Reaction to the Novel
Coronavirus (COVID-19) Outbreak on Twitter.
Kybernetes, Emerald Publishing DOI: 10.1108/K-05-2020-0258 |
SCI ... IF: 2.394 ISSN: 0368-492X CAS: ..... |
|
76. | Lin, J., Li, Y., Fournier-Viger, P., Djenouri, Y., Zhang, J.
(2020). Efficient Chain Structure for High-Utility
Sequential Pattern Mining. IEEE Access, 8:
40714-40722 DOI: 10.1109/ACCESS.2020.2976662 |
ISI, EI, SCI, SCR: Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1 |
|
77. | Nawaz, S., Fournier-Viger, P., Lin, J. C.-W., Zhang, J.
(2020). Proof
Learning in PVS with Utility Pattern Mining.
IEEE Access, 8: 119806-119818 DOI: 10.1109/ACCESS.2020.3004199 |
ISI, EI, SCI, SCR: Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1, corr. auth. |
|
78. | Vo, B., Nguyen, T.T., Nguyen, T. D. D., Fournier-Viger, P.,
Yun, U. (2020). A multi-core approach to efficiently
mine high-utility itemsets in dynamic profit databases.
IEEE Access, 9(1):85890-85899. DOI: 10.1109/ACCESS.2020.2992729 |
ISI, EI, SCI, SCR: Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1 |
|
79. | Luna, J.M., Fournier-Viger, P., Ventura, S. (2020). Extracting
user-centric knowledge on two different spaces: concepts and
records. IEEE Access, 8(1):134782-134799. DOI: 10.1109/ACCESS.2020.3010852 |
ISI, EI, SCI, SCR: Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1 |
|
80. | Li, X., Li, J., Fournier-Viger, P., Nawaz, M. S., Yao, J.,
Lin, J. C.-W. Mining
Productive Itemsets in Dynamic Databases. IEEE
Access, 8:140122-140144. DOI: 10.1109/ACCESS.2020.3012817 |
ISI, EI, SCI, SCR: Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1, corr. auth. |
|
81. | Frnda, J., Durica, M., Savrasovs, M., Fournier-Viger, P., Lin,
J. C.-W. (2020). QoS to QoE Mapping Function for Iptv
Quality Assessement Based on Kohonen Map: A Pilot Study. Transport
and Telecommunication, Sciendo, 21(3), 181-190. DOI: 10.2478/ttj-2020-0014 |
ESCI |
|
82. | Frnda, J., ... Fournier-Viger, P. ... (2020). A New
Perceptual Evaluation Method of Video Quality Based on Neural
Network. Intelligent Data Analysis, IOS Press, 25(3):
571-587. DOI: 10.3233/IDA-205085 |
ISI, EI, SCI, IF: 0.86 ISSN 1088-467X CAS: Q4 JCR: Q4 CCF-C |
|
83. | Yun, U., Kim, J., Yoon, E., Lin, J.C.W., Fournier-Viger, P.
(2020). One scan based High Average-Utility Pattern
Mining in static and dynamic databases. Future
Generation Computer Systems, Elsevier, to appear. DOI: 10.1016/j.future.2020.04.027 |
ISI, EI, SCI, |
|
84. | Truong, T.T., Tran, A., Duong, H., Le, B., Fournier-Viger, P. (2020). EHUSM: Mining High Utility Sequences with a Pessimistic Utility Model. Data Science and Pattern Recognition (DSPR), to appear. | ISSN: 2520-4165 Note: special issue of UDM 2018 workshop papers |
|
85. | Fournier-Viger, P., Li, J., Lin, J. C.-W., Truong, T. (2020). Discovering low-cost high utility patterns. Data Science and Pattern Recognition (DSPR), Vol. 4(2), pp. 50–64, 2020. | ISSN: 2520-4165,corr. auth. Note: special issue of UDM 2018 workshop papers |
|
2019 | 86. | Baek, Y., Yun, U., Yoon, E., Fournier-Viger P. d(2019). Uncertainty
based Pattern Mining for Maximizing Profit of Manufacturing
Plants with List Structure. IEEE Transactions on
Industrial Electronics, IEEE. 67(11):9914-9926. DOI: 10.1109/TIE.2019.2956387 |
ISI, EI, SCI SCR: Q1 IF: 7.05 ISSN: 0278-0046 CAS: Q1 JCR: Q1 |
87. | Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C.,
Tseng, V. S., Yu, P. (2019). A Survey of
Utility-Oriented Pattern Mining. IEEE
Transactions on Knowledge and Data Engineering (TKDE), to
appear... DOI: 10.1109/TKDE.2019.2942594 |
ISI, EI, SCI, SCR: Q1 IF: 4.561 ISSN: 1041-4347 CAS: Q2 JCR: Q1 CCF-A |
|
88. | Truong, T., Duong, H., Le, B., Fournier-Viger, P. (2019). Efficient Vertical Mining of High Average-Utility Itemsets based on Novel Upper-Bounds. IEEE Transactions on Knowledge and Data Engineering (TKDE), 31(2): 301 - 314. | ISI, EI, SCI, Q1 IF: 4.561 ISSN: 1041-4347 CAS: Q2 JCR: Q1 CCF-A |
|
89. | Fournier-Viger, P., Li, J., Lin, J. C., Chi, T. T., Kiran, R.
U. (2019). Mining
Cost-Effective Patterns in Event Logs.
Knowledge-Based Systems (KBS), Elsevier, 191: 105241 [ppt]
[source
code] DOI: 10.1016/j.knosys.2019.105241 |
ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C, corr. auth. |
|
90. | Fournier-Viger, P., Cheng, C., Cheng, Z., Lin, J. C.-W.,
Selmaoui-Folcher, N. (2019). Mining
Significant Trend Sequences in Dynamic Attributed Graphs.
Knowledge-Based Systems (KBS), Elsevier, to appear. [source
code] [ppt]
DOI: 10.1016/j.knosys.2019.06.005 |
ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C, corr. auth. |
|
91. | Truong, T., Duong, H., Le, B., Fournier-Viger, P., Yun, U.
(2019). Efficient High Average-Utility Itemset Mining
Using Novel Vertical Weak Upper-Bounds.
Knowledge-Based Systems (KBS), Elsevier, 31(2): 301-314 DOI: 10.1016/j.knosys.2019.07.018 |
ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C, corr. auth. |
|
92. | Nguyen, L, Nguyen, P., Nguyen, T., Vo, B., Fournier-Viger, P.,
Tseng, V. S. (2019). Mining High Utility Itemsets in
Dynamic Profit Databases. Knowledge-Based Systems
(KBS), Elsevier,175: 130-144. DOI: 10.1016/j.knosys.2019.03.022 |
ISI, EI, SCI, Q1
IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
93. |
Fournier-Viger, P., Zhang, Y., Lin, J. C.W., Fujita, H., Koh, Y.S. (2019). Mining Local and Peak High Utility Itemsets. Information Sciences, Elsevier, 481: 344-367. [source code][ppt] DOI: 10.1016/j.ins.2018.12.070 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B, corr. auth. |
|
94. | Fournier-Viger, P., Li, Z., Lin, J. C. W., Kiran, R. U.,
Fujita, H. (2019). Efficient
Algorithms to Identify Periodic Patterns in Multiple
Sequences. Information Sciences, Elsevier, 489:
205-226 [source
code][ppt] DOI: 10.1016/j.ins.2019.03.050 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B, corr. auth. |
|
95. | Djenouri, Y., Djenouri, D., Belhadi, A., Fournier-Viger, P., Lin, J. C.-W., Bendjoudi, A. (2019). Exploiting GPU parallelism in improving bees swarm optimization for mining big transactional databases. Information Sciences, Elsevier, 496: 326-342 (2019) | ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B, |
|
96. |
Truong, T., Duong, H., Le, B., Fournier-Viger, P. (2019). EHAUSM:
An Efficient Algorithm for High Average Utility Sequence
Mining. Information Sciences, Elsevier, 515:
302-323. |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
97. | Lin, J. C.-W., Shao, Y., Fournier-Viger, P., Fujita, H.
(2019). BILU-NEMH: A BILU Neural-Encoded Mention
Hypergraph for Mention-Extraction. Information
Sciences, Elsevier, 496: 53-64. DOI: 10.1016/j.ins.2019.04.059 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
98. | Fournier-Viger, P., Yang, P., Li, Z., Lin, J. C.-W., Kiran. R.
U. (2019). Discovering
Rare Correlated Periodic Patterns in Multiple Sequences.
Data & Knowledge Engineering (DKE), 126: DOI:
101733, 10.1016/j.datak.2019.101733. |
ISI, EI, SCI |
|
99. | Fournier-Viger, P., Yang, P., Lin, J. C.-W, Duong, Q.-H., Dam, T.-L., Sevcik, L., Uhrin, D., Voznak, M. (2019). Discovering Periodic Itemsets using Novel Periodicity Measures. Advances in Electrical and Electronic Engineering, 17(1):33-44, DOI: 10.15598/aeee.v17i1.3185. | ISSN 1804-3119 corr. auth. |
|
100. | Luna, J. M., Fournier-Viger, P., Ventura, S. (2019).
Frequent
Itemset Mining: a 25 Years Review. WIREs Data
Mining and Knowledge Discovery, Wiley, 9(6):e1329. DOI: 10.1002/widm.1329 |
ISI, EI, SCI, Q1 IF: 4.703 ISSN: 1942-4787 CAS: Q3 JCR: Q2 |
|
101. | Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C., Yu,
P. S. (2019). HUOPM: High Utility Occupancy Pattern
Mining. IEEE Transactions on Cybernetics. IEEE.
50(3): 1195-1208. DOI: 10.1109/TCYB.2019.2896267 |
ISI, EI, SCI, Q1 |
|
102. | Gan, W., Lin, J. C. W., Fournier-Viger, P., Chao, H.-C., Yu,
P. S. (2019) A Survey of Parallel Sequential Pattern
Mining. ACM Transactions on Knowledge Discovery from
Data (TKDD), 13(3): 25:1-25:34. DOI: 10.1145/3314107 |
ISI, EI, SCI, |
|
103. | Chi, T. T., Duong, H., Le, B., Fournier-Viger, P. (2019). FMaxCloHUSM:
An Efficient Algorithm for Mining Frequent Closed and Maximal
High Utility Sequences. Engineering Applications of
Artificial Intelligence (EAAI), Elsevier, 85: 1-20. DOI: 10.1016/j.engappai.2019.05.010 |
ISI, EI, SCI, SCR: Q1 IF: 2.819 ISSN: 0952-1976 CAS: Q2 JCR: Q1 CCF-C |
|
104. | Lin, J. C.-W., Wu, J. M-T., Fournier-Viger, P., Chen, C.-H.,
Zhang, Y. (2019). A Sanitization Approach to Secure
Shared Data in an IoT Environment. IEEE Access, 7:
25359-25368. DOI: 10.1109/access.2019.2899831 |
ISI, EI, SCI, SCR: Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1 |
|
105. | Lin, J. C.-W., Zhang, S., Zhang, Y., Zhang, B.,
Fournier-Viger, P., Djenouri, Y. (2019). Hiding
Sensitive Itemsets with Multiple Objective Optimization.
Soft computing, Springer, 23 (23): 12779–12797. DOI: 10.1007/s0050 |
ISI, EI, SCI, Q3 IF: 2.367 ISSN: 1432-7643 CAS: Q3 JCR: Q2 CCF-C |
|
106. | Amirat, H., Lagraa, N., Fournier-Viger, P., Ouinten, Y.
(2019). NextRoute: A lossless model for accurate
mobility prediction. Journal of Ambient Intelligence
and Humanized Computing, Springer. (to appear) DOI: 10.1007/s12652-019-01327-w |
ISI, EI, SCI, Q2? |
|
107. | Win, K. N., Chen, J., Chen, Y., Fournier-Viger, P. (2019) PCPD:
A Parallel Crime Pattern Discovery System for Large-scale
Spatio-temporal Data based on Fuzzy Clustering.
International Journal of Fuzzy Systems, Springer,
21(6):1961–1974. DOI: 10.1007/s40815-019-00673-3 |
ISI,EI, SCI IF: 2.396 ISSN: 1562-2479 CAS: Q3 JCR: Q2 |
|
108. | Lin, J. C.-W., Li, T., Pirouz, M., Zhang, J., Fournier-Viger,
P. (2019). High Average-Utility Sequential Pattern
Mining based on Uncertain Databases. Knowledge and
Information Systems (KAIS), Springer, 56(1): 165-196. DOI: 10.1007/s10115-019-01385-8 |
ISI, EI, SCI, Q2 IF: 2.39 ISSN:0219-1377 CAS: Q3 JCR: Q2 CCF-B |
|
109. | Win, K. N., Li, K., Chen, J., Fournier-Viger, P., Li, K.
(2019). Fingerprint Classification and Identification
Algorithms for Criminal Investigation : A Survey.
Future Generation Computer Systems, Elsevier, to appear. DOI: 10.1016/j.future.2019.10.019 |
ISI, EI, SCI, |
|
110. | Wu. J. M. T, Lin, J. C.-W., Fournier-Viger, P. Dj, Y., Chen,
C.-H., Li, Z.(2019). Density-based Clustering Method
for Privacy-Preserving Data Mining. Mathematical
Biosciences and Engineering (MBE), 11 pages. DOI: ___ |
SCI, JCR Q3 |
|
2018 | 111. | Duong, H., Ramampiaro, H., Norvag, K., Fournier-Viger, P.,
Dam, T.-L. (2018). High Utility Drift Detection in
Quantitative Data Streams. Knowledge-Based Systems
(KBS), Elsevier, 157 (1): 34-51. DOI: 10.1016/j.knosys.2018.05.014 |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
112. |
Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C.,
Fujita, H. (2018). Extracting non-redundant
correlated purchase behaviors by utility measure.
Knowledge-Based Systems (KBS), Elsevier, 143: 30-41. |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
113. |
Mafarja, M., Aljarah, I., Heidari, A. A., Faris, H.,
Fournier-Viger, P., Li, X., Mirjalili, S. (2018). Binary
Dragonfly Optimization for Feature Selection using
Time-Varying Transfer functions. Knowledge-Based
Systems (KBS), Elsevier, 161(1): 185-204. |
ISI, EI, SCI, Q1 IF: 5.3 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C Web-of-Science Highly-Cited paper |
|
114. | Lin, C.-W., Ren, S., Fournier-Viger, P., Hong, T.-P. (2018). MEMU:
More Efficient Algorithm to Mine High Average-Utility Patterns
with Multiple Minimum Average-Utility Thresholds.
IEEE Access, 6: 7593-7609. DOI: 10.1109/ACCESS.2018.2801261 |
ISI, EI, SCI, Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1 |
|
115. | W. J. M. T., Lin, J.C.W. Pirouz, M., Fournier-Viger, P. (2018)
TUB-HAUPM: Tighter Upper Bound for Mining High
Average-Utility Patterns. IEEE Access 6: 18655-18669. DOI: 10.1109/ACCESS.2018.2820740 |
ISI, EI, SCI, Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1 |
|
116. | Fournier-Viger, P., Zhang, Y., Lin, J. C.-W., Dinh, T., Le, B.
(2018) Mining
Correlated High-Utility Itemsets Using Various Correlation
Measures. Logic Journal of the IGPL,
Oxford Academic, 28(1): 19-32. [source
code] DOI: 10.1093/jigpal/jzz068 |
ISI, EI, SCI, IF: 0.575 ISSN:1367-0751 CAS: Q4 JCR: Q3, corr. auth. |
|
117. | Zhang, B., Lin, J. C.-W., Fournier-Viger, P., Djenouri, Y. (2018) A (k, p)-anonymity Framework to Sanitize Transactional Database with Personalized Sensitivity. Journal of Internet Technology, Taiwan Academic Network (to appear). to appear. | ISI, EI, SCI, JCR Q3 IF: 0.715 ISSN:1607-9264 CAS: Q4 JCR: JCR: Q4 |
|
118. |
Dinh, D.-T., Le, B., Fournier-Viger, P., Huynh, V.-N. (2018)
An efficient algorithm for mining periodic
high-utility sequential patterns. Applied
Intelligence, 48(12):4694-4714. |
ISI, EI, SCI, Q2 IF: 1.983 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
119. | Lin, J. C.-W., Shao, Y., Fournier-Viger, P., Djenouri, Y.
(2018) Maintenance algorithm for high average-utility
itemsets with transaction deletion. Applied
Intelligence, 48(10): 3691-3706 DOI: 10.1007/s10489-018-1180-8 |
ISI, EI, SCI, Q2 IF: 1.983 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
120. | Le, T., Vo, B., Fournier-Viger, P., Lee, M. Y., Baik, S. W.
(2018). SPPC: A New Tree Structure for Mining Erasable
Patterns in Data Streams. Applied Intelligence, 459:
117-134. DOI: 10.1007/s10489-018-1280-5 |
ISI, EI, SCI, Q2 IF: 1.983 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
121. | Djenouri, Y., Djenourni, D., Belhadi, A., Fournier-Viger, P.,
Lin, J. C.-W. (2018) A New Framework for
Metaheuristic-based Frequent Itemset Mining. Applied
Intelligence, 48(12): 4775-4791 (2018) DOI: 10.1007/s10489-018-1245-8 |
ISI, EI, SCI, Q2 IF: 1.983 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
122. | Le, B. Dinh, D.-T., Huynh, N.V., Nguyen, Q. M.,
Fournier-Viger, P. (2018). An Efficient Algorithm for
Hiding High Utility Sequential Patterns.
International Journal of Approximate Reasoning, Elsevier, 95:
77-92. DOI: 10.1016/j.ijar.2018.01.005 |
ISI, EI, SCI, IF: 2.845 ISSN: 0888-613X CAS: Q3 JCR: Q2 CCF-B |
|
123. | Lin, J. C.-W., Ren, S.-F., Fournier-Viger, P., Pan, J.-S.,
Hong, T.-P. (2018). Efficiently Updating the Discovered
High Average-Utility Itemsets with Transaction Insertion.
Engineering Applications of Artificial Intelligence (EAAI),
Elsevier, 72: 136-149. DOI: 10.1016/j.engappai.2018.03.021 |
ISI, EI, SCI, Q1 IF: 2.819 ISSN: 0952-1976 CAS: Q2 JCR: Q1 CCF-C |
|
124. | Djenouri, Y., Belhadi, A, Fournier-Viger, P., Fujita, H.
(2018) Mining Diversified Association Rules in Big
Datasets: a Cluster/GPU/Genetic Approach. Information
Sciences, Elsevier, to appear. DOI: 10.1016/j.ins.2018.05.031 |
ISI, EI, SCI, IF: 4.305 ISSN: 0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
125. | Djenouri, Y., Belhadi, A, Fournier-Viger, P., Lin, J. C.-W.
(2018) Fast and Effective Cluster-based Information
Retrieval using Frequent Closed Itemsets. Information
Sciences, Elsevier, 453: 154-167. DOI: 10.1016/j.ins.2018.04.008 |
ISI, EI, SCI, Q1 IF: 4.305 ISSN:0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
126. | Djenouri, Y., Djenouri, D., Belhadi, A, Fournier-Viger, P.,
Lin, J. C.-W., Bendjoudi, A. (2018) Exploiting GPU
parallelism in improving bee swarm optimization for mining big
transactional databases. Information Sciences,
Elsevier, 496: 326-342. DOI: 10.1016/j.ins.2018.06.060 |
ISI, EI, SCI, Q1 IF: 4.305 ISSN:0020-0255 CAS: Q2 JCR: Q1 CCF-B |
|
127. | Lin, J.-C.W., Yang, L., Fournier-Viger, P., Hong, T.-P.
(2018). Mining of Skyline Patterns by Considering both
Frequent and Utility Constraints. Engineering
Applications of Artificial Intelligence, Elsevier, 77: 229-238. DOI: 10.1016/j.engappai.2018.10.010 |
ISI, EI, SCI, Q1 * Best theory award EAAI / IFAC 2020* |
|
128. | Lin, J.-C.W., Zhang, Y., Fournier-Viger, P., Hong, T.-P.
(2018) Efficiently Updating the Discovered Multiple
Fuzzy Frequent Itemsets with Transaction Insertion,
International Journal of Fuzzy Systems, Springer,
20(8):2440–2457. DOI: 10.1007/s40815-018-0520-5 |
ISI, EI, SCI IF: 2.19 ISSN: 1562-2479 CAS: Q3 JCR: Q2 |
|
129. | Djenouri, Y., Djenouri, D., Belhadi, A, Fournier-Viger, P.,
Lin, J. C.-W., (2018). GPU-based Swarm Intelligence for
Association Rule Mining in Big Databases.
Intelligent Data Analysis, IOS Press, 23(1): 57-76. DOI: 10.3233/IDA-173785 |
ISI, EI, SCI, IF: 0.612 ISSN 1088-467X CAS: Q4 JCR: Q4 CCF-C |
|
2017 | 130. | Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C.,
Hong, T.-P., Fujita, H. (2017). Incremental
High-Utility Itemset Mining: A Survey. WIREs Data
Mining and Knowledge Discovery, Wiley, to appear. DOI: 10.1002/widm.1242 |
ISI, EI, SCI, Q1 ISSN: 1942-4787 CAS: Q3 JCR: Q2 |
131. | Fournier-Viger, P., Lin, J. C.-W., Vo, B, Chi, T.T., Zhang, J., Le, H. B. (2017). A Survey of Itemset Mining. WIREs Data Mining and Knowledge Discovery, Wiley, e1207 doi: 10.1002/widm.1207, 18 pages. | ISI, EI, SCI, Q1 ISSN: 1942-4787 CAS: Q3 JCR: Q2, corr. auth. |
|
132. | Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., Koh, Y. S., Thomas, R. (2017). A Survey of Sequential Pattern Mining. Data Science and Pattern Recognition (DSPR), vol. 1(1), pp. 54-77. | ISSN: 2520-4165, corr. auth. | |
133. | Lin, J. C. W, Ren, S., Fournier-Viger, P. Hong, T.-P., Su,
J.-W., Vo, B. (2017). A Fast Algorithm for Mining High
Average-Utility Itemsets. Applied Intelligence,
Springer, 47:331-347. DOI: 10.1007/s10489-017-0896-1 |
ISI, EI, SCI, Q2 IF: 1.983 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
134. | Bouakkaz, M., Ouinten, Y., Loudcher, S., Fournier-Viger, P.
(2017). Efficiently mining frequent itemsets applied
for textual aggregation. Applied Intelligence,
Springer, 48(4):1013-1019). DOI: 10.1007/s10489-017-1050-9 |
ISI, EI, SCI, Q2 IF: 1.983 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
135. | Nguyen, L. T. T., Vo, B., Nguyen, L. T. T., Fournier-Viger,
P., Selamat, A. (2017). ETARM: an efficient top-k
association rule mining algorithm. Applied
Intelligence, Springer, vol. 48, no. 5, 1148-1160. DOI: 10.1007/s10489-017-1047-4 |
ISI, EI, SCI, Q2 IF: 1.983 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
136. | Duong, Q.H., Fournier-Viger, P., Ramampiaro, H., Norvag, K.
Dam, T.-L. (2017). DOI: 10.1007/s10489-017-1057-2 |
ISI, EI, SCI, Q2 IF: 1.983 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C, corr. auth. |
|
137. | Zhang, J., Zhu, X., Fournier-Viger, P., Lin, J. C.-W. (2017).
FRIOD: A Deeply Integrated Feature-Rich Interactive
System for Effective and Efficient Outlier Detection,.
IEEE Access (to appear) DOI: 10.1109/ACCESS.2017.2771237 |
ISI, EI, SCI, Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1 |
|
138. |
Lin, C.-W., Ren, S., Fournier-Viger, P., Hong, T.-P. (2017).
EHAUPM: Efficient High Average-Utility Pattern Mining
with Tighter Upper-Bounds. IEEE Access, 5:
12927-12940. |
ISI, EI, SCI, Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1 |
|
139. | Lin, C.-W., Liu, Q., Fournier-Viger, P., Hong, T.-P. (2017). PTA:
An Efficient System for Transaction Database Anonymization .
IEEE Access, vol. 4, pp. 6467-6479, IEEE. DOI: 10.1109/ACCESS.2016.2596542 |
ISI, EI, SCI, Q2 IF: 4.098 ISSN: 2169-3536 CAS: Q2 JCR: Q1 |
|
140. | Djenouri, Y., Habbas, Z., Djenouri, D., Fournier-Viger, P.
(2017). Bee Swarm Optimization For Solving MAXSAT
Problem Using Prior Knowledge. Soft Computing,
Springer, 496: 326-342. DOI: 10.1007/s00500-017-2956-1 |
ISI, EI, SCI, Q3 IF: 2.784 ISSN: 1432-7643 CAS: Q3 JCR: Q2 CCF-C |
|
141. | Djenouri, Y., Belhadi, A., Fournier-Viger, P. Extracting
Useful Knowledge from Event Logs: A Frequent Itemset Mining
Approach (2017). Knowledge-Based Systems (KBS),
Elsevier,139: 132-148. DOI: 10.1016/j.knosys.2017.10.016 |
ISI, EI, SCI, Q1 IF: 4.396 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C, corr. auth. |
|
142. | Lin, J. C.-W., Gan, W., Fournier-Viger, P., Chao, H.-C., Wu.
J. T., Zhan, J. (2017). Extracting Recent
Weighted-based Patterns from Uncertain Temporal Databases.
Engineering Applications of Artificial Intelligence, Elsevier,
61, pp. 161-172 DOI: 10.1016/j.engappai.2017.03.004 |
ISI, EI, SCI, Q1 IF: 2.819 ISSN: 0952-1976 CAS: Q2 JCR: Q1 CCF-C |
|
143. | Lin, J. C.-W., Gan, W., Fournier-Viger, P., Chao, H.-C.,
Zhan, J. (2017). Mining of Frequent Patterns with
Multiple Minimum Supports. Engineering Applications
of Artificial Intelligence, Elsevier, 60:83-96. DOI: 10.1016/j.engappai.2017.01.009 |
ISI, EI, SCI, Q1 IF: 2.819 ISSN: 0952-1976 CAS: Q2 JCR: Q1 CCF-C |
|
144. | Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C.,
Zhan, J., Zhang, J. (2017). Exploiting highly qualified
pattern with frequency and weight occupancy.
Knowledge and Information Systems (KAIS), Springer, 56(1):
165-196. DOI: 10.1007/s10115-017-1103-8 |
ISI, EI, SCI, Q2 IF: 2.247 ISSN:0219-1377 CAS: Q3 JCR: Q2 CCF-B |
|
145. | Le, B., Duong, H., Truong, T., Fournier-Viger, P. (2017). FCloSM,
FGenSM: Two New Algorithms for Efficiently Mining Frequent
Closed and Generator Sequences using Local Pruning Strategy.
Knowledge and Information Systems (KAIS), Springer,
53(1):71-107. DOI: 10.1007/s10115-017-1032-6 |
ISI, EI, SCI, Q2 IF: 2.247 ISSN:0219-1377 CAS: Q3 JCR: Q2 CCF-B |
|
146. | Dam, T.-L., Li, K., Fournier-Viger, P., Duong, H. (2017). An
efficient algorithm for mining top-k on-shelf high utility
itemsets. Knowledge and Information Systems (KAIS),
Springer, 62:621-655. DOI: 10.1007/s10115-016-1020-2 |
ISI, EI, SCI, Q2 IF: 2.247 ISSN:0219-1377 CAS: Q3 JCR: Q2 CCF-B |
|
147. | Zida, S., Fournier-Viger, P., Lin, J. C.-W., Wu, C.-W., Tseng,
V.-S. (2017). EFIM:
A Fast and Memory Efficient Algorithm for High-Utility
Itemset Mining . Knowledge and Information
Systems (KAIS), Springer, 51(2), 595-625 [short powerpoint - long powerpoint]
[source
code] DOI: 10.1007/s10115-016-0986-0 |
ISI, EI, SCI, Q2 IF: 2.247 ISSN:0219-1377 CAS: Q3 JCR: Q2 CCF-B, corr. auth. |
|
148. | Lin, J. C., Hong, T.-P., Fournier-Viger, P., Liu, Q., Wong,
J.-W., Zhan, J. (2017). Efficient Hiding of
Confidential High-Utility Itemsets with Minimal Side Effects..
Journal of Theoretical and Experimental Artificial Intelligence,
Taylor and Francis (to appear) DOI: 10.1080/0952813X.2017.1328462 |
ISI, EI, SCI, Q2 IF:_ ISSN: 2169-3536 __________ |
|
149. | Dam, T.-L., Li, K., Fournier-Viger, P., Duong, H. (2017). CLS-Miner:
Efficient and Effective Closed High utility Itemset Mining.
Frontiers of Computer Science, Springer (to appear), 13(2):
357-381 DOI: 10.1007/s1170 |
ISI, EI, SCI, Q2 IF: 1.105 ISSN: 2095-2228 CAS: Q4 JCR: Q3 CCF-C |
|
150. | Lin, J. C.-W., Zhang, J. Fournier-Viger, P., Hong,
T.-P.(2017). A Two-Phase Approach to Mine
Short-Periodic High Utility Itemsets in Transactional
Databases. Advanced Engineering Informatics,
Elsevier, 33, 29-43. DOI: 10.1016/j.aei.2017.04.007 |
ISI, EI, SCI, Q1 ISSN: 1474-0346 CAS: Q2 JCR: Q2 CCF-B |
|
151. | Amirat, H., Lagraa, N., Fournier-Viger, P., Ouinten, Y.
(2017). MyRoute: a Graph-dependency Based Model for
Real-time Route Prediction. Journal of
Communications, Engineering and Technology Publishing, vol. 12,
no. 12, 668-676. 10.12720/jcm.12.12.668-676 DOI: 10.12720/jcm.12.12.668-676. |
ISI, EI, SCI, Q4 IF: ISSN: 1796-2021 ----------- |
|
152. | Lin, J. C.-W., Li, T., Fournier-Viger, P., Zhang, J. (2017).
Mining of High Average-Utility Patterns with Item-Level
Thresholds. Journal of Internet Technology, Taiwan
Academic Network (to appear). DOI: |
ISI, EI, SCI, JCR Q3 IF: 0.715 ISSN:1607-9264 CAS: Q4 JCR: Q4 |
|
153. | Zhang, B., Lin, J. C.-W., Li, T., Gan, W., Fournier-Viger, P.
(2017). Mining High Utility-Probability Sequential
Patterns in Uncertain Databases. PLoS One, Public
Library of Science, to appear. DOI: 10.1371/journal.pone.0180931 |
ISI, EI, SCI, Q1 IF: ISSN: 1932-6203 |
|
154. | Mustafa, R. U., Nawaz, M. S., Ferzund, J., Lali, M. I. U., Shazad, B., Fournier-Viger, P. (2017). Early Detection of Controversial Urdu Speeches from Social Media. Data Science and Pattern Recognition (DSPR), vol. 1(2), 26-42. | ISSN: 2520-4165 | |
2016 | 155. |
Tseng, V., Wu, C., Fournier-Viger, P., Yu, P. S. (2016). Efficient Algorithms for Mining Top-K
High Utility Itemsets. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 28(1): 54-67. [source
code] |
ISI, EI, SCI, Q1 IF: 2.07 ISSN: 1041-4347 CAS: Q2 JCR: Q1 CCF-A |
156. | Dougnon, Y. R., Fournier-Viger, P., Lin, J. C.-W., Nkambou, R.
(2016). Inferring
Social Network User Profiles using a Partial Social Graph.
Journal of Intelligent Information Systems (JIIS), Springer,
47(2): 313-344. DOI: 10.1007/s10844-016-0402-y |
ISI, EI, SCI, Q4 IF: 1.294 ISSN: 0925-9902 CAS: Q4 JCR: Q3 CCF-C, corr. auth. |
|
157. | Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P. Chao,
H.-C. (2016). FDHUP: Fast Algorithm for Mining
Discriminative High Utility Patterns . Knowledge and
Information Systems (KAIS), Springer, June 2017, Volume 51,
Issue 3, 873-909 DOI: 10.1007/s10115-016-0991-3 |
ISI, EI, SCI, Q2 IF: 2.004 ISSN:0219-1377 CAS: Q3 JCR: Q2 CCF-B |
|
158. | Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P.,
Tseng, V. S. (2016). Efficiently Mining Uncertain
High-Utility Itemsets. Soft Computing, Springer,
21:2801-2820. DOI: 10.1007/s00500-016-2159-1 |
ISI, EI, SCI, Q3 IF: 2.472 ISSN: 1432-7643 CAS: Q3 JCR: Q2 CCF-C |
|
159. | Lin, J. C.-W., Yang, L., Fournier-Viger, P., Hong, T.-P.,
Voznak, M. (2016). A binary PSO approach to mine
high-utility itemsets. Soft Computing, Springer.
21(17): 5103-5121 DOI: 10.1007/s00500-016-2106-1 |
ISI, EI, SCI, Q3 IF: 2.472 ISSN: 1432-7643 CAS: Q3 JCR: Q2 CCF-C |
|
160. | Dam, T.-L., Li, K. , Fournier-Viger, P. (2016). Chemical
reaction optimization with unified tabu search for the vehicle
routing problem. Soft Computing, Springer, 21(21):
6421-6433 DOI: 10.1007/s00500-016-2200-4 |
ISI, EI, SCI, Q3 IF: 2.472 ISSN: 1432-7643 CAS: Q3 JCR: Q2 CCF-C |
|
161. | Lin, J. C.-W., Liu, Q., Fournier-Viger, P., Hong, T.-P.,
Voznak, M., Zhan, J. (2016). A Sanitization Approach
For Hiding Sensitive Itemsets Based On Particle Swarm
Optimization. Engineering Applications of Artificial
Intelligence, 53:1-18. DOI: 10.1016/j.engappai.2016.03.007 |
ISI, EI, SCI Q2 IF: 2.894 ISSN: 0952-1976 CAS: Q2 JCR: Q1 CCF-C |
|
162. | Lin, J. C.-W., Li, T., Fournier-Viger, P., Hong, T.-P.,
Voznak, M., Zhan, J. (2016). An Efficient Algorithm to
Mine High Average-Utility Itemsets. Advanced
Engineering Informatics, Elsevier, 30(2): 233-243. DOI: 10.1016/j.aei.2016.04.002 |
ISI, EI, SCI, Q1 IF: 2.68 ISSN: 1474-0346 CAS: Q2 JCR: Q2 CCF-B |
|
163. | Lin, J. C. W., Gan, W., Fournier-Viger, P., Hong, T. P.,
Tseng, V. S. (2016). Weighted frequent itemset mining
over uncertain databases. Applied Intelligence,
44:232-250. DOI: 10.1007/s10489-015-0703-9 |
ISI, EI, SCI, Q2 IF: 1.904 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
164. | Dam, T.-L., Li, K., Fournier-Viger, P. (2016). An
efficient algorithm for mining top-rank-k frequent patterns.
Applied Intelligence, Springer, 45(1): 96-111. DOI: 10.1007/s10489-015-0748-9 |
ISI, EI, SCI, Q2 ISSN: 0924-669X CAS: Q3 JCR: Q2 CCF-C |
|
165. | Lin, J. C. W., Gan, W., Fournier-Viger, P., Hong, T. P.,
Tseng, V. S. (2016). Fast Algorithms for Mining
High-Utility Itemsets with Various Discount Strategies.
Advanced Engineering Informatics, 30(2): 109-126. DOI: 10.1016/j.aei.2016.02.003 |
ISI, EI, SCI, Q1 IF: 2.68 ISSN: 1474-0346 CAS: Q2 JCR: Q2 CCF-B |
|
166. | Lin, J. C. W., Fournier-Viger, Gan, W. (2016). FHN:
An Efficient Algorithm for Mining High-Utility Itemsets with
Negative Unit Profits. Knowledge-Based Systems (KBS),
Elsevier, 111(1):283-298 DOI: 10.1016/j.knosys.2016.08.022 |
ISI, EI, SCI, Q1 IF: 4.529 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C, corr. auth. |
|
167. | Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P., Zhan,
J. (2016). Efficient Mining of High-Utility Itemsets
Using Multiple Minimum Utility Thresholds.
Knowledge-Based Systems (KBS), Elsevier, 113:100-115. DOI: 10.1016/j.knosys.2016.09.013 |
ISI, EI, SCI, Q1 IF: 4.529 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
168. | Duong, Q.-H., Liao, B., Fournier-Viger, P., Dam, T.-L. (2016).
An efficient algorithm for mining the top-k high utility
itemsets, using novel threshold raising and pruning
strategies. Knowledge-Based Systems (KBS), Elsevier,
104:106-122. DOI: 10.1016/j.knosys.2016.04.016 |
ISI, EI, SCI, Q1 IF: 4.529 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
169. |
Lin., J. C. W., Gan. W., Fournier-Viger, P., Tseng, V. S.
(2016). Efficient Algorithms for Mining High-Utility
Itemsets in Uncertain Databases. Knowledge-Based
Systems (KBS), Elsevier, 96, 171-187. |
ISI, EI, SCI, Q1 IF: 4.529 ISSN: 0950-7051 CAS: Q2 JCR: Q1 CCF-C |
|
170. | Lin., J. C. W., Gan. W., Fournier-Viger, P., Hong, T. P.
(2016). Efficiently Updating the Discovered Sequential
Patterns for Sequence Modification. Int'l Journal of
Software Engineering and Knowledge Engineering (IJSEKE), 26(8),
pp 1285-1313. DOI: 10.1142/S0218194016500455 |
EI, SCI, Q4 IF: 4.529 ISSN: 0218-1940 CAS: Q4 ________ CCF-C |
|
2015 | 171. | Fournier-Viger, P., Wu, C.-W., Tseng, V.S., Cao, L., Nkambou, R. (2015). Mining Partially-Ordered Sequential Rules Common to Multiple Sequences. IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(8): 2203-2216. [source code] | ISI, EI SCI, Q1 IF: 2.07 ISSN: 1041-4347 CCF-A, corr. auth. |
172. | Tseng, V., Wu, C., Fournier-Viger, P., Yu, P. S. (2015). Efficient Algorithms for Mining the Concise and Lossless Representation of Closed+ High Utility Itemsets. IEEE Transactions on Knowledge and Data Engineering (TKDE), 27(3): 726-739. [source code] | ISI, EI, SCI, Q1 IF: 2.07 ISSN: 1041-4347 CCF-A |
|
173. | Lin., J. C. W., Yang, L., Fournier-Viger, Frnda, J., Sevcik, L., Voznak, M. (2015). An Evolutionary Algorithm to Mine High-Utility Itemsets. Advances in Electrical and Electronic Engineering, Vol. 13, No.5., pp. 392-398. | ISI, EI, SCI, Q4 ISSN: 1582-7445 CCF-B |
|
174. | Lin, J. C. W., Tin, L., Fournier-Viger, P., Hong, T. P. (2015). A fast Algorithm for mining fuzzy frequent itemsets. Journal of Intelligent and Fuzzy Systems, 29(6), 2373-2379. | ISI, EI, SCI, Q4 IF: 1.81 ISSN: 1064-1246 |
|
175. | Lin, J. C., Gan, W., Fournier-Viger, P., Hong, T.-P. (2015). RWFIM: Recent Weighted-Frequent Itemsets Mining. Engineering Applications of Artificial Intelligence, Elsevier, 45, 18-32. | ISI, EI, SCI, Q2 IF: 2.21 ISSN: 0952-1976 CAS: Q2 JCR: Q1 CCF-C |
|
2014 | 176. | Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu., C., Tseng, V. S. (2014). SPMF: a Java Open-Source Pattern Mining Library. Journal of Machine Learning Research (JMLR), 15: 3389-3393. | ISI, EI SCI, Q1 IF: 2.47 ISSN: 1532-4435 CCF-A, corr. auth. |
2013 | 177. | Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E., Mayers, A., Faghihi, U. (2013). A Multi-Paradigm Intelligent Tutoring System for Robotic Arm Training. IEEE Transactions on Learning Technologies (TLT), 6(4): 364-377. | ISI, EI, SSCI, Q4 IF: 1.22 ISSN: 1939-1382, corr. auth. |
2012 | 178. | Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E. (2012). CMRules: Mining Sequential Rules Common to Several Sequences. Knowledge-based Systems, Elsevier, 25(1): 63-76. [source code] | ISI, EI, SCI, Q1 IF: 4.104 ISSN: 0950-7051 CCF-C |
179. | Faghihi, U., P. Fournier-Viger, Nkambou, R. (2012). A Computational Model for Causal Learning in Cognitive Agents, Knowledge-Based Systems, Elsevier, 30, 48-56 | ISI, EI, SCI, Q1 IF: 4.104 ISSN: 0950-7051 CCF-C |
|
2011 | 180. | Faghihi, U., Poirier, P., Fournier-Viger, P., Nkambou, R. (2011). Human-Like Learning in a Cognitive Agent. Journal of Experimental & Theoretical Artificial Intelligence, Taylor & Francis, 23(4): 497-528. | ISI, EI, SCI, Q4 IF: 0.33 ISSN: ISSN: 2169-3536 |
181. | Nkambou, R., Fournier-Viger, P., Mephu Nguifo, E. (2011). Learning Task Models in Ill-defined Domain Using an Hybrid Knowledge Discovery Framework. Knowledge-Based Systems, Elsevier, 24(1):176-185. | ISI, EI, SCI, Q1 IF: 2.42 CCF-C |
|
<2010 | 182. | Fournier-Viger, P., Faghihi, U., Nkambou, R.,
Mephu Nguifo, E. (2010). Exploiting
Sequential Patterns Found in Users’ Solutions and Virtual
Tutor Behavior to Improve Assistance in ITS.
Educational Technology & Society, 13(1):12-24. DOI: |
SSCI IF: 1.34 ISSN: 1436-4522, corr. auth. |
183. | Nkambou, R, Fournier-Viger, P., Mephu Nguifo, E.
(2009). Improving the Behavior of Intelligent Tutoring
Agents with Data Mining. IEEE Intelligent Systems,
24(3):46-53. DOI: 10.1109/MIS.2009.59 |
ISI, EI, SCI, Q2 IF: 3.14 ISSN: 1541-1672 |
|
184. | Fournier-Viger, P., Nkambou, R., Mayers, A.
(2008). Evaluating
Spatial Representations and Skills in a Simulator-Based
Tutoring System. IEEE Transactions on Learning
Technologies (TLT), 1(1):63-74. DOI: 10.1109/TLT.2008.13 |
ISI, EI, SSCI IF: 0.82 ISSN: 1939-1382, corr. auth. |
|
185. | Fournier-Viger, P., Najjar, M., Mayers, A.,
Nkambou, R. (2006). A Cognitive and Logic based Model
for Building Glass-box Learning Objects.
Interdisciplinary Journal of e-Skills and Lifelong Learning,
2:77-94. DOI: 10.28945/402 |
IF: 22 ISSN: 2375-2084, corr. auth. |
2024 | 1. | Zhao, D., Koh, Y. S., Dobbie, G., Hu, H., Fournier-Viger, P. (2024). Symmetric Self-Paced Learning for Domain Generalization. Proc. 38th AAAI Conference on Artificial Intelligence (AAAI 2024). to appear. | EI CCF-A |
2. | Nawaz, S., Fournier-Viger, P, Wu, J. W.-M. (2024). SeqClin: Pattern-Based Analysis and Classification of Clinical Datasets. Proceedings of BIBM 2024, to appear. | CCF-B, corr. auth. | |
3. | Nawaz, M. Z., Nawaz, S., Fournier-Viger, P, Tseng, V.-S. (2024). An MDL-Based Genetic Algorithm for Genome Sequence Compression. Proceedings of BIBM 2024, to appear. | CCF-B, corr. auth. | |
2023 | 4. | Zhi, C., Andriamampianina, L., Ravat, F., Song, J., Valles-Parlangeau, N., Fournier-Viger, P., Selmaoui-Folcher, N. (2023) Mining Frequent Sequential Subgraph Evolutions in Dynamic Attributed Graphs. Proc. 27th Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD 2023), Springer, to appear | EI accept. rate: 17 % CCF-C |
5. | Govan, R., Selmaoui, N., Giannakos, A., Fournier-Viger, P.
(2019). Co-location pattern mining under the spatial structure constraint.
Proc. 34th International Conference on Database and Expert
Systems Applications (DEXA 2023), Springer, to appear. DOI: |
EI
CCF-C |
|
6. | Zhang, Q., Shi, Z. L., Zhang, X., Chen, X., Fournier-Viger, P., Pan, S. (2023). G2Pxy: Generative Open-Set node Classification on Graphs with Proxy Unknowns. Proc. of the 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023). to appear | EI CCF-A accept. rate: 15 % |
|
7. | Zhang, X., Niu. X., Fournier-Viger, P., Dai, X. (2023) Image-text Retrieval via Preserving Main Semantics of Vision. Proc. 2023 IEEE International Conference on Multimedia and Expo (ICME 2023), to appear. | CCF-B | |
8. | Kiran, R. U., ... , Fournier-Viger, P., ...(2023). Discovering Fuzzy Partial Periodic Patterns in Quantitative Irregular Multiple Time Series. Proc. 16th IEEE Conference on
Fuzzy Systems (FUZZY-IEEE 2023), IEEE, to appear DOI: |
||
9. | Lekfir, M., Nouioua, F., Fournier-Viger, P. (2023). Heuristic approaches for hiding sensitive frequent itemsets in uncertain databases. Proc. 5th International Conference on Pattern Analysis and Intelligent Systems (PAIS 2023). to appear. | ||
10. | Govan, R., Selmaoui-Folcher, N., Giannakos, A., Fournier-Viger, P. (2023) Extraction de co-localisations sous contrainte de la structure spatiale. Actes de la Conférence Nationale en Intelligence Artificielle 2023 (Proc. of the National conference of Artificial Intelligence of France). to appear. | ||
2022 | 11. | Liu, J., Zhou, M., Fournier-Viger, P., Yang, M., Pan, L., Nouioua, M. (2022) Discovering Representative Attribute-stars via Minimum Description Length. Proc. of the 38th IEEE International Conference on Data Engineering (ICDE 2022), 12 pages, to appear. | EI, CCF-A accept. rate: |
12. | Nawaz, S., Fournier-Viger, P, He, Y. (2022). S-PDB: Analysis and Classification of SARS-COV2 Spike Protein Structures. Proceedings of IEEE BIBM 2022. | CCF-B, corr. auth. | |
13. | Zhang, Q., Li, Q., Chen, X., Zhang, P., Pan, S., Fournier-Viger, P., Huang, J. Z. (2022). A Dynamic Variational Framework for Open-World Node Classification in Structured Sequences. Proc. of IEEE International Conference on Data Mining (ICDM 2022), to appear. | EI CCF-B accept. rate: 20 % |
|
14. | Nawaz, M. S., Nawaz, M. Z., Hasan, O., Fournier-Viger, P. (2022). Metaheuristic Algorithms for Proof Searching in HOL4. The 34th International Conference on Software Engineering & Knowledge Engineering (SEKE 2022). KSI Research Inc., to appear DOI: 10.18293/SEKE2022-103 |
EI, corr. auth. | |
15. | Ou, G., He, Y. Fournier-Viger, P., Huang, J. Z. (2022). Auto-Encoding Independent Attribute Transformation for Naive Bayesian Classifier. International Joint Conference on Neural Networks (IJCNN 2022), to appear | .EI, CCF-C |
|
16. | Zhao, D., Koh, Y. S., Fournier-Viger, P. Measuring Drift Severity by Tree Structure Classifiers (2022). International Joint Conference on Neural Networks (IJCNN 2022), to appear | EI, CCF-C |
|
17. | Palla, L., Rage, V., Kiran, U., Zettsu, K., Toyoda, M., Fournier-Viger, P. (2022) UPFP-growth++: An Efficient Algorithm to Find Periodic-Frequent Patterns in Uncertain Temporal Databases. Proc.
29th International Conference on Neural Information Processing
(ICONIP 2022). Springer, LNCS. DOI: |
EI CCF-C |
|
18. | Yin, Z., Gan W., Huang, G., Wu, Y., Fournier-Viger., P. (2022). Constraint-based sequential rule mining . Proc. 2022 International Conference on Data Science and Advanced Analytics (DSAA’2022), to appear. | CCF-C |
|
19. | Nawaz, M. S., Noor, S., Fournier-Viger, P. (2021). Reasoning about Order Crossover in Genetic Algorithms. Proc. 13th Intern. Conf. on Swarm Intelligence
(ICSI 2022), Springer LNCS, 11 pages, to appear. DOI: 10.1007/978-3-031-09677-8_22 |
EI, corr. auth. | |
20. | Nawaz, M. S., Fournier-Viger, P., Alhusaini, N., He, Y., Wu, Y. and Bhattacharya, D. (2022). LCIM: Mining Low Cost High Utility Itemsets . Proc. of the 15th Multi-disciplinary International Conference on Artificial Intelligence (MIWAI 2022), pp. 73-85, Springer LNAI [video] [ppt]. [source code and data] | EI, corr. auth. * Best paper award* |
|
21. | Fournier-Viger, P., Nawaz, M. S., He, Y., Wu, Y., Nouioua, F., Yun, U. (2022). MaxFEM: Mining Maximal Frequent Episodes in Complex Event Sequences. Proc. of the 15th Multi-disciplinary International Conference on Artificial Intelligence (MIWAI 2022), pp. 86-98, Springer LNAI. [source code] [ppt] | EI * Best presentation award* |
|
22. | Fournier-Viger, P. Li, Y., Nawaz, M. S., He, Y. (2022) FastTIRP: Efficient discovery of Time-Interval Related Patterns. Proc. of 10th Intern. Conf. on Big Data Analytics (BDA 2022), Springer, to appear. | EI, corr. auth. | |
23. | Belghith, K., Fournier-Viger, P., Jawadi, J. (2022). Hui2Vec: Learning Transaction Embedding Through High Utility Itemsets.
Proc. of 10th Intern. Conf. on Big Data Analytics (BDA 2022),
Springer, to appear. DOI: |
EI |
|
24. | Zhang, X., Niu, X., Fournier-Viger, P. Wang, B. (2022). Two-stage
Traffic Clustering Based on HNSW. Proc. 35th Intern. Conf. on Industrial,
Engineering and Other Applications of Applied Intelligent
Systems (IEA AIE 2022), LNAI, 12 pages. DOI: 10.1007/978-3-031-08530-7_51 |
EI |
|
25. | Fan, G., Xiao, H., Zhang, C. Almpanidis, G., Fournier-Viger,
P., Fujita, H. (2022). Parallel High Utility Itemset Mining.
Proc. 35th Intern. Conf. on Industrial, Engineering and Other
Applications of Applied Intelligent Systems (IEA AIE 2022),
LNAI, 12 pages. DOI: 10.1007/978-3-031-08530-7_69 |
EI |
|
2021 | 26. | Fournier-Viger, P., Chen, Y., Nouioua, F., Lin, J. C.-W. (2021). Mining Partially-Ordered Episode Rules in an Event Sequence. Proc. of the 13th Asian Conference on Intelligent Information and Database Systems (ACIIDS 2021), Springer LNAI, pp 3-15 [video] [software] [ppt] [source code] |
* Best paper award* EI, corr. auth. |
27. | Nawaz, M. S., Fournier-Viger, P., Song, W., Lin, J. C.-W., Noack, B. (2021). Investigating Crossover Operators in Genetic Algorithms for High-Utility Itemset Mining. Proc. of the 13th Asian Conference on Intelligent Information and Database Systems (ACIIDS 2021), Springer LNAI, pp. 16-28. | EI, corr. auth. | |
28. |
Song, W., Zheng, C., Fournier-Viger, P. (2021). Mining Skyline Frequent-Utility Itemsets with Utility Filtering. Proc. 18th Pacific Rim Intern. Conf on Artificial Intelligence (PRICAI-2021), Springer LNCS, to appear. |
EI CCF-C |
|
29. | Hossain, M., Wu, Y., Fournier-Viger, P., Li, Z., Guo, L, Li, Y. (2021). HSNP-Miner: High Utility Self-Adaptive Nonoverlapping Pattern Mining. Proc. 12th IEEE Conference on Big Knowledge, IEEE, 8 pages, to appear. | ||
30. | Huynh, H.-T., Duong, H., Le, B., Fournier-Viger, P. (2021). Mining High Utility Sequences with a Novel Utility Function. Proc. of 13th IEEE International Conference on Knowledge and Systems Engineering (KSE 2021), IEEE, to appear | * Nominated for best paper award
(in top 3) * |
|
31. | Chen, Y., Fournier-Viger, P., Nouioua, F., Wu, Y. (2021). Mining
Partially-Ordered Episode Rules with the Head Support. Proc. 23rd
Intern. Conf. on Data Warehousing and Knowledge Discovery (DAWAK
2021), Springer, LNCS, 7 pages DOI: https://doi.org/10.1007/978-3-030-86534-4_26 [ppt] [video] [source code] |
EI, corr. auth. | |
32. | Nawaz, M. S., Sun, M., Fournier-Viger, P. (2021). Proof Searching in PVS theorem prover using Simulated Annealing. Proceedings of the 12th Intern. Conf. on Swarm Intelligence (ICSI 2021), Springer LNCS, pp. 253-262. [powerpoint] | EI, corr. auth. | |
33. | Ouarem, O., Nouioua, F., Fournier-Viger, P. (2021). Mining Episode Rules From Event Sequences Under Non-Overlapping Frequency. Proc. 34th Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA AIE 2021), Springer LNAI, pp. 73-85. [source code] | EI | |
34. | Hackman, A., Huang, Y., Fournier-Viger, P., Tseng, V.-S. (2021). Stable High Utility Itemset Mining. Proc. the 23rd International Conference on Information Integration and Web Intelligence (iiWAS2021), ACM, 12 pages, to appear. | EI | |
35. | Nouioua, M., Fournier-Viger, P., Gan, W., Wu, Y., Lin, J. C.-W., Nouioua, F. (2021). TKQ: Top-K Quantitative High Utility Itemset Mining. Proc. 16th Intern. Conference on Advanced Data Mining and Applications (ADMA 2021) Springer LNAI, 12 pages [ppt] [poster] [video] [source code] | EI,corr. auth. * Best poster runner-up award* |
|
36. | Kiran, R. U., Pallikila, P., Luna, J. M., Fournier-Viger, P., Toyoda, M., Reddy, P. K. Discovering Relative High Utility Itemsets Using Null-Invariant Measure. Proc. 2021 Int. Conf. on Big Data (IEEE BigData 2021), IEEE, 10 pages. | ||
37. | Chen, D., Niu, X., Fournier-Viger, P., Wu, W., Wang, B. (2021). Map-matching based on HMM for Urban Traffic. Proc. 34th Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA AIE 2021), Springer LNAI, pp. 462-473. | EI | |
38. | Nawaz, M. S., Fournier-Viger, P., Niu, X., Wu, Y., Lin, J. C.-W. (2021). COVID-19 Genome Analysis using Alignment-Free Methods. Proc. 34th Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA AIE 2021), Springer LNAI, pp. 316-328 | EI, corr. auth. | |
39. | Srivastava, G, Lin, J.-W., Fournier-Viger, P. (2021). A Transaction Classification Model of Federated Learning. Proc. 34th Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA AIE 2021), Springer LNAI, pp. 509-518. | EI | |
40. | Ahmed, U., Lin, J. C.-W., Fournier-Viger, P., Cheng, C.-F. (2021). Privacy-Preserving Periodic Frequent Pattern Model in AIoT Applications. Proc. 2021 International Symposium on Intelligent Signal Processing and Communication Systems, 2 pages, to appear. | ||
2020 | 41. | Fournier-Viger, P., He, G., Lin, J. C.-W., Gomes, H. M.
(2020). Mining
Attribute Evolution Rules in Dynamic Attributed Graphs.
Proc. 22nd Intern. Conf. on Data Warehousing and Knowledge
Discovery (DAWAK 2020), Springer, pp. 167-182. [ppt] DOI: 10.1007/978-3-030-59065-9_14 |
EI, corr. auth. |
42. | Nawaz, M. Z., Hasan, O., Nawaz, S., Fournier-Viger, P., Sun,
M. (2020). Proof Searching in HOL4 with Genetic
Algorithm. Proc. 35th Symposium on Applied Computing
(ACM SAC 2020). ACM Press, pp. 513-520. DOI: 10.1145/3341105.3373917 |
EI | |
43. | Fournier-Viger, P., Yang, Y., Lin, J. C.W., Frnda, J. (2020).
Mining
Locally Trending High Utility Itemsets. Proc.
24th Pacific-Asia Conf. Knowledge Discovery and Data Mining
(PAKDD 2020), Springer, LNAI, pp.99-111. [video]
[ppt]
[source
code] DOI: 10.1007/978-3-030-47436-2_8 |
EI accept. rate: 21 % CCF-C, corr. auth. |
|
44. | Fournier-Viger, P., Wang, Y., Yang, P., Lin, J. C.-W., Yun, U.
(2020). TKE: Mining Top-K
Frequent Episodes. Proc. 33rd Intern. Conf. on
Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA AIE 2020), Springer LNCS , pp. 832-845.
[source
code] [ppt]
DOI: 10.1007/978-3-030-55789-8_71 |
EI, corr. auth. | |
45. | Fournier-Viger, P., Yang, Y., Lin, J. C.-W., Luna, J. M.,
Ventura, S. (2020). Mining
Cross-Level High Utility Itemsets. Proc. 33rd
Intern. Conf. on Industrial, Engineering and Other Applications
of Applied Intelligent Systems (IEA AIE 2020), Springer LNAI,
pp. 858-871. [source
code][ppt]
DOI: 10.1007/978-3-030-55789-8_73 |
EI, corr. auth. | |
46. | Zheng, Y., Niu, X., Fournier-Viger, P., Li, F., Gao, L.
(2020). Distributed Density Peak Clustering of
Trajectory Data on Spark. Proc. 33rd Intern. Conf.
on Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA AIE 2020), Springer LNAI, pp. 792-806.
DOI: 10.1007/978-3-030-55789-8_68 |
EI | |
47. | Win, K., Chen, J., Mingxin, D., Xiao, G., Li, K.,
Fournier-Viger, P. (2020). A Decision Support System to
Provide Criminal Pattern Based Suggestions to Travelers.
Proc. 33rd Intern. Conf. on Industrial, Engineering and Other
Applications of Applied Intelligent Systems (IEA AIE 2020),
Springer LNAI, pp. 582-587. DOI: 10.1007/978-3-030-55789-8_50 |
EI | |
48. | Wu, J.-T., Lin, J C.-W. , Fournier-Viger, P., Cheng, C.-F.
(2020). Maintenance of Prelarge High Average-Utility
Patterns in Incremental Databases. Proc. 33rd
Intern. Conf. on Industrial, Engineering and Other Applications
of Applied Intelligent Systems (IEA AIE 2020), Springer LNAI,
pp. 884-898. DOI: 10.1007/978-3-030-55789-8_75 |
EI | |
49. | Wu. C.-W., Hang, T.-Z., Fournier-Viger, P., Chen, M.-T., Lin, Y.-W. (2020). An Efficient Conversation Group Inference System based on Keywords. Proceedings of 25th International Computer Symposium (ICS 2020). IEEE, to appear. | EI | |
50. | Kiran, R. U., Srivasthava, S., Fournier-Viger, P., Zettsu,
K., Toyoda, M., Kitsuregawa, M. (2020). Discovering
Frequent Neighborhood Patterns in Very Large Spatiotemporal
Databases. Proc. ACM 28th Intern. Conf. on Advances
in Geographic Information Systems (SIGSPATIAL 2020), to appear.
DOI: |
EI | |
2019 | 51. | Fournier-Viger, P., Li, J., Lin, J. C.-W., Chi, T.T. (2019). Discovering
and Visualizing Patterns in Cost/Utility Sequences.
Proc. 21st Intern. Conf. on Data Warehousing and Knowledge
Discovery (DAWAK 2019), Springer, pp. 73-88. DOI: 10.1007/978-3-030-27520-4_6 [source code] |
EI, corr. auth. |
52. | Fournier-Viger, P., Cheng, C., Cheng, Z., Lin, J. C.-W.,
Selmaoui-Folcher, N. (2019). Finding
Strongly Correlated Trends in Dynamic Attributed Graphs.
Proc. 21st Intern. Conf. on Data Warehousing and Knowledge
Discovery (DAWAK 2019), Springer, pp. 250-265.[source
code] [ppt] DOI: 10.1007/978-3-030-27520-4_18 |
EI, corr. auth. | |
53. | Gomez, H. M., Bifet, A., Fournier-Viger, P., Granatyr, J.,
Read, J. (2019). Network of Experts: Learning from
evolving data streams through network-based ensembles. Proc.
26th International Conference on Neural Information Processing
(ICONIP 2019). Springer, LNCS 11953, pp. 704–716, DOI: 10.1007/978-3-030-36708-4_58 |
EI CCF-C |
|
54. | Ktistakis, R., Fournier-Viger, P., Puglisi, S., Raman, R.
(2019). Succinct BWT-based Sequence prediction.
Proc. 30th International Conference on Database and Expert
Systems Applications (DEXA 2019), Springer, pp. 91-10. DOI: 10.1007/978-3-030-27618-8_7 [ C++ implementation with Python wrapper (unofficial)] [datasets] |
EI accept. rate: 20% CCF-C |
|
55. |
Kiran, U., Reddy, T. Y., Fournier-Viger, P., Toyoda, M.,
Reddy, P. K., Kitsuregawa, M. (2019). Efficiently
Finding High Utility-Frequent Itemsets using Cutoff and
Suffix Utility. Proc. 23nd Pacific-Asia Conf.
Knowledge Discovery and Data Mining (PAKDD 2019), Springer,
LNAI, pp. 191-203. |
EI accept. rate: 24.7 % CCF-C |
|
56. | Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Kiran,
U. (2019). TKG:
Efficient Mining of Top-K Frequent Subgraphs.
Proc. of 7th Intern. Conf. on Big Data Analytics (BDA 2019),
Springer, 20 pages, pp. 209-226. [ppt]
[source
code] DOI: 10.1007/978-3-030-37188-3_13 |
EI accept. rate: 25%, corr. auth. |
|
57. | Duong, H., Truong, T., Le, B., Fournier-Viger, P. (2019).
An Explicit Relationship between Sequential Patterns and their
Concise Representations. Proc. of 7th Intern. Conf.
on Big Data Analytics (BDA 2019), Springer, pp. 341-361. DOI: 10.1007/978-3-030-37188-3_20 |
EI accept. rate: 25% |
|
58. | Fournier-Viger, P., Yang, P., Lin, J. C.-W., Yun, U. (2019). HUE-SPAN: Fast High
Utility Episode Mining. Proc. 14th Intern.
Conference on Advanced Data Mining and Applications (ADMA 2019)
Springer LNAI, pp. 169-184. [ppt]
[source
code] DOI: 10.1007/978-3-030-35231-8_12 |
EI accept. rate: 23%, corr. auth. |
|
59. | Tang, F., Tse, D., Huang, D. T. J., Koh, Y. S.,
Fournier-Viger, P. (2019). Adaptive Self-Sufficient
Itemset Miner for Transactional Data Streams. Proc.
16th Pacific Rim Intern. Conf on Artificial Intelligence
(PRICAI-2019), Springer LNCS, to appear. DOI: 10.1007/978-3-030-29911-8_32 |
EI CCF-C |
|
60. | Fournier-Viger, P., Yang, P., Lin, J. C.-W., Kiran, U. (2019).
Discovering Stable
Periodic-Frequent Patterns in Transactional Data.
Proc. 32nd Intern. Conf. on Industrial, Engineering and Other
Applications of Applied Intelligent Systems (IEA AIE 2019),
Springer LNAI, pp. 230-244. [ppt]
[source
code] [video]
DOI: 10.1007/978-3-030-22999-3_21 |
EI * Best paper award* corr. auth. |
|
61. | Lin, J. C.-W., Wu, J. M.T., Fournier-Viger, P., Hong, T.P.,
Ting, L. (2019). Efficient Mining of High
Average-Utility Sequential Patterns from Uncertain Databases.
Proc. 2019 IEEE International Conference on Systems,
Man, and Cybernetics (SMC 2019), IEEE, pp.
1989-1994. DOI: 10.1109/SMC.2019.8914546 |
EI CCF-C |
|
62. | Kiran, U., Zettsu, K., Toyoda, M., Fournier-Viger, P., Reddy,
P. R., Kitsuregawa, M. (2019). Discovering Spatial High
Utility Itemsets in Spatiotemporal Databases. Proc.
of 31st Intern. Conf. on Scientific and Statistical Database
Management (SSDBM 2019), ACM, pp.
49-60 DOI: 10.1145/3335783.3335789 |
EI CCF-C |
|
63. | Wu, J. W.M., Lin, J. C. W., Fournier-Viger, P., Wiktorski, T.,
Hong, T.P. (2019). A GA-based Framework for Mining High
Fuzzy Utility Itemsets. Proc. IEEE BigData 2019,
IEEE, pp. 2708-2715. DOI: 10.1109/BigData47090.2019.9006171 |
EI accept. rate: 19% |
|
64. | Lin, J. C. W., Li, Y., Fournier-Viger, P., Djenouri, Y., Wang,
S.-L. (2019). Mining High-Utility Sequential Patterns
from Big Datasets. Proc. IEEE BigData 2019, IEEE, pp.
2674-2680. DOI: 10.1109/BigData47090.2019.9005996 |
EI accept. rate: 19% |
|
65. | Win, K. N., Chen, J., Xiao, G., Chen, Y., Fournier-Viger
(2019) A Parallel Crime Activity Clustering Algorithm
based on Apache Spark Cloud Computing Platform. Proc.
of 21st IEEE Conferences on High Performance Computing and
Communications (HPCC-2019).pp. 68-74. DOI: 10.1109/HPCC/SmartCity/DSS.2019.00025 |
EI CCF-C |
|
66. | Wu, J. M.-T., Lin, J. C.-W., Fournier-Viger, P., Chen, C.-H.,
Zhang, Y. et al. (2019). A Swarm-based Data
Sanitization Algorithm in Privacy-Preserving Data Mining.
Proc. of 2019 IEEE Congress on Evolutionary Computation (IEEE
CEC 2019), pp. 1461-1467. DOI: 10.1109/CEC.2019.8790271 |
EI | |
67. | Djenouri, Y., Djenouri, D., Belhadi, A., Lin, J. C.W.,
Bendjoudi, A., Fournier-Viger, P. A Novel Parallel
Framework for Metaheuristic-based Frequent Itemset Mining.
Proc. of 2019 IEEE Congress on Evolutionary Computation (IEEE
CEC 2019). pp. 1439-1445 DOI: 10.1109/CEC.2019.8790116 |
EI | |
68. | Lin, J. C.W., ... Fournier-Viger, P., ... (2019). A
Project-based PMiner Algorithm in Uncertain Databases.
Proc. 2019 Conference on Technologies and Applications of
Artificial Intelligence (TAAI 2019), IEEE, pp. 1-5. DOI: 10.1109/TAAI48200.2019.8959890 |
EI | |
69. | Pham, H. Q., Tran, D., Duong, N. B., Fournier-Viger, P., Ngom,
A. (2019). Nuclear: An efficient method for mining
frequent itemsets based on kernels and extendable sets.
Proc. 6th International Conference on Data Mining and Database,
6(9): 69-86. DOI: 10.5121/csit.2019.90607 |
||
70. | Nawaz, M. S., Sun, M., Fournier-Viger, P. (2019). Proof
Guidance in PVS with Sequential Pattern Mining. Proc.
of 9th Intern. Conf. Fundamentals of Software Engineering (FSEN
2019), 15 pages, Springer, LNCS. DOI: 10.1007/978-3-030-31517-7_4 |
EI | |
2018 | 71. | Fournier-Viger, P., Zhang, Y., Lin, J. C.-W., Fujita, H., Koh,
Y.-S. (2018).
Mining Local High Utility Itemsets. Proc.
29th International Conference on Database and Expert Systems
Applications (DEXA 2018), Springer, pp. 450-460. [source
code] [ppt]
DOI: 10.1007/978-3-319-98812-2_41 |
EI CCF-C, corr. auth. |
72. | Lin, J.-C.W., Fournier-Viger, P., Wu, L., Gan, W., Djenouri,
Y., Zhang, J. (2018). PPSF: A privacy-preserving data
mining library. Proc. of IEEE International
Conference on Data Mining (ICDM 2018) (demo), to appear. DOI: 10.1109/ICDMW.2018.00208 |
EI CCF-B |
|
73. | Lin, J. C.-W., Zhang, Y. Y., Fournier-Viger, P., Djenouri, Y.,
Zhang, J. (2018) A Metaheuristic Algorithm for Hiding
Sensitive Itemsets. Proc. 29th International
Conference on Database and Expert Systems Applications (DEXA
2018), Springer, pp. 492-498 DOI: 10.1007/978-3-319-98812-2_45 |
EI CCF-C |
|
74. | Fournier-Viger, P., Li, Z., Lin, J. C.-W., Fujita, H., Kiran,
U. (2018). Discovering
Periodic Patterns Common to Multiple Sequences.
Proc. 20th Intern. Conf. on Data Warehousing and Knowledge
Discovery (DAWAK 2018), Springer, pp. 231-246 [source
code] [ppt] DOI: 10.1007/978-3-319-98539-8_18 |
EI Acceptance rate: 17%, corr. auth. |
|
75. | Lin, J. C.-W., Fournier-Viger, P, Liu, Q., Djenouri, Y.,
Zhang, J. (2018) Anonymization of Multiple and
Personalized Sensitive Attributes. Proc. 20th Intern.
Conf. on Data Warehousing and Knowledge Discovery (DAWAK 2018),
Springer, pp. 204-215. DOI: 10.1007/978-3-319-98539-8_16 |
EI Acceptance rate: 17% |
|
76. | Stirling, M., Koh, Y.S., Fournier-Viger, P., Ravana, S.D.
(2018). Concept Drift Detector Selection for Hoeffding
Adaptive Trees. Proc. 31st Australasian Joint
Conference on Artificial Intelligence (AI 2018), Springer, pp.
730-736. DOI: 10.1007/978-3-030-03991-2_65 |
EI | |
77. | Fournier-Viger, P., Zhang, Y., Lin, J. C.-W., Koh, Y.-S.
(2018). Discovering
High utility Change Points in Transactional Data.
Proc. 13th Intern. Conference on Advanced Data Mining and
Applications (ADMA 2018) Springer LNAI, pp. 392-402 [ppt]
DOI: 10.1007/978-3-030-05090-0_33 |
EI, corr. auth. | |
78. | Liu, T., Bai, X., Zhang, D., Cao, X. Fournier-Viger, P.,
(2018). Influence of Early Season Performance and Team
Value on Chinese Football Super League Rankings.
Proceedings of 3rd International Conference on Big Data Analysis
(ICBDA 2018), IEEE to appear. DOI: |
EI | |
79. | Fournier-Viger, P., Li, X., Yao, J., Lin, J. C.-W. (2018). Interactive
Discovery of Statistically Significant Itemsets.
Proc. 31rd Intern. Conf. on Industrial, Engineering and Other
Applications of Applied Intelligent Systems (IEA AIE 2018),
Springer LNAI, pp. 101-113. DOI: 10.1007/978-3-319-92058-0_10 |
EI, corr. auth. | |
80. | Wu, J. W.M., Lin, J.C-W., Pirouz, M., Fournier-Viger, P.
(2018). New Tighter Upper Bounds for Mining High
Average-Utility Itemsets. Proc. 2018 International
Conference on Big Data and Education (ICBDE 2018), ACM, pp.
27-32. DOI: 10.1145/3206157.3206168 |
||
81. | Amirat, H., Benslimane, A., Fournier-Viger, P., Lagraa, N.
(2018). LocRec: Rule-based Successive Location
Recommendation in LBSN. Proceedings of 2018 IEEE
International Conference on Communications (ICC 2018), IEEE, pp.
1-6. DOI: 10.1109/ICC.2018.8422183 |
EI CCF-C |
|
82. | Djenouri, Y., Lin, J. C.-W., Djenouri, D., Belhadi, A.,
Fournier-Viger, P. (2018). GBSO-RSS: GPU-based BSO for
Rules Space Summarization. Proc. 1st International
Conference on Big Data and Deep Learning Applications
(ICBDL 2018), 123-129. DOI: 10.1007/978-981-13-0869-7_14 |
EI ISBN: 978-981-13-0869-7 |
|
83. | de Souza, K. V.-C. K., Almhana, C., Fournier-Viger, P.,
Almhana, J. (2018). Radio Data Transmission Reduction
in Power-Constrained WSN. Proceedings of 14th
International Wireless Communications & Mobile Computing
Conference (IWCMC 2018), IEEE, pp. 285-290. DOI: 10.1109/IWCMC.2018.8450353 |
EI | |
84. | Lin, J. C.-W., Li, Y., Fournier-Viger, P., Tan, L. (2018). Mining
high utility itemsets from multiple databases. Proc.
2nd Intern. Conf. on Smart Vehicular Technology, Transportation,
Communication and Applications (VTCA 2018), Springer, pp.
139-146. DOI: 10.1007/978-3-030-04585-2_17 |
EI ISBN: 978-3-030-04585-2 |
|
2017 | 85. | Kiran, U., Venkatesh, J. N., Fournier-Viger, P., Toyoda, M.,
Reddy, P. K., Kitsuregawa, M. (2017). Discovering
Periodic Patterns in Non-Uniform Temporal Databases.
Proc. 21st Pacific-Asia Conf. Knowledge Discovery and Data
Mining (PAKDD 2017) Part II, Springer, LNAI, pp. 604-617. DOI: 10.1007/978-3-319-57529-2_47 |
EI Acceptance rate: 28% |
86. | Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C.,
Tseng, V.S. (2017). Mining High-Utility Itemsets with
both Positive and Negative Unit Profits from Uncertain
Databases. Proc. 21st Pacific-Asia Conf. Knowledge
Discovery and Data Mining (PAKDD 2017) Part I, Springer, LNAI,
pp. 434-446 DOI: 10.1007/978-3-319-57454-7_34 |
EI Acceptance rate: 28% |
|
87. | Lin, J. C.-W., Zhang, J., Fournier-Viger, P. (2017). High
Utility Sequential Pattern Mining with Multiple Minimum
Utility Thresholds. Proc. of the APWeb-WAIM Joint
Conference on Web and Big Data 2017(APWeb-WAIM 2017), Springer,
pp.215-229. DOI: 10.1007/978-3-319-63579-8_17 |
EI Acceptance rate: 18% CCF-C |
|
88. | Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C.(2017).
Exploiting High Utility Occupancy Patterns.
Proc. of the APWeb-WAIM Joint Conference on Web and Big Data
2017(APWeb-WAIM 2017), Springer, pp.239-247 DOI: 10.1007/978-3-319-63579-8_19 |
EI Acceptance rate: 18% CCF-C |
|
89. | Gan, W., Lin, J. C.-W., Fournier-Viger, P., Chao, H.-C.(2017).
Extracting Non-redundant Correlated High Utility
Purchase Behaviors. Proc. 19th Intern. Conf. on Data
Warehousing and Knowledge Discovery (DaWaK 2017), Springer, pp.
433-446 DOI: 10.1007/978-3-319-64283-3_32 |
EI | |
90. | Djenouri, Y., Belhadi, A., Fournier-Viger, P., Lin, J. C.-W.
(2017). An Hybrid Multi-Core/GPU-based Mimetic
Algorithm for Big Association Rule Mining. Proc. 11th
Intern. Conference on Genetic and Evolutionary Computing (ICGEC
2017), Springer, pp. 56-65 DOI: 10.1007/978-981-10-6487-6_8 |
||
91. | Zhang, X., Wu, C.-W., Fournier-Viger, P., Van, L.-D., Tseng,
Y.-C. (2017).
Analyzing Students' Attention in Class Using
Wearable Devices. Proc. 18th IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM 2017), IEEE, pp. 1-9. DOI: 10.1109/WoWMoM.2017.7974306 |
EI CCF-C |
|
92. |
Dalmas, B., Fournier-Viger, P., Norre, S. (2017). TWINCLE:
A Constrained Sequential Rule Mining Algorithm for Event
Logs. Proc. 9th International KES Conference
(IDT-KES 2017), Elsevier, pp. 205-214 |
||
93. | Lin, J. C.-W., Ren, S., Fournier-Viger, P., Hong, T.-P.
(2017). Mining of High Average-Utility Itemsets with a
Tighter Upper-Bound Model. Proceedings of 4th
Multidisciplinary International Social Networks Conference on
Social Informatics 2017 (MISNC 2017), to appear. DOI: |
||
94. |
Liu, T., Fournier-Viger, P., Hohmann, A. (2017). Using
Diagnostic Analysis to Discover Offensive Patterns in a
Football Game. Proceedings of International
Conference on Data Science and Business Analytics (ICDSBA
2017), Springer, pp. 381-386. |
ISBN: 978-3-319-72745-5 | |
95. | de Souza, K. V.-C. K., Almhana, C., Fournier-Viger, P.,
Almhana, J. (2017). Energy-Efficient Partitioning
Clustering Algorithm for Wireless Sensor Network.
Proceedings of 10th EAI International Wireless Internet
Conference (WiCON 2017), Springer, pp. 14-23. DOI: 10.1007/978-3-319-90802-1_2 |
EI | |
2016 | 96. | Fournier-Viger, P., Lin, C.W., Wu, C.-W., Tseng, V. S.,
Faghihi, U. (2016). Mining
Minimal High-Utility Itemsets. Proc. 27th
International Conference on Database and Expert Systems
Applications (DEXA 2016). Springer, LNCS, pp. 88-101. [ppt]
[source
code] [video] DOI: 10.1007/978-3-319-44403-1_6 |
EI CCF-C, corr. auth. |
97. | Lin, C.W., Gan, W., Fournier-Viger, P., Chen, H.-C. (2016).
More Efficient Algorithms for Mining High-Utility Itemsets
with Multiple Minimum Thresholds. Proc. 27th
International Conference on Database and Expert Systems
Applications (DEXA 2016). Springer, LNCS, pp. 71-87. DOI: 10.1007/978-3-319-44403-1_5 |
EI CCF-C |
|
98. | Lin, C.W., Gan, W., Fournier-Viger, P., Chen, H.-C. (2016).
Mining Recent High-Utility Patterns from Temporal Databases
with Time-Sensitive Constraint. Proc. 18th Intern.
Conf. on Data Warehousing and Knowledge Discovery (DAWAK 2016).
Springer, LNCS, pp. 3-16 DOI: 10.1007/978-3-319-43946-4_1 |
EI | |
99. | Fournier-Viger, P., Lin, C.W., Gomariz, A., Soltani, A.,
Deng, Z., Lam, H. T. (2016). The
SPMF
Open-Source Data Mining Library Version 2.
Proc. 19th European Conference on Principles of Data Mining and
Knowledge Discovery (PKDD 2016) Part III. Springer, pp. 36-40. [software] DOI: 10.1007/978-3-319-46131-1_8 |
EI CCF-B, corr. auth. |
|
100. | Fournier-Viger, P., Zida, S. Lin, C.W., Wu, C.-W., Tseng, V.
S. (2016). EFIM-Closed:
Fast and Memory Efficient Discovery of Closed High-Utility
Itemsets. Proc. 12th Intern. Conference on
Machine Learning and Data Mining (MLDM 2016). Springer, LNAI,
pp. 199-213. [short ppt][long ppt][source
code] DOI: 10.1007/978-3-319-41920-6_15 |
EI, corr. auth. | |
101. | Lin, C.W., Gan, W., Fournier-Viger, P., Hong, T.-P. (2016).
Efficient Mining of Weighted Frequent Itemsets in Uncertain
Databases. Proc. 12th Intern. Conference on Machine
Learning and Data Mining (MLDM 2016). Springer, LNAI, pp.
236-250. DOI: 10.1007/978-3-319-41920-6_18 |
EI | |
102. | Fournier-Viger, P., Lin, C.W., Duong, Q.-H., Dam, T.-L.
(2016). FHM+:
Faster High-Utility Itemset Mining using Length Upper-Bound
Reduction. Proc. 29th Intern. Conf. on
Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA AIE 2016), Springer LNAI, pp. 115-127.
[ppt]
[source
code] DOI: 10.1007/978-3-319-42007-3_11 |
EI, corr. auth. |
|
103. | Lin, C.W., Li, T., Fournier-Viger, P., Hong, T.-P., Su, J.-W.
(2016). Fast Algorithms for Mining Multiple Fuzzy
Frequent Itemsets. Proc. 16th IEEE Conference on
Fuzzy Systems (FUZZY-IEEE 2016), IEEE, to appear DOI: 10.3233/IFS-151936 |
||
104. | Lin, C.W., Ren, S., Fournier-Viger, P., Su, J.-H., Vo, B.
(2016). A More Efficient Algorithm to Mine High
Average-Utility Itemsets. Proc. 12th Intern. Conf. on
Intelligent Information Hiding and Multimedia Signal Processing
(IIH-MSP 2016). Springer, pp 101-110. DOI: |
||
105. | Lin, C.-W., Zhang, J., Fournier-Viger, P., Hong, T.-P., Chen,
C.-M. (2016). Efficient Mining of Short Periodic
High-Utility Itemsets. Proc. 27th IEEE International
Conference on Systems, Man, and Cybernetics (SMC 2016). IEEE, to
appear DOI: 10.1109/SMC.2016.7844710 |
CCF-C |
|
106. | Lin, C.W., Gan, W., Fournier-Viger, P., Han-Chieh, C. (2016).
More Efficient Algorithms for Mining Frequent Patterns with
Multiple Minimum Supports. Proc. 17th International
Conference Web-Age Information Management (WAIM 2016), Springer
LNAI, pp. 3-16. DOI: 10.1007/978-3-319-39937-9_1 |
CCF-C |
|
107. | Lin, C.W., Gan, W., Fournier-Viger, P., Han-Chieh, C. (2016).
Mining Recent High Expected Weighted Itemset from Uncertain
Databases. Proc. 18th Asia-Pacific Web Conference
(APWeb 2016), Springer, LNCS, pp. 581-593. DOI: 10.1007/978-3-319-45814-4_47 |
CCF-C |
|
108. | Lin, C.W., Li, T., Fournier-Viger, P., Hong, T. P., Tseng, V.
S. (2016). Efficient Mining of Uncertain Data to
Discover High-Utility Itemsets. Proc. 17th
International Conference Web-Age Information Management (WAIM
2016), Springer LNAI, pp. 17-30. DOI: 10.1007/978-3-319-39937-9_2 |
CCF-C |
|
109. | Voznak, M., Rozhon, J., Mikulec, M., Rezac, F., Komosny, D.,
Lin, J.C.-W.,Fournier-Viger, P. (2016) Employing the
neural networks to parametrically assess the quality of a
voice call. Proc. 2016 International Symposium on
Performance Evaluation of Computer and Telecommunication Systems
(SPECTS 2016), pp. 1-5. DOI: 10.1109/SPECTS.2016.7570521 |
||
110. | Fournier-Viger, P., Lin, C. W., Dinh, T., Le, H. B. (2016). Mining
Correlated High-Utility Itemsets Using the Bond Measure.
Proc. 11 th International Conference on Hybrid Artificial
Intelligence Systems (HAIS 2016), Springer LNAI, pp.53-65. [ppt]
[source
code] DOI: 10.1007/978-3-319-32034-2_5 |
corr. auth. |
|
111. | Fournier-Viger, P., Lin, C.W., Duong, Q.-H., Dam, T.-L.
(2016). PHM:
Mining Periodic High-Utility Itemsets. Proc.
16th Industrial Conference on Data Mining. Springer LNAI 9728,
pp. 64-79. [ppt]
[source
code] DOI: 10.1007/978-3-319-41561-1_6 |
* Nominated for best paper award
(one of the three finalists)* corr. auth. |
|
112. | Lin, C.W., Li, T., Fournier-Viger, P., Hong, T.-P., Su, J.-H.
(2016). Efficient Mining of High Average-Utility
Itemsets with Multiple Minimum Thresholds. Proc. 16th
Industrial Conference on Data Mining. Springer LNAI 9728, pp.
14-28. DOI: 10.1007/978-3-319-41561-1_2 |
||
113. | Fournier-Viger, P., Zida, S., Lin, C.W., Wu, C.W., Tseng., V.
(2016). Efficient closed high-utility itemset-mining.
Proc. 31th Symposium on Applied Computing (ACM SAC 2016). ACM
Press, pp. 898-900. [source
code] DOI: 10.1145/2851613.2851884 |
* Nominated for best poster award (one of the six finalists)* | |
114. | Lin, C.W., Gan, W., Fournier-Viger, P., Hong, T.-P. (2016).
Efficient Algorithms for Mining Recent Weighted Frequent
Itemsets in Temporal Transactional Databases. Proc.
31th Symposium on Applied Computing (ACM SAC 2016). ACM Press,
pp.861-866 DOI: 10.1145/2851613.2851648 |
||
115. | Faghihi, U., Chatman, D., Gautier, N., Gholson, J., Gholson,
J., Lipkal, M., Dill, R, Fournier-Viger, P., Maldonado-Bouchard,
S. (2016). How to Apply Gamification Techniques to
Design a Gaming nvironment for Algebra concepts.
Proc. 3rd Intern. Conf. on E-Learning, E-Education, and Online
Training (eLEOT 2016), Springer LNICST, 8 pages. DOI: 10.1007/978-3-319-49625-2_8 |
||
116. | Pokou J. M., Fournier-Viger, P., Moghrabi, C. (2016). Authorship
Attribution Using Small Sets of Frequent Part-of-Speech
Skip-grams. Proc. 29th Intern. Florida
Artificial Intelligence Research Society Conference (FLAIRS 29),
AAAI Press, pp. 86-91 [datasets]. DOI: |
||
117. | Pokou J. M., Fournier-Viger, P., Moghrabi, C. (2016). Using
Frequent Fixed or Variable-Length POS Ngrams or Skip-grams for
Blog Authorship Attribution . Proc. 12th Intern.
Conf. on Artificial Intelligence Applications and Innovations
(AIAI 2016), Springer LNAI, pp. 63-74 [datasets].
DOI: 10.1007/978-3-319-44944-9_6 |
||
118. |
Lin, J. C.-W., Liu, Q., Fournier-Viger, P., Hong, T.-P.,
Zhan, J., Voznak, M. (2016). An Efficient Anonymous
System for Transaction Data. Proceedings of 3rd
Multidisciplinary International Social Networks Conference on
Social Informatics 2016 (MISNC 2016), pp. 28. |
||
119. | Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P.
(2016). Mining Discriminative High Utility Patterns.
Proc. 8th Asian Conference on Intelligent Information and
Database Systems (ACIIDS 2016), Springer, pp. 219-229. DOI: 10.1007/978-3-662-49390-8_21 |
||
120. | Lin, J. C.-W., Lv, X., Fournier-Viger, P., Wu, T.-Y., Hong,
T.-P. (2016). Efficient Mining of Fuzzy Frequent
Itemsets with Type-2 Membership Functions. Proc. 8th
Asian Conference on Intelligent Information and Database Systems
(ACIIDS 2016), Springer, pp. 191-200. DOI: 10.1007/978-3-662-49390-8_18 |
||
121. | Fournier-Viger, P., Lin, C.-W., Duong, Q.-H., Dam, T.-L.,
Sevcic, L., Uhrin, D., Voznak, M. (2016). PFPM:
Discovering Periodic Frequent Patterns with Novel
Periodicity Measures. Proc. 2nd Czech-China
Scientific Conference 2016, Elsevier, 10 pages. [source
code] [video] [ppt] DOI: |
||
122. | Pokou J. M., Fournier-Viger, P., Moghrabi, C. (2016). Authorship
Attribution using Variable-Length Part-of-Speech Patterns.
Proc. 7th Intern. Conf. on Agents and Artificial Intelligence
(ICAART 2016), pp. 354-361 [datasets].
DOI: 10.5220/0005710103540361 |
||
2015 | 123. | Zida, S., Fournier-Viger, P., Lin, J. C.-W., Wu, C.-W., Tseng, V.S. (2015). EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining. Proceedings of the 14th Mexican Intern. Conference on Artificial Intelligence (MICAI 2015), Springer LNAI 9413, pp. 530-546. [ppt] [source code] | |
124. | Dougnon, Y. R., Fournier-Viger, P., Lin, J. C.-W., Nkambou, R. (2015). More Accurate User Profile Inference in Online Social Networks. Proceedings of the 14th Mexican Intern. Conference on Artificial Intelligence (MICAI 2015), Springer LNAI 9414, pp. 533-546. | ||
125. | Fournier-Viger, P., Lin, J. C.-W., Gueniche, T., Barhate, P. (2015). Efficient Incremental High Utility Itemset Mining. Proc. 5th ASE International Conference on Big Data (BigData 2015), 6 pages. [ppt] [video] [source code] | ||
126. | Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P., Tseng, V. S. (2015). Mining Potential High-Utility Itemsets over Uncertain Databases. Proc. 5th ASE International Conference on Big Data (BigData 2015), 6 pages. [video] | ||
127. | Gueniche, T., Fournier-Viger, P., Raman, R., Tseng, V. S.
(2015). CPT+:
Decreasing the time/space complexity of the Compact
Prediction Tree. Proc. 19th Pacific-Asia Conf.
Knowledge Discovery and Data Mining (PAKDD 2015), Springer,
LNAI9078, pp. 625-636. [ppt] [Source code: Java version (original) and a Cython version (unofficial)] |
accept. rate: 6 % CCF-C |
|
128. | Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J. C. W., Tseng, V.S., (2015). Efficient Mining of High Utility Sequential Rules. Proc. 11th Intern. Conference on Machine Learning and Data Mining (MLDM 2015). Springer, LNAI 9166, pp. 157-171. [source code] | * Nominated for best paper award (one of the three finalists)* | |
129. | Wu, C.W., Fournier-Viger, P., Gu, J.-Y., Tseng, V.S. (2015). Mining Closed+ High Utility Itemsets without Candidate Generation. Proc. 2015 Conference on Technologies and Applications of Artificial Intelligence (TAAI 2015), pp. 187-194. [source code] | * Merit Paper Award * | |
130. | Tseng, V. S., Wu, C.-W., Lin, J.-H., Fournier-Viger, P. (2015). UP-Miner: A Utility Pattern Mining Toolbox. Proc. of IEEE International Conference on Data Mining (ICDM 2015) (demo), pp. 1656-1659. | CCF-B |
|
131. | Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P., Tseng. V. (2015). Mining High-Utility Itemsets with Various Discount Strategies. Proc. 2015 IEEE/ACM International Conference on Data Science and Advanced Analytics (DSAA’2015), 6 pages, pp. 1-10. | accept. rate: 22 % CCF-C |
|
132. | Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P. (2015). Mining Weighted-Frequent Itemsets with Time-Sensitive Constraint. Proc. 17th Asia-Pacific Web Conference (APWeb 2015), Springer, LNCS, pp.635-646. | accept. rate: 23 % CCF-C |
|
133. | Dougnon, Y. R., Fournier-Viger, P., Lin, J. C.-W., Nkambou, R. (2015). Accurate Social Network User Profiling. Proc. 38th German Conference on Artificial Intelligence (KI 2015), Springer LNAI 9324, pp. 265-270. | ||
134. | Lin, J. C.-W., Yang, L., Fournier-Viger, P., Wu, M.-T., Hong, T.-P., Wang, L. (2015). A Swarm-based Approach to Mine High-Utility Itemsets. Proc. 2nd Multidisciplinary Intern. Social Networks Conference (MISNC 2015). Springer, pp. 572-581. | ||
135 |
Lin, J. C.-W., Wu, T.-S., Fournier-Viger, P., Lin, G., Hong, T.-P. (2015). A Sanitization Approach of Privacy Preserving Utility Mining, Proc. 9th Intern. Conference on Genetic and Evolutionary Computing (ICGEC 2015), pp. 47-57. | *Best Paper Award* | |
136 |
Lin, J. C-W., Liu, Q., Fournier-Viger, P., Hong, T.-P., Pan, J. S. (2015). A Swarm-based Sanitization Approach for Hiding Confidential Itemsets. Proc. of the Eleventh Intern. Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 572-583. | ||
137. | Lin, J. C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P. (2015). Mining High-Utility Itemsets with Multiple Minimum Utility Thresholds. Proc. 8th Intern. C* Conference on Computer Science & Software Engineering (C3S2E15). ACM, pp. 9-17. | ||
138. | Dougnon, Y. R., Fournier-Viger, P., Nkambou, R. (2015). Inferring User Profiles in Social Networks using a Partial Social Graph. Proc. 28th Canadian Conference on Artificial Intelligence (AI 2015), Springer, LNAI 9091, pp. 84-99. | accept. rate: 18 % | |
139. | Gueniche, T., Fournier-Viger, P. (2015). Réduction de la complexité spatiale et temporelle du Compact Prediction Tree pour la prédiction de séquences. Proc. 15ème conférence Interne sur l'extraction et la gestion des connaissances (EGC 2015), Revue des Nouvelles Technologies de l'Information, vol. E-28, pp.59-70. | * Nominated for best paper award * | |
140. | Fournier-Viger, P., Zida, S. (2015). FOSHU: Faster On-Shelf High Utility Itemset Mining– with or without negative unit profit. Proc. 30th Symposium on Applied Computing (ACM SAC 2015). ACM Press, pp. 857-864. [source code] | accept. rate: 20 % | |
2014 | 141. | Fournier-Viger, P., Wu, C.W., Tseng, V.S. (2014). Novel Concise Representations of High Utility Itemsets using Generator Patterns. Proc. 10th Intern. Conference on Advanced Data Mining and Applications (ADMA 2014), Springer LNCS 8933, pp. 30-43. [ppt] [source code] | *Best Paper Award* |
142. | Fournier-Viger, P. (2014). FHN: Efficient Mining of High-Utility Itemsets with Negative Unit Profits. Proc. 10th Intern. Conference on Advanced Data Mining and Applications (ADMA 2014), Springer LNCS 8933, pp. 16-29. [ppt][source code] | ||
143. | Fournier-Viger, P., Gomariz, A., Campos, M., Thomas, R. (2014). Fast Vertical Mining of Sequential Patterns Using Co-occurrence Information. Proc. 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2014) Part 1, Springer, LNAI, 8443. pp. 40-52. [ppt][source code] | accept. rate: 27 % CCF-C *Most Influential Paper Award (at PAKDD 2024)* |
|
144. | Fournier-Viger, P., Gomariz, A., Sebek, M., Hlosta, M. (2014). VGEN: Fast Vertical Mining of Sequential Generator Patterns. Proc. 16th Intern. Conf. on Data Warehousing and Knowledge Discovery (DAWAK 2014), Springer, LNCS 8646, pp. 476--488. [source code] | accept. rate: 31 % | |
145. | Fournier-Viger, P., Gueniche, T., Zida, S., Tseng, V. S. (2014). ERMiner: Sequential Rule Mining using Equivalence Classes. Proc. 13th Intern. Symposium on Intelligent Data Analysis (IDA 2014), Springer, LNCS 8819, pp. 108-119. [source code] | ||
146. | Mwamikazi, E., Fournier-Viger, P., Moghrabi, C., Baudouin, R. (2014). A Dynamic Questionnaire to Further Reduce Questions in Learning Style Assessment. Proc. 10th Int. Conf. Artificial Intelligence Applications and Innovations (AIAI2014), Springer, LNAI, pp. 224-235. | ||
147. | Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V. S. (2014) FHM: Faster High-Utility Itemset Mining using Estimated Utility Co-occurrence Pruning. Proc. 21st Intern. Symposium on Methodologies for Intelligent Systems (ISMIS 2014), Springer, LNAI, pp. 83-92. [ppt][source code][video] | ||
148. | Gueniche, T., Fournier-Viger, P., Nkambou, R., Tseng, V. S. (2014) WBPL: An Open-Source Library for Predicting Web Surfing Behaviors. Proc. 21st Intern. Symposium on Methodologies for Intelligent Systems (ISMIS 2014), Springer, LNAI, pp. 524-529. | ||
149. | Fournier-Viger, P., Wu, C.-W., Gomariz, A., Tseng, V. S. (2014). VMSP: Efficient Vertical Mining of Maximal Sequential Patterns. Proc. 27th Canadian Conference on Artificial Intelligence (AI 2014), Springer, LNAI, pp. 83-94. [ppt] [source code] | accept. rate: 23 % | |
150. | Mwamikazi, E., Fournier-Viger, P., Moghrabi, C., Barhoumi, A., Baudouin, R. (2014). An Adaptive Questionnaire for Automatic Identification of Learning Styles. Proc. 27th Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA AIE 2014), Springer, LNAI 8481, pp. 399-409. | ||
2013 | 151. | Fournier-Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E., Thomas, R. (2013). TKS: Efficient Mining of Top-K Sequential Patterns. Proc. 9th Intern. Conference on Advanced Data Mining and Applications (ADMA 2013) Part I, Springer LNAI 8346, pp. 109-120. [ppt] [source code] | accept. rate: 14 % ( full paper) |
152. | Gueniche, T., Fournier-Viger, P., Tseng, V. S. (2013). Compact
Prediction Tree: A Lossless Model for Accurate Sequence
Prediction. Proc. 9th Intern. Conference on
Advanced Data Mining and Applications (ADMA 2013) Part II,
Springer LNAI 8347, pp. 177-188. [ppt] [Source code: Java version (original) and a Cython version (unofficial)] |
accept. rate: 14 % (full paper) |
|
153. | Fournier-Viger, P., Wu, C.-W., Tseng, V. S. (2013). Mining Maximal Sequential Patterns without Candidate Maintenance. Proc. 9th Intern. Conference on Advanced Data Mining and Applications (ADMA 2013) Part I, Springer LNAI 8346, pp. 169-180. [ppt] [source code] | ||
154. | Fournier-Viger, P., Mwamikazi, E., Gueniche, T., Faghihi, U. (2013). Memory Efficient Itemset Tree for Targeted Association Rule Mining. Proc. 9th Intern. Conference on Advanced Data Mining and Applications (ADMA 2013) Part II, Springer LNAI 8347, pp. 95-106. [ppt] [source code] | ||
155. | Fournier-Viger, P., Tseng, V. S. (2013). TNS: Mining Top-K Non-Redundant Sequential Rules. Proc. 28th Symposium on Applied Computing (ACM SAC 2013). ACM Press, pp. 164-166. [source code] | ||
156. | Snow, E., Moghrabi, C., Fournier-Viger, P. (2013). Assessing Procedural Knowledge in Free-text Answers through a Hybrid Semantic Web Approach. Proc. of the 25th IEEE Intern. Conference on Tools with Artificial Intelligence (ICTAI 2013), IEEE, pp. 698-706. | CCF-C |
|
2012 | 157. | Fournier-Viger, P. Gueniche, T., Tseng, V.S. (2012). Using Partially-Ordered Sequential Rules to Generate More Accurate Sequence Prediction. Proc. 8th Intern. Conference on Advanced Data Mining and Applications (ADMA 2012), Springer LNAI 7713, pp. 431-442. | accept. rate: 19% |
158. | Fournier-Viger, P., Nkambou, R., Mayers, A., Mephu Nguifo, E., Faghihi, U. (2012). Multi-Paradigm Generation of Tutoring Feedback in Robotic Arm Manipulation Training. Proceedings of the 11th Intern. Conf. on Intelligent Tutoring Systems (ITS 2012), LNCS 7315, Springer, pp. 233-242. | accept. rate: 15 % | |
159. | Fournier-Viger, P., Tseng, V.S. (2012). Mining Top-K Non-Redundant Association Rules. Proc. 20th Intern. Symposium on Methodologies for Intelligent Systems (ISMIS 2012), Springer, LNCS 7661, pp. 31- 40. [source code] | * Nominated for best paper award * | |
160. | Fournier-Viger, P., Wu, C.-W., Tseng, V. S. (2012). Mining Top-K Association Rules. Proceedings of the 25th Canadian Conf. on Artificial Intelligence (AI 2012), Springer, LNAI 7310, pp. 61-73. [source code] [ppt] | accept. rate: 29 % | |
161. | Fournier-Viger, P., Wu, C.-W., Tseng, V.S., Nkambou, R. (2012). Mining Sequential Rules Common to Several Sequences with the Window Size Constraint. Proceedings of the 25th Canadian Conf. on Artificial Intelligence (AI 2012), Springer, LNAI 7310, pp.299-304. [source code] | ||
2011 | 162. | Wu, C.-W., Fournier-Viger, P., Yu., P. S., Tseng, V. S. (2011). Efficient Mining of a Concise and Lossless Representation of High Utility Itemsets. Proceedings of the 11th IEEE Intern. Conference on Data Mining (ICDM 2011). IEEE CS Press, pp.824-833. | accept. rate: 12 % CCF-B |
163. | Fournier-Viger, P., Tseng, V. S. (2011). Mining Top-K Sequential Rules. Proceedings of the 7th Intern. Conf. on Advanced Data Mining and Applications (ADMA 2011). LNAI 7121, Springer, pp.180-194. [source code] [ppt] | accept. rate: 18 % ( full paper) |
|
164. | Fournier-Viger, P., Nkambou, R., Tseng, V. S. (2011). RuleGrowth: Mining Sequential Rules Common to Several Sequences by Pattern-Growth. Proceedings of the 26th Symposium on Applied Computing (ACM SAC 2011). ACM Press, pp. 954-959. [source code][ppt] | ||
165. | Fournier-Viger, P., Nkambou, R., Mayers, A., Mephu Nguifo, E., Faghihi, U. (2011). An Hybrid Expertise Model to Support Tutoring Services in Robotic Arm Manipulations. Proceedings of the 10th Mexican Intern. Conference on Artificial Intelligence (MICAI 2011), LNAI 7094, Springer, pp. 478-489. | ||
166. | Faghihi, U., Fournier-Viger, P., Nkambou, R. (2011).A Cognitive Tutoring Agent with Episodic and Causal Learning Capabilities.Proceedings of the 15th Intern. Conf. on Artificial Intelligence and Education (AIED 2011). IOS Press, pp. 72-80. | accept. rate: 32% | |
167. | Faghihi, U., Fournier-Viger, P., Nkambou, R. (2011). Implementing an Efficient Causal Learning Mechanism in a Cognitive Tutoring Agent. Proceedings of the 24th Intern.Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE 2011), LNAI 6704, Springer, pp.27-36. | ||
168. | Faghihi, U., Fournier-Viger, P., Nkambou, R. (2011). A Cognitive Tutoring Agent with Automatic Reasoning Capabilities.Proceedings of the 24th Intern. Florida Artificial Intelligence Research Society Conference (FLAIRS 2011), AAAI press, pp.448-449. | ||
<2010 | 169. | Fournier-Viger, P., Faghihi, U., Nkambou, R., Mephu Nguifo, E. (2010). CMRules: An Efficient Algorithm for Mining Sequential Rules Common to Several Sequences. Proceedings of the 23th Intern. Florida Artificial Intelligence Research Society Conference (FLAIRS 2010). AAAI press, pp. 410-415. [source code] [ppt] | |
170. | Faghihi, U., Fournier-Viger, P., Nkambou, R. & Poirier, P. (2010). The Combination of a Causal Learning and an Emotional Learning Mechanism for an Improved Cognitive Tutoring Agent. Proceedings of the 23th Intern.Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE 2010), LNAI 6097, Springer, pp. 438-449. | ||
171. | Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. & Mayers, A.(2010). ITS in Ill-defined Domains: Toward Hybrid Approaches. Proceedings of the 10th Intern. Conf. on Intelligent Tutoring Systems (ITS 2010), LNCS 6095, Springer, pp. 749-751. | ||
172. | Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. (2009). Exploiting Partial Problem Spaces Learned from Users' Interactions to Provide Key Tutoring Services in Procedural and Ill-Defined Domains. Proc. 14th Intern. Conf. on Artificial Intelligence and Education (AIED 2009). IOS Press. pp. 383-390. | ||
173. | Faghihi, U., Fournier-Viger, P., Nkambou, R. & Poirier, P. (2009). A Generic Episodic Learning Model Implemented in a Cognitive Agent by Means of Temporal Pattern Mining. Proc. 22nd Intern. Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE 2009), LNAI 5579, Springer, pp. 545-555. | ||
174. | Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. & Faghihi, U. (2009). Building Agents that Learn by Observing other Agents Performing a Task - A Sequential Pattern Mining Approach. Proceedings of the 22nd Intern.Conf. on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE 2009), SCI 214, Springer, pp. 279-284. | ||
175. | Faghihi, U., Fournier-Viger, P., Nkambou, R., Poirier, P., Mayers, A. (2009). How Emotional Mechanism Helps Episodic Learning in a Cognitive Agent. Proceedings of the 2009 IEEE Symposium on Intelligent Agents, pp. 23-30. | ||
176. | Faghihi, U., Nkambou, R, Poirier, P., & Fournier-Viger, P. (2009). Emotional Learning and a Combined Centralist-Peripheralist Based Architecture for a More Efficient Cognitive Agent. Proceedings of the 7th IEEE Intern. Conference on Industrial Technology (ICIT 2009), 6 pages. | ||
177. | Fournier-Viger, P., Nkambou, R & Mephu Nguifo, E. (2008), A Knowledge Discovery Framework for Learning Task Models from User Interactions in Intelligent Tutoring Systems. Proceedings of the 7th Mexican Intern. Conference on Artificial Intelligence (MICAI 2008). LNAI 5317, Springer, pp. 765-778. | *Best Paper Award* accept. rate: 25% |
|
178. | Fournier-Viger, P., Nkambou, R., Mayers, A. (2008). A Framework for Evaluating Semantic Knowledge in Problem-Solving-Based Intelligent Tutoring Systems. Proceedings of the 21th Intern. Florida Artificial Intelligence Research Society Conference (FLAIRS 2008). AAAI press, pp. 409-414. | ||
179. | Nkambou, R, Mephu Nguifo, E. & Fournier-Viger, P. (2008). Using Knowledge Discovery Techniques to Support Tutoring in an Ill-Defined Domain. Proceedings of the 9th Intern. Conference on Intelligent Tutoring Systems (ITS 2008). LNCS 5091, Springer, pp. 395-405. | * Nominated for best
paper award * accept. rate: 30% |
|
180. | Fournier-Viger, P., Nkambou, R., Mayers, A. (2008). Evaluating Spatial Knowledge through Problem-Solving in Virtual Learning Environments. Proceedings of the Third European Conference on Technology Enhanced Learning (EC-TEL 2008). LNCS 5192, Springer, pp 15-26. | *In top 14* accept. rate: 21% |
|
181. | Fournier-Viger, P., Nkambou, R & Mephu Nguifo, E. (2008). A Data Mining Framework for the Acquisition of Procedural Knowledge in Intelligent Tutoring Systems. Proceedings of the 16th Intern. Conference on Computers in Education (ICCE 2008). pp. 153-157. | ||
182. | Nkambou, R., Mephu Nguifo, E., Couturier, O. & Fournier-Viger, P. (2007). Problem-Solving Knowledge Mining from Users' Actions in an Intelligent Tutoring System. Proceedings of the 19th Canadian Conference on Artificial Intelligence (AI'2007), LNAI 3501, Springer, pp: 393-404. | accept. rate: 17% | |
183. | Fournier-Viger, P., Nkambou, R., Mayers, A., Dubois, D. (2007). Automatic Evaluation of Spatial Representations for Complex Robotic Arms Manipulations. Proceedings of the 7th IEEE Intern. Conference on Advanced Learning Technologies (ICALT 2007), pp: 279-281. | ||
184. | Nkambou R., Mephu Nguifo, E., Couturier, O., Fournier-Viger, P. (2007). A Framework for Problem-Solving Knowledge Mining from Users’ Actions. Proceedings of the 13th Intern. Conference on Artificial Intelligence in Education (AIED 2007). pp: 623-625. | ||
185. | Fournier-Viger P., Najjar, M., Mayers, A., Nkambou, R. (2006). From Black-box Learning Objects to Glass-Box Learning Objects. Proceedings of the 8th Intern. Conference on Intelligent Tutoring Systems (ITS 2006). LNCS 4053, Springer, pp: 258-267. | accept. rate: 32% | |
186. | Fournier-Viger, P., Najjar, M., Mayers, A. (2005). Combining the Learning Objects Paradigm with Cognitive Modelling Theories - a Novel Approach for Knowledge Engineering. Proceedings of the ITI 3rd Intern. Conference on Information & Communication Technology (ICICT 2005). pp: 565-578. |
2024 | 1. | Nawaz, Z., Nawaz, M. S., Fournier-Viger, P. Selmaoui-Folcher, N.. (2024) Genetic Algorithm for Efficient Descriptive Pattern Mining. Proc. 6th International Workshop on Utility-Driven Mining (UDML 2024), in conjunction with the PAKDD 2024 conference, to appear. | corr. auth. |
2023 | 2. | Zhao, Z, Chen, X., Junjie, M., Zhang, Q, Fournier-Viger, P., Hawbani, A. (2023) Multi-modal Chinese Fake News Detection. Proc. 1st International Workshop on Multi-Modal Data Analysis (MDA 2023), in conjunction with the ICDM 2023 conference, IEEE ICDM workshop proceedings, to appear. | |
2022 | 3. | Fournier-Viger, P., Gan, W., Wu, Y., Nouioua, M.,
Song, W., Truong, T., Van, H. D. (2022). Pattern
Mining: Current Challenges and Opportunities. Proceedings of the 1st Workshop on Pattern mining and Machine
learning in Big complex Databases (PMDB 2022), held at DASFAA
2022, Springer, 16 pages, to appear. [ppt][video] DOI: 10.1007/978-3-031-11217-1_3 |
corr. auth. |
4. | Alhusaini, N., Li, J., Fournier-Viger, P., Hawbani, A. (2022) Mining High Utility Itemset with Multiple Minimum Utility Thresholds Based on Utility Deviation. Proc. 5th International Workshop on Utility-Driven Mining (UDML 2022), in conjunction with the ICDM 2022 conference, IEEE ICDM workshop proceedings, to appear. | ||
5. | Du, X., He, Y., Fournier-Viger, P., Huang, J. Z. (2022). DenMG: Density-Based Member Generation for Ensemble Clustering. Prof. 15th International Workshop on. Parallel Programming Models and Systems Software for. High-End Computing (P2S2). Held at 51st International Conference on Parallel Processing (ICPP 2022). | ||
2021 | 6. | Nawaz, M. S., Fournier-Viger, P., Chen, G., Nawaz, M. Z., Wu, Y. (2021). Metamorphic Malware Behavior Analysis using Sequential Pattern Mining. Proceedings of the 1st Workshop on Machine Learning in Software Engineering (MLiSE 2021). PKDD 2021 Workshop proceedings, Springer, 15 pages, to appear. [ppt] | corr. auth. |
7. | Fournier-Viger, P., Nawaz, M. S., Song, W., Gan, W. (2021). Machine Learning for Intelligent Industrial Design. Proceedings of the 1st Workshop on Machine Learning in Software Engineering (MLiSE 2021). held at PKDD 2021 Workshop proceedings, Springer, 15 pages, to appear. [ppt] | corr. auth. | |
8. | Liu, J., Yang, M., Zhou, M., Feng, S., Fournier-Viger, P. (2021) Enhancing Hyperbolic Graph Embeddings via Contrastive Learning. Proc. NeurIPS 2021 Workshop: Self-Supervised Learning - Theory and Practice. 5 pages. (no archival publication) | ||
9. | Nouioua, M., Fournier-Viger, P., Qu, J.-F., Lin, J.-C., Gan, W., Song, W. (2021). CHUQI-Miner: Correlated High Utility Quantitative Itemset Mining. Proc. 4th International Workshop on Utility-Driven Mining (UDML 2021), in conjunction with the ICDM 2021 conference, IEEE ICDM workshop proceedings, to appear. [ppt][video] | corr. auth. | |
10. | Chen, Y., Fournier-Viger, P., Nouioua, F., Wu, Y.. (2021). Sequence Prediction using Partially-Ordered Episode Rules. Proc. 4th International Workshop on Utility-Driven Mining (UDML 2021), in conjunction with the ICDM 2021 conference, IEEE ICDM workshop proceedings, to appear.[ppt] [video] | corr. auth. | |
2020 | 11. | Fournier-Viger, P., Ganghuan, H., Zhou, M., Nouioua, M., Liu, J. (2020). Discovering Alarm Correlation Rules for Network Fault Management. Proc. of the International Workshop on Artificial Intelligence for IT Operations (AIOPS), in conjunction with the 18th International Conference on Service-Oriented Computing (ICSOC2020) conference, Springer LNCS series, 12 pages. [Video] | corr. auth. |
12. | Nouioua, M., Wang, Y., Fournier-Viger, P., Lin, J.-C., Wu, J. M.-T. (2020). TKC: Mining Top-K Cross-Level High Utility Itemsets. Proc. 3rd International Workshop on Utility-Driven Mining (UDML 2020), in conjunction with the ICDM 2020 conference, IEEE ICDM workshop proceedings, to appear. [ppt] [video] | corr. auth. | |
2019 | 13. | Lin, J. C.-W., Li, Y., Fournier-Viger, P., Djenouri, Y., Zhang, J. (2019). An Efficient Chain Structure to Mine High-Utility Sequential Patterns. Proc. 2nd International Workshop on Utility-Driven Mining (UDML 2019), in conjunction with the ICDM 2019 conference, IEEE ICDM workshop proceedings, pp. 1013-1019. | |
14. | Saideep, C., Kiran, R. U., Zettsu, K., Fournier-Viger, P.,
Kitsuregawa, M., Reddy, P.K. (2019). Discovering
Periodic Patterns in Irregular TimeSeries. Proc.
2nd International Workshop on Utility-Driven Mining (UDML
2019), in conjunction with the ICDM 2019 conference, IEEE ICDM
workshop proceedings, pp. 1020-1028. |
||
2018 | 15. | Fournier-Viger, P., Liu, T., Lin, J. C.-W. (2018). Football Pass Prediction using Player Locations. Proc. of the 5th Machine Learning and Data Mining for Sports Analytics (MLSA 2018), in conjunction with the PKDD 2018 conference, Springer LNAI 11330, pp. 1–7, 2019. [source code] [presentation video : HTML5 / AVI ] | corr. auth. |
16. | Li, J., Fournier-Viger, P., Lin, J. C.-W., Truong, T. (2018). Discovering low-cost high utility patterns. 1st International Workshop on Utility-Driven Mining (UDM2018), in conjunction with the KDD 2018 conference, 9 pages. [ppt] | corr. auth. | |
17. | Truong, T., Tran, A., Duong, A., Le, B., Fournier-Viger, P.(2018). EHUSM: Mining High Utility Sequences with a Pessimistic Utility Model. 1st International Workshop on Utility-Driven Mining (UDM2018), in conjunction with the KDD 2018 conference (UDML 2018), 9 pages. | ||
18. | Djenouri, Y., Belhadi, A., Fournier-Viger, P., Lin, C.-W. (2018) Discovering Strong Meta Association Rules using Bee Swarm Optimization. 7th Workshop on Biologically Inspired Techniques for Data Mining (BDM'18), in conjunction with the 22nd Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD 2018). | ||
2012 | 19. | Snow, E., Moghrabi, C., Fournier-Viger, P. (2012). Assessing Procedural Knowledge in Open-ended Questions through Semantic Web Ontologies. Proc. of the 8thAustralasian Ontology Workshop (AOW2012), in conjunction with the 25th Australasian Joint Conference on Artificial Intelligence, CEUR, pp. 86-97. | |
2008 | 20. | Nkambou, R, Fournier-Viger, P., Dubois, D. (2008). RomanTutor, a Tutoring System for Training Astronauts on Robotic Arm Manipulations. Proceedings of the Demonstration Program of the 9th Intern. Conference on Intelligent Tutoring Systems (ITS 2008), pp. 51-53. | |
21. | Fournier-Viger, P., Nkambou, R., Mephu Nguifo, E. (2008). A Sequential Pattern Mining Algorithm for Extracting Partial Problem Spaces from Logged User Interactions. Proc. of the 3rd Intern. Workshop on Intelligent Tutoring Systems in Ill-Defined Domain: Assessment and Feedback in Ill-Defined Domains (in conjunction with ITS2008). June 23-27, Montreal, Canada. |
1. | Fournier-Viger, P. (2010), Un modèle hybride pour le support à l'apprentissage dans les domaines procéduraux et mal-définis. Ph.D. Thesis, University of Quebec in Montreal, Montreal, Canada, 184 pages. | |
2. | Fournier-Viger, P., Mephu Nguifo, E., Nkambou, R. (2009), Extraction de motifs séquentiels à partir de traces d'utilisation pour la construction automatique de modèles de tâches dans les systèmes tutoriels intelligents. Short paper. Journée thématique : Fouille de données séquentielles et ses applications, Université d'Orléans, Nov. 27, Orleans, France. | |
3. | Fournier-Viger, P. (2005). Un modèle de représentation des connaissances à trois niveaux de sémantique pour les systèmes tutoriels intelligents. M.Sc. dissertation, University of Sherbrooke, Sherbrooke, Canada, 194 pages. Chapter 4: Une introduction aux logiques de descriptions. |
1. | Fournier-Viger, P. (2019) Foreword of the Advances in Electrical and Electronic Engineering journal, volume 17, issue 1. | |
2. | Fournier-Viger, P. (2012), Intelligent tutoring systems in Ill-Defined Domains - Bibliography 2003-2012. In Paviotti, G., Rossi, P.G., Zarka, D. (Ed.) Intelligent Tutoring Systems: An overview, Pensa Multimedia, p. 153-161. (book appendix). |
Number of citations per year (based on G. Scholar, - updated 2021/12/31)
90
|
51
|
51
|
57
|
72
|
121
|
294
|
403
|
733
|
1031
|
1659
|
1835
|
2332
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
<2010 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
© Philippe Fournier-Viger, 2025. Template by Templatemo